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Abstract A single static vortex in a holographic two-band
superconductor is constructed. We investigate the effect
of the interband coupling to the condensate profile. We
estimate the first critical magnetic field, and compute char-
acteristic lengths like penetration and coherence lengths and
conclude both bands in our superconductor behave type II.

Keywords AdS/CMT · Multiband superconductor · Vortex

1 Introduction

The holography which is best known in the context of
AdS/CFT correspondence [1–3] states a gravity theory in
a d + 1 dimensional AdS space has a dual description of
field theory living at its d dimensional boundary. It has been
shown as a powerful tool to study various strongly cou-
pled systems. For example, in recent years, it was applied to
strongly correlated condensed matter systems like high Tc

superconductor [4, 5], non-Fermi liquid [6–8], Lifshitz fixed
point [9–11] or unitary fermi gas [12], etc. A gravity dual of
a single-band superconductor has been constructed by intro-
ducing a charged scalar in a AdS black hole background.
The charged scalar undergoes an instability below certain
critical temperature and form the superconducting conden-
sate. In this note, we generalize the single-band super-
conductor to a two-band case by introducing two charged
scalars with a interband Josephson coupling in a AdS space.

� Shang-Yu Wu
loganwu@gmail.com

1 Department of Electrophysics, Shing-Tung Yau Center,
National Chiao Tung University, 300 Hsinchu, Taiwan

We apply a constant external magnetic field and construct a
static single vortex solution in this two band superconduc-
tor. We also compute the superfluid density, penetration and
coherence lengths, and estimate the critical magnetic field.

2 The Model

Consider a two-component Ginzburg-Landau theory in
AdS-Schwarzchild black hole as a holographic model of
two-band superconductor [13]
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coupling, and η is a density-density coupling. To solve this
model, we impose the boundary conditions, near the bound-
ary z → 0, the asymptotic behaviors of fields are given
by1
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(ρ)z,

Aφ(ρ, z)|z→0 = aφ(ρ) + Jφ(ρ)z.

where 	i satisfies 	i(	i − 3) = m2
i are related to the

dimensions of the dual operatorOi . Here, ϕ
(1)
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1The expansions of ϕi are only valid with small ε and η, i.e., ε, η �
m2

i , since the terms with ε and η have the same scaling 1/z2 as those
with m2

i .
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as the source while ϕ
(2)
i as the condensate of the dual oper-

ator Oi ; μ is called as the chemical potential and 
 as the
charge density; aφ and Jφ can be interpreted as velocity and
current on the dual field theory. On the boundary z → 0, we
can impose the source-free conditions for charged scalars at
a fixed chemical potential μ. Like in [14], we impose that
aφ(ρ) = 1

2ρ
2B where B is the external magnetic field per-

pendicular to the boundary. We can also define the magnetic
field Bn = 2n/R2 where R is the maximum radius of the
vortex, in which Bn is the magnetic field which penetrates
through the vortex. The boundary condition of Aφ at ρ = R

is

Aφ |ρ=R = 1

2
BR2 (2)

We also require the regularity condition, e.g., At(z = zh) =
0 at the horizon and also the conditions at ρ = 0 for n �= 0

ϕ|ρ→0 = 0, ∂ρAt |ρ=0 = 0, Aφ |ρ=0 = 0, (3)

while for n = 0, ∂ρϕρ=0 = 0. To avoid the divergence of
the energy with the fractional magnetic flux [?], we set n1 =
n2 = n in our numerical calculations.

3 Numerical Results

In the numerics, we set m2
1 = −2, m2

2 = −5/4, q = L = 1,
n1 = n2 = n, and fix μ = 6.2, η = 0. We will change the
Josephson coupling ε or B to compute various properties of
the superconductor vortex. In Fig. 1, we show the conden-
sate profile for small ε where we find condensate 〈O2〉 is
against ε which is similar to the condensed matter literature
[15], but for ε is larger, 〈O2〉 decreases when ε increases as
shown in Fig. 2.

In Fig. 3, we estimate Bc1 by comparing the free energy
of n = 1 and n = 0 where the regularized free energy is
given by
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Fig. 1 For η = 0, B = B1 =
0.03125, R = 8, n = 1. (Left
panel) Vortex solution of 〈O1〉
with various ε; (right panel)
vortex solution of 〈O2〉 with
various ε. 〈O2〉 remains roughly
the same as ε varies
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Fig. 2 For η = 0, B = B1 =
0.03125, R = 8, n = 1. (Left
panel) Vortex solution of 〈O1〉
with various ε; (right panel)
vortex solution of 〈O2〉 with
various ε. 〈O2〉 decreases as ε

varies
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From Fig. 3, one can determine Bc1 as the magnetic field
where F(n = 1) = F(n = 0) which is about B = 0.09.
Therefore, when B < Bc1 = 0.09 the superconducting
phase without vortex is favored than the superconductor

phase with vortex. Conversely, the vortex state is favored
when B > Bc1 = 0.09.

Inaddition to Bc1, the other interesting quantities for
the superconductors are the characteristic lengths. We are

Fig. 3 Free energy versus
external magnetic field B with
η = 0, ε = 0.05, R = 8
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Fig. 4 For ε = 0.05, η = 0, B = B1 = 0.03125, n = 1, R = 8, the
profile of superfluid density ns(ρ)

interested in the penetration length and coherence lengths.
The penetration length can be obtained from the superfluid
density ns by λ = 1

e
√

ns
where e is the electric charge of the

superconductor and the superfluid density ns can be defined
from the current-current correlator given by [14]

ns = 〈JφJφ〉 = − Jφ

aφ − n
. (5)

We show the superfluid density in Fig. 4.
For the coherence length, we adopt the approach by

fitting the condensate profiles by

〈Oi〉1/	i ∼ ai

(
1 + bie

− ρ√
2ξi

)
, i = 1, 2, (6)

and then we can conclude the Ginzburg-Landau parameter
κ for both bands in our two-band superconductor are larger
than 1/

√
2 and behave type II.

4 Conclusion

In this note, we construct a single vortex solution in a
holographic two-band superconductor. We find for small

interband Josephson coupling, one condensate is robust
against the interband coupling. By comparing the free
energy of n = 1 superconducting vortex solution and super-
conducting solution without vortex, we estimate the first
critical magnetic field Bc1. We also compute the super-
fluid density, penetration length, and coherence lengths and
conclude both bands in our model behave type II.
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