
J Supercond Nov Magn (2016) 29:285–288
DOI 10.1007/s10948-015-3259-3

ORIGINAL PAPER

Vortices in Hubbard Superconductors: A Bogoliubov-de
Gennes Approach
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Abstract Based on the Bogoliubov-de Gennes formalism,
we study vortices with quantum magnetic fluxes in two-
dimensional supercells, when an external magnetic field
(B) is applied to s-, d-, and anisotropic s-wave supercon-
ductors. This study is carried out by using a generalized
Hubbard model including negative U and V , as well as a
nearest-neighbor correlated hopping interaction (�t). The
self-consistent calculation of the superconducting gap (�)
shows the formation of vortices in real space, whose struc-
ture depends on the electron-electron interaction. Further-
more, the supercell averaged � as a function of B reveals
qualitatively different behaviors for the three analyzed pair-
ing interactions. Finally, the results suggest that the d-wave
superconducting states have larger second critical magnetic
fields than those corresponding to isotropic and anisotropic
s-wave ones.
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1 Introduction

There are two types of superconductors depending on the
surface energy between the normal and superconducting
phases, which is positive when κ ≡ λ/ξ < 1/

√
2 (type

I) and negative for κ > 1/
√

2 (type II) where λ is the
penetration depth and ξ the coherence length. For type-
II superconductors, a mixed state formed by vortices with
superconducting quantum magnetic fluxes (�0 ≡ π�c/e)

appears when an external magnetic field with strength
between Bc1 and Bc2 is applied. A triangular vortex lattice
is obtained if one starts from an isotropic electronic model.
However, in real superconductors, the crystalline symme-
try can make the square vortex lattice more favorable, since
the energy difference between these two lattices is very
small [1].

Virtually all superconducting compounds are type-II
superconductors including the ceramic high-temperature
ones, which have d-wave superconducting gaps [2]. It
would be important to study the effects of the supercon-
ducting gap symmetry on the vortex structure as well as
on the mixed state superconducting gap. On the theoreti-
cal side, the Bogoliubov-de Gennes formalism [3] provides
a microscopic description of the vortex formation, vortex
symmetry, and interaction between vortices [4]. Moreover,
the generalized Hubbard model, which includes on-site (U ),
nearest-neighbor (V ), and correlated hopping (�t) interac-
tions, has been used to investigate s- and d-wave supercon-
ductivity [5]. In this work, we report an extension of the
Bogoliubov-de Gennes formalism for the generalized Hub-
bard model and a comparative study of the effects of both
the pairing interaction and symmetry on the vortex structure
and superconducting gap.
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2 The Model

Let us consider a single-band Hubbard Hamiltonian on a
square lattice given by [6]

Ĥ = t
∑

〈l,j〉,σ
ĉ

†
l,σ ĉj,σ + U

∑

l

n̂l,↑n̂l,↓ + V

2

∑

〈l,j〉
n̂l n̂j

+�t
∑

〈l,j〉,σ
ĉ

†
l,σ ĉj,σ

(
n̂l,−σ + n̂j,−σ

)
(1)

where ĉ
†
j,σ (ĉj,σ ) is the creation (annihilation) operator with

spin σ =↑ or ↓ at site j , n̂j,σ = ĉ
†
j,σ ĉj,σ , n̂j = n̂j,↑ + n̂j,↓,

and 〈l, j〉 denote nearest-neighbor sites. For a singlet super-
conductor with uniform electronic charge and spin densities
in an external magnetic field (B = ∇ ×A), Hamiltonian (1)
in the mean-field approximation can be written as

ĤMF = ε0 + ε
∑

l,σ

ĉ
†
l,σ ĉl,σ +

∑

<l,j>,σ

tl,j ĉ
†
l,σ ĉj,σ

+
∑

j

(�∗
j,j ĉj,↓ĉj,↑ + �j,j ĉ

†
j,↑ĉ

†
j,↓)

+
∑

<l,j>

(�∗
l,j ĉj,↓ĉl,↑ + �j,l ĉ

†
l,↑ĉ

†
j,↓), (2)

where ε0 =−NS
(

U
4 + 2V

)
n2 −2�t

∑
<l,j>

(
∗
l, l
l,j + 
l,l


∗
l,j ), ε = U

2 n + 4V n,

tl,j = (t + n�t) exp

(
− iπ

�0

∫ Rj

Rl

A(r) · dr
)

, (3)

�l, l = U
l, l +2�t
∑

j

l,j , and �l,j = V 
j, l +�t(
l,l +
j,j ),

(4)

being n =
〈
ĉ

†
j,↑ĉj,↑

〉
+

〈
ĉ

†
j,↓ĉj,↓

〉
, NS the total number of

sites and


l,j = 〈
ĉl,↓ĉj,↑

〉 = − 〈
ĉj,↑ĉl,↓

〉

= −1

2

∑

α

(uα
l v

α∗
j + uα

j v
α∗
l ) tanh

(
Eα

2kBT

)
. (5)

Applying the following unitary transformation

ĉj,↑ =
∑

α
(uα

j γ̂α,↑ − vα∗
j γ̂

†
α,↓),

ĉj,↓ =
∑

α
(uα

j γ̂α,↓ + vα∗
j γ̂

†
α,↑), (6)

and the supercell technique by rewriting [7]
(

uα
j

vα
j

)
⇒ ei k·rj

(
uα

j (k)

vα
j (k)

)
, (7)

Fig. 1 Real-space averaged superconducting gap amplitudes (<
|�η| >) as a function of the electron density (n) for s-, s*-, and d-wave
symmetries a without and b with applied magnetic field (B)

the Bogoliubov-de Gennes equations for uα
j (k) and vα

j (k)

are

∑

j

ei k·(rj −rl )
(

Hl,j �l,j

�∗
l,j −H ∗

l,j

) (
uα

j (k)

vα
j (k)

)
= Eα(k)

(
uα

l (k)

vα
l (k)

)
(8)

where subscripts l and j denote the sites of a N × N

supercell, Hl,j = ε δl,j + tl,j , and �l,j is given by (4) with


l,j = −1

2

∑

α,k

[
uα

l (k) vα∗
j (k) e−i k·(rj −rl ) + uα

j (k) vα∗
l (k) ei k·(rj −rl )

]

× tanh

(
Eα(k)

2kBT

)
. (9)

The local s-wave (�s
l ), anisotropic s-wave (�s∗

l ), and
d-wave (�d

l ) superconducting gaps can be written [4,
5] as �s

l = �l,l , �s∗
l = 1

4

∑
j �l,j , and �d

l =
1
4

∑
j (−1)γl,j �l,j , where the sum is over the nearest-

neighbors of site l, γl,j = ∣∣rl,j · êy

∣∣/a and a is the lattice
parameter. Equation (8) allows to determine the spatial vari-
ation of the superconducting gaps as a function of the
electron concentration for a given applied magnetic field.

3 Results and Discussion

Equations (8) were self-consistently solved for s-, s*-, and
d-wave superconducting gaps, respectively, induced by U ,
�t , and V , starting from a homogeneous gap seed. We con-
sidered N × N-atom supercells containing two quantum
fluxes at T = 0 K that corresponds to an external magnetic



J Supercond Nov Magn (2016) 29:285–288 287

Fig. 2 Real-space averaged superconducting gap amplitude (<
|�η| >) at the optimum electron concentration (nop) as a function of
the magnetic field (B) for a η = s with nop = 1, b η = s with
nop = 1.82, c η = s* with nop = 1.82, and d η = dwith nop = 1

field (B) perpendicular to the square lattice given by B =
2�0/(Na)2 and a vector potential obtained by the symmet-
ric gauge A = B × r/2. Figure 1a with B = 0 and Fig. 1b
with B = 2�0/(13a)2, corresponding to a supercell of
13 × 13 atoms, show the supercell averaged superconduct-
ing gap amplitudes (< |�η| >) as functions of the electron
density (n) for η = s induced by U = −1.09 |t |, η = s by
�t = 0.225 |t |, η = s* by �t = 0.225 |t |, and η = d by
V = − |t |. The values of these interaction parameters were
chosen to give the same maximum < |�η| >. For each

Fig. 3 a–d Spatial distribution of the superconducting gap amplitude
(< |�η| >) in a 19 × 19-atom supercell under an applied magnetic
field B = 2�0/(19a)2 for the same cases as in Fig. 2

case, the other electron-electron interactions in Hamiltonian
(1) were taken equal to zero. Observe the significant reduc-
tion of the superconducting zones when a magnetic field is
applied, being more pronounced for s-wave than d-wave.

Figure 2 illustrates the variation of maximum < |�η| >

at the optimal electronic density (nop) with the magnetic
field strength (B) for (a) η = s induced by U = −1.09 |t |,
(b) η = s by �t = 0.225 |t |, (c) η = s* by �t = 0.225 |t |,
and (d) η = d by V = − |t |. Notice that both isotropic
and anisotropic s-wave superconducting gaps vanish around
Ba2/�0 ≈ 0.04, whereas the d-wave superconducting gap
remains about 60 % of its zero-field value. This fact is
consistent with the experimental data of high-Tc ceramic
superconductors having Bc2 higher than 100 T at optimal
doping, as occurs in YBa2Cu3Oy [8].

The local superconducting gaps in a 19 × 19-atom super-
cell are shown in Fig. 3a–d for the same cases as in Fig. 2a–d
with B = 2�0/(19a)2.

It would be worth mentioning that these spatial distribu-
tions of superconducting gaps with applied magnetic field in
Fig. 3 were spontaneously obtained from an initial homoge-
nous gap distribution that corresponds to the zero magnetic
field case, and (8) is then self-consistently solved.

4 Conclusions

In this article, we report a systematic study of the effects of
applied magnetic field strength on isotropic and anisotropic
superconducting gaps, through varying the size of square-
lattice supercells. This study was carried out by using the
Hubbard model within the Bogoliubov-de Gennes formal-
ism. The attractive on-site (U ) Hubbard model has been
used to describe s-wave superconductors [9], whereas the
repulsive U and attractive nearest-neighbor (V ) electron-
electron interactions have been successfully used to repro-
duce the antiferromagnetic-superconducting phase diagram
for both electron-doped (Nd2−xCexCuO4−y) and hole
doped (La2−xSrxCuO4−y) d-wave superconductors [10].

The results of this work show that d-wave superconduc-
tors have upper critical magnetic fields (Bc2) significantly
larger than those of both isotropic and anisotropic s-wave
ones with the same superconducting gap amplitude as d-
wave systems in the absence of external magnetic field. This
fact could be related to the phase change in the hopping
integral induced by the magnetic field that is less harm-
ful for anisotropic superconductors. Moreover, for small
magnetic fields, the superconductivity induced by density-
density interactions is more depleted than that induced by
correlated hopping ones.
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10. Kucab, K., Górski, G., Mizia, I.: Physica C 490, 10 (2013)


	Vortices in Hubbard Superconductors: A Bogoliubov-de Gennes Approach
	Abstract
	Introduction
	The Model
	Results and Discussion
	Conclusions
	Acknowledgments
	References


