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Abstract Using the effective field theory with correlations,
the effects of the exchange interaction on the thermal behav-
iors of the total magnetization, internal energy, specific heat,
entropy, and free energy of a transverse antiferromagnetic
Ising nanocube are investigated. The phase diagram is also
calculated and discussed in detail.
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1 Introduction

Magnetic nanoparticle (NP) systems have received much
attention over the last decade [1–4], because of their great
interest in various disciplines such as ultra-high-density
recording media [5] and biomedicine [4–6]. Moreover,
when the size of a magnetic NP decreases to a nanometer
scale, the magnetic and thermodynamic properties of these
NPs become quite different from those observed in the bulk
materials [7].

From the experimental point of view, there are many
methods that have been used to prepare various types of
magnetic NP systems which have many applications in
different types of nanotechnology areas [8–12]. On the
other hand, the magnetic and thermodynamic properties of
these NP systems have been studied by a variety of tech-
niques, such as the mean-field theory (MFT) [13], effective-
field theory (EFT) with correlations [14–17], Green func-
tions (GF) formalism [18], variational-cumulant expansion
(VCE) [19], and Monte Carlo (MC) simulations [20–22].
Based on the EFT with correlations, Canko et al. [23] have
investigated the magnetic and the thermodynamic proper-
ties of a cylindrical spin-1 Ising nanotube, and they have
also investigated the magnetic susceptibility, specific heat,
internal energy, and free energy of a cylindrical mixed spin-
1
2 and spin-1 Ising nanotube [24]. In their both works,
they have observed first- and second-order phase transi-
tions. By using the same method, the temperature and the
applied field dependencies of the magnetic properties (mag-
netization, susceptibility, specific heat, and internal energy)
of the ferro- and antiferromagnetic cylindrical mixed spin-
1
2 core and spin-1 shell Ising nanotube system have been
investigated by Şarlı [25]. He has observed that the inter-
action parameter between the shell and the core affects the
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magnetic properties of the nanotube system. Kantar et al.
[26] have investigated the thermal and magnetic properties
of a ternary Ising spins ( 1

2 , 1, 3
2 ) magnetic NPs with core-

shell structure, within the framework of the EFT with cor-
relations. They have found that the system undergoes first-
and second-order phase transitions and exhibits a tricritical
point, reentrant, and five different types of compensation
behaviors. Similarly, Taşkın et al. [27] have investigated the
effects of the crystal field at the surface shell and bilin-
ear interactions among the core and surface shell on the
magnetic and the thermodynamic properties of a cylindrical
Ising nanotube composed of a spin- 1

2 core surrounded by
a spin- 3

2 shell system. They have observed that the system
exhibits first- and second-order phase transitions and also
critical end points. Recently, Bouhou et al. [28] have inves-
tigated the effect of the core/shell interfacial coupling, the
surface shell exchange coupling, and the surface shell trans-
verse field on the magnetic and thermodynamic properties
of an antiferromagnetic core/shell magnetic NP on a HCP
lattice. They have found a number of interesting phenomena
such as the existence of the compensation temperature.

The purpose of the present work is to contribute with
the same thematic to investigate the effect of the exchange
coupling between the core and shell on the magnetic and
thermodynamic properties of the core/shell antiferromag-
netic Ising nanocube. For this aim, we have organized the
paper as follows: In Section 2, we outline the formalism
of the system. The results and discussion are presented in
Section 3 and finally Section 4 contains a brief conclusion.

2 Model and Formalism

We consider an antiferromagnetic nanocube consisting of
surface shell and core, where each site is occupied by an
Ising spin- 1

2 as depicted in Fig. 1. The inner spins are called
the core (c) region which is surrounded by the outer spins
that are known as the surface shell (s) of the particle. The
number of core spins is Nc = 27 and the number of surface
shell spins is Ns = 98. The Hamiltonian of the system is
expressed as follows

H = −Js

∑

<ij>

σz
i σ z

j − Jc

∑

<nm>

σz
nσ z

m − Jcs

∑

<im>

σz
i σ z

m

−�s

∑

i

σ x
i − �c

∑

m

σx
m, (1)

where σz
i and σx

i denote, respectively, the z and x compo-
nents of a quantum spin operator −→σ of magnitude σ = ± 1

2
at the site i. Js , Jc and Jcs are the exchange interactions
between the nearest-neighbor magnetic spins in the surface
shell, the core and between the core and surface shell inter-
face (Jcs < 0), respectively. �s represents the transverse

field at the surface shell, and �c is the transverse field in the
core.

The theory to be used is the EFT in which the attention is
focused on the cluster comprising just a single selected spin
and the neighboring spins with which it directly interacts.
To this end, the Hamiltonian is split into two parts

H = H ′ + Hi. (2)

The first term denoted by H
′

does not depend on the
site i, while the second term Hi includes all contributions
associated with the site i :

Hi = −Aσz
i − �ασx

i , (3)

where

A =
∑

j

Jij σ
z
j , (4)

and �α = �s or �c (�s if the site α belongs to the surface
shell of the nanocube and �c if not).

Using the approximation introduced by Sá Barreto et al.
[29], we obtain the identity

〈
σz

i

〉 =
〈

T r
[
σz

i e−βHi
]

T r
[
e−βHi

]
〉

, (5)

where the angular bracket 〈· · · 〉 denotes the canonical ther-
mal average, β = 1/kBT with kB stands for the Boltzmann
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Fig. 1 Schematic representation of magnetic spins in a cubic nanopar-
ticle. Solid, dotted, and dashed lines represent the exchange interac-
tions of the surface shell, core, and interface, respectively
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Fig. 2 Effect of the core/shell antiferromagnetic interfacial coupling
rcs on the temperature dependence of the total magnetization of the
system for rs = 0.05, ωs = 0.2, and ωc = 0.8

constant, and T is the temperature. If the exchange interac-
tions are restricted only to the nearest-neighbors and using
the EFT with a probability distribution technique [30], the
longitudinal magnetization of the system would be given by

mz
i = 〈

σz
i

〉 = 〈fz (A, �α)〉 , (6)

with

fz(A, �α) = A

2
√

A2 + �2
α

tanh

(
β

2

√
A2 + �2

α

)
. (7)

To perform the thermal averaging on the right-hand side of
(6 ), we follow the general approach described in Ref. [30].
First of all, in the spirit of the EFT, multispin-correlation
functions are approximated by products of single spin aver-
ages. We then take advantage of the integral representation
of the Dirac’s delta distribution in order to write (6) in the
following form

mz
i =

∫
dyfz(y,�α)

1

2π

∫ ⎡

⎣dλ exp(iyλ)
∏

j

〈
exp(iλJijσ

z
j )

〉
⎤

⎦ .

(8)

In the calculation of (8), the commonly used approximation
has been made according to which the multi-spin correlation
functions are decoupled into products of the spin average.
To make progress, we introduce the probability distribution
of the spin variable σz

j [31]:

P (σz
j ) = 1

2

[(
1 − 2mz

i

)
δ(σ z

j + 1

2
) + (

1 + 2mz
i

)
δ(σ z

j − 1

2
)

]
.

(9)

The explicit formulation of magnetizations have a long
expressions, so they will not be given here. But they are

given in Appendix . The total longitudinal magnetization per
site is given by

MT = 1

125
(98Ms + 27Mc) , (10)

where Ms and Mc represent, respectively, the surface shell
and core longitudinal magnetizations of the nanocube,
which are given by

Mc = 1

27

(
8mz

c1
+ 12mz

c2
+ 6mz

c3
+ mz

c4

)
, (11)

and

Ms = 1

98

(
8mz

s1
+ 24mz

s2
+ 12mz

s3
+ 24mz

s4
+ 24mz

s5
+ 6mz

s6

)
.

(12)

By using the approximated spin correlation identities
introduced by Sá Barreto et al. [32]

〈fiσi〉 =
〈
fi

T ri(σi exp(−βHi))

T ri(exp(−βHi))

〉
, (13)

we can easily obtain the internal energy U of the system
from the thermodynamic average of the Hamiltonian, as it
has done by Kaneyoshi et al. [33] in the mixed-spin system

U = 〈H 〉 = − 1

2
(

1

125
(8

〈
us1

〉 + 24
〈
us2

〉 + 12
〈
us3

〉 + 24
〈
us4

〉 + 24
〈
us5

〉

+6
〈
us6

〉 + 8
〈
uc1

〉 + 12
〈
uc2

〉 + 6
〈
uc3

〉 + 〈
uc4

〉
)) − �s(

1

98
(8mx

s1

+24mx
s2

+ 12mx
s3

+ 24mx
s4

+ 24mx
s5

+ 6mx
s6

)) − �c(
1

27
(8mx

c1
+ 12mx

c2

+6mx
c3

+ mx
c4

)) (14)
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Fig. 3 Effect of the core/shell antiferromagnetic interfacial coupling
rcs on the temperature dependence of the internal energy of the system
for rs = 0.05, ωs = 0.2, and ωc = 0.8
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Fig. 4 Effect of the core/shell antiferromagnetic interfacial coupling
rcs on the temperature dependence of the specific heat of the system
for rs = 0.05, ωs = 0.2, and ωc = 0.8

where

〈ui〉 =
〈
∑

j

Jij σ
z
j fz

⎛

⎝
∑

j

Jijσ
z
j , �i

⎞

⎠
〉

. (15)

The specific heat of the system is obtained from the
relation:

Ch = ∂U

∂T
. (16)

The entropy of the system is obtained numerically by the
following relation:

S =
T∫

0

Ch

T
′ dT

′
. (17)

The free energy of the system is defined as:

F = U − T S. (18)

By solving all these equations numerically, we can easily
obtain the magnetic and the thermodynamic properties of
the nanocube system.

3 Numerical Results and Discussions

In this section, we investigate the magnetic and thermo-
dynamic properties of our system within the formulations
given in Section 2. Toward this end, we take Jc as a unit
of the energy and we define the reduced exchange interac-
tions and transverse fields as (rcs = Jcs/Jc, rs = Js/Jc,
ωs = �s/Jc, and ωc = �c/Jc).

The effect of the core/shell antiferromagnetic interfa-
cial coupling on the magnetic and thermal properties of the

particle is examined in Figs. 2, 3, 4, 5, and 6 for some
selected values of rcs (rcs = −0.1, −0.3, and −0.5) and
with a fixed value of rs = 0.05, ωs = 0.2, and ωc = 0.8.

Also, the phase diagram (kBTcomp/Jc, kBTc/Jc −rcs ) of the
particle is plotted in Fig. 7 for the same physical parameters
as those in the latter figures.

In Fig. 2, we depict the temperature dependence of the
total magnetization MT . As seen from this figure, there are
two zeros in magnetization curves for different rcs values.
The first one corresponds to the compensation temperature,
whereas the second occurs at the critical temperature of the
system. The existence of the compensation temperature is
a typical characteristic of the antiferromagnetic materials
behavior, namely the N-type [34]. The compensation point
has also been obtained theoretically in Refs. [15, 28, 35,
36] and experimentally by Estrader et al. [3] for the magne-
tization of the core/shell particles based on Fe-oxides and
Mn-oxides. We can clearly see, at zero temperature, that
the MT curves have three saturation magnetizations Msat =
−0.218, −0.342, and −0.369 when the core/shell antifer-
romagnetic interfacial coupling are selected as rcs = −0.1,

−0.3, and −0.5, respectively, which indicate that the satura-
tion value of the total longitudinal magnetization decreases
with the decrease of rcs .

Figure 3 shows the internal energy versus reduced tem-
perature (kBT/Jc ). One can see that the internal energy
curves have a fluctuation at the compensation temperatures
and present a discontinuity of the curvature at the critical
temperatures. In addition, for any fixed value of kBT/Jc ,
the weaker exchange interaction between the core and shell
makes the internal energy U decreasing.

On the other hand, we present the specific heat of the
particle in Fig. 4. It is clearly seen from this figure that the
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Fig. 5 Effect of the core/shell antiferromagnetic interfacial coupling
rcs on the temperature dependence of the entropy of the system for
rs = 0.05, ωs = 0.2, and ωc = 0.8
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Fig. 6 Effect of the core/shell antiferromagnetic interfacial coupling
rcs on the temperature dependence of the free energy of the system for
rs = 0.05, ωs = 0.2, and ωc = 0.8

curves of the specific heat curves exhibit two peaks. The
first one which has a rounded shape corresponds to the com-
pensation temperature, while the second one occurs at the
critical temperature. It is also seen that these peaks move
to high temperatures as the absolute value of rcs increases,
confirming that the compensation and the critical tempera-
tures increase with the increase of the absolute value of the
interfacial exchange interaction. We can also notice from
this figure that the specific heat is higher in the ordered state
than in the disordered one.

Figure 5 shows the effect of rcs on the entropy of the sys-
tem. It is clearly seen from this figure that at kBT/Jc = 0.0,
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Fig. 7 Phase diagram of the system in (kBTcomp/Jc, kBTc/Jc − rcs)
plane for rs = 0.05, ωs = 0.2 and ωc = 0.8

the entropy of the system is equal to zero and it increases
with increasing the temperature in order to minimize the
free energy of the system as clearly shown in Fig. 6 which
presents the free energy of the particle as a function of
reduced temperature. We can also see from the last figure
that the free energy curves do not exhibit a discontinu-
ous behavior at the critical temperature. Therefore, we can
notice that the system presents only a second order transi-
tion. We can also notice from the Fig. 6 that the free energy
is equal to the internal energy at the ground state (kBT/Jc =
0.0), which is obvious, because the entropy gives a minor
contribution to the free energy at low temperatures as it is
mentioned above.

In order to investigate the influence of rcs on both critical
and compensation temperatures of the nanocube, we have
plotted the phase diagram (kBTcomp/Jc, kBTc/Jc − rcs ) of
the particle in Fig. 7, which represents the variation of the
critical and the compensation temperatures of the system
with rcs . We can clearly see from this figure that the curve
of kBTc/Jc divides the phase diagram into two regions, the
ordered one is named an antiferromagnetic phase, whereas
the other which is disordered is named a paramagnetic
phase. We can also see from this figure that both the com-
pensation and critical temperatures of the system increase
as the absolute value of rcs increases. The behavior of these
curves is similar with that obtained by Yüksel et al. [35]
for a ferrimagnetic NP with spin- 3

2 core and spin-1 shell
structure.

4 Conclusion

In this work, we have investigated the effect of core/shell
antiferromagnetic interfacial coupling on the magnetic and
the thermodynamic properties of an antiferromagnetic Ising
nanocube by using the EFT based on the probability distri-
bution technique with correlations. We have found that rcs
has strong effects on these properties for a given parame-
ters. It is observed that the magnetization curves show the
existence of the N-type behavior in which one compensa-
tion temperature appears below the transition temperature.
We can conclude from the above section that the compen-
sation and critical temperatures increase with increasing
the absolute value of rcs and the system exhibits just a
second-order phase transition as it is confirmed by the free
energy.
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Appendix: Equations of the Core and Surface
Shell Magnetizations

Within the framework of the effective field theory with
correlations, four longitudinal magnetizations on the core,
namely mz

c1
, mz

c2
, mz

c3
, and mz

c4
, and six longitudinal mag-

netizations on the surface shell, namely mz
s1

, mz
s2

, mz
s3

, mz
s4

,
mz

s5
and mz

s6
, can be obtained as:

Magnetization of the central spin c1:

mz
c1

= 1

2(2N3)

N3∑

μ1=0

N3∑

μ2=0

CN3
μ1

CN3
μ2

(
1 − mz

c2

)μ1
(
1 + mz

c2

)N3−μ1

× (
1 − mz

s4

)μ2
(
1 + mz

s4

)N3−μ2 × fz(Jc(N3 − 2μ1)

+Jcs (N3 − 2μ2) + h,�c) (19)

Magnetization of the central spin c2:

mz
c2

= 1

2(3N2)

N2∑

μ1=0

N2∑

μ2=0

N2∑

μ3=0

CN2
μ1

CN2
μ2

CN2
μ3

(
1 − mz

c1

)μ1
(
1 + mz

c1

)N2−μ1

× (
1 − mz

c3

)μ2
(
1 + mz

c3

)N2−μ2
(
1 − mz

s5

)μ3
(
1 + mz

s5

)N2−μ3

×fz(Jc(2N2 − 2(μ1 + μ2)) + Jcs(N2 − 2μ3) + h,�c) (20)

Magnetization of the central spin c3:

mz
c3

= 1

2(2N1+N4)

N4∑

μ1=0

N1∑

μ2=0

N1∑

μ3=0

CN4
μ1

CN1
μ2

CN1
μ3

(
1 − mz

c2

)μ1
(
1 + mz

c2

)N4−μ1

× (
1 − mz

c4

)μ2
(
1 + mz

c4

)N1−μ2
(
1 − mz

s6

)μ3
(
1 + mz

s6

)N1−μ3

×fz(Jc(N4 + N1 − 2(μ1 + μ2)) + Jcs (N1 − 2μ3) + h, �c) (21)

Magnetization of the central spin c4:

mz
c4

= 1

2(N6)

N6∑

μ1=0

CN6
μ1

(
1 − mz

c3

)μ1
(
1 + mz

c3

)N6−μ1

×fz(Jc(N6 − 2μ1) + h, �c) (22)

Magnetization of the surface spin s1:

mz
s1

= 1

2N3

∑N3

μ1=0
CN3

μ1

(
1 − mz

s2

)μ1
(
1 + mz

s2

)N3−μ1

×fz(Js(N3 − 2μ1) + h, �s) (23)

Magnetization of the surface spin s2:

mz
s2

= 1

2(2N1+N2)

N1∑

μ1=0

N1∑

μ2=0

N2∑

μ3=0

CN1
μ1

CN1
μ2

CN2
μ3

(
1 − mz

s1

)μ1
(
1 + mz

s1

)N1−μ1

× (
1 − mz

s3

)μ2
(
1 + mz

s3

)N1−μ2
(
1 − mz

s4

)μ3
(
1 + mz

s4

)N2−μ3

×fz(Js(2N1 + N2 − 2(μ1 + μ2 + μ3)) + h, �s) (24)

Magnetization of the surface spin s3:

mz
s3

= 1

22N2

∑N2

μ1=0

∑N2

μ2=0
CN2

μ1
CN2

μ2

(
1 − mz

s2

)μ1

× (
1 + mz

s2

)N2−μ1
(
1 − mz

s5

)μ2
(
1 + mz

s5

)N2−μ2

×fz(Js(2N2 − 2(μ1 + μ2)) + h,�s) (25)

Magnetization of the surface spin s4:

mz
s4

= 1

2(N1+2N2)

N1∑

μ1=0

N2∑

μ2=0

N2∑

μ3=0

CN1
μ1

CN2
μ2

CN2
μ3

(
1 − mz

c1

)μ1
(
1 + mz

c1

)N1−μ1

× (
1 − mz

s2

)μ2
(
1 + mz

s2

)N2−μ2
(
1 − mz

s5

)μ3
(
1 + mz

s5

)N2−μ3

×fz(Js(2N2 − 2(μ2 + μ3)) + Jcs (N1 − 2μ1) + h, �s) (26)

Magnetization of the surface spin s5:

mz
s5

= 1

2(3N1+N2)

N1∑

μ1=0

N1∑

μ2=0

N2∑

μ3=0

N1∑

μ4=0

CN1
μ1

CN1
μ2

CN2
μ3

CN1
μ4

× (
1 − mz

c2

)μ1
(
1 + mz

c2

)N1−μ1
(
1 − mz

s3

)μ2

× (
1 + mz

s3

)N1−μ2
(
1 − mz

s4

)μ3
(
1 + mz

s4

)N2−μ3

× (
1 − mz

s6

)μ4
(
1 + mz

s6

)N1−μ4 fz(Js(2N1 + N2

−2(μ2 + μ3 + μ4))

+Jcs(N1 − 2μ1) + h, �s) (27)

Magnetization of the surface spin s6:

mz
s6

= 1

2(N1+N4)

N1∑

μ1=0

N4∑

μ2=0

CN1
μ1

CN4
μ2

(
1 − mz

c3

)μ1

× (
1 + mz

c3

)N1−μ1
(
1 − mz

s5

)μ2

× (
1 + mz

s5

)N4−μ2 fz(Js(N4 − 2μ2)

+Jcs(N1 − 2μ1) + h, �s) (28)

With N1 = 1, N2 = 2, N3 = 3, N4 = 4 and N6 = 6
denote respectively the coordination number, and Cl

k are the
binomial coefficients Cl

k = l!
k!(l−k)! .
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Salazar-Alvarez, G., Vasilakaki, M., Trohidou, K.N., Varela, M.,
Stanley, D.C., Sinko, M., Pechan, M.J., Keavney, D.J., Peiró, F.,
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20. Iglesias, Ò., Labarta, A.: Physica B 343, 286 (2004)
21. Vasilakaki, M., Trohidou, K.N.: Phys. Rev. B 79, 144402 (2009)
22. Masrour, R., Bahmad, L., Hamedoun, M., Benyoussef, A., Hlil,

E.K.: Solid State Commun. 162, 53 (2013)
23. Canko, O., Erdinc, A., Taskin, F., Atis, M.: Phys. Lett. A 375,

3547 (2011)
24. Canko, O., Erdinc, A., Taskin, F., Yildirim, A.F.: J. Magn. Magn.

Mater. 324, 508 (2012)
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