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Abstract This paper presents a numerical (finite element)
analysis of superconductor stability and current propaga-
tion under random variations of critical superconductor
parameters. Instead of using singular (homogeneous) val-
ues, random variations potentially are appropriate to take
into account any conductor inhomogeneity that can be con-
sidered as an obstacle to current propagation. Traditional
assumptions like homogeneous current distribution, critical
temperature, critical current density and critical magnetic
fields are not justified in general; a local disturbance (for
example, release of mechanical stress energy), if not imme-
diately distributed by solid conduction, would generate a
transient increase of local conductor temperature. Local crit-
ical current density and magnetic field then will be reduced,
and current distribution will change. Disturbances may arise
also from transport currents that locally exceed the criti-
cal current of the superconductor. Disturbances of all kinds
may increase the conductor temperature above its critical
value. A local analysis of all superconductor states thus is
mandatory to safely avoid a quench. As an extension of
standard stability models, also flux flow resistive states are
taken into account. We will try to find a possibly existing
correlation between current propagation and superconduc-
tor stability. Fault current limiting is discussed as a special
case of current propagation. The analysis is applied to a bun-
dle of high-temperature superconductor (HTSC) filaments.
As will be shown, temperature profiles in a superconductor
do not allow a clear distinction between Ohmic resistive or
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flux flow resistive fault current limiting. Though frequently
made in the literature, this separation is highly questionable,
because Ohmic resistive and flux flow resistive states may
locally coexist, side by side, but are not very stable in the
superconductor volume.

Keywords Superconductor · Finite element analysis ·
Local conductor temperature · Random variables · Current
distribution · Stability · Current limiting · Correlations

1 Survey

A superconductor is stable if it does not quench. Quench
is initiated by disturbances like insufficient cooling, local
release of mechanical energy, absorption of particle radi-
ation or transport currents exceeding the critical current.
Quench proceeds on very small timescales. In many cases,
quench causes local damage but may even lead to total
destruction of a conductor. Quench can be avoided by appro-
priate design of superconductors (wires, filaments, thin
films) using stability models. Stability models yield pre-
dictions on permissible conductor geometry like maximum
radius of filaments or aspect ratio of thin films, and of max-
imum zero-loss transport current to which a superconductor
may be exposed.

But fast transitions from superconducting to normal con-
ducting state, like in a quench, offer rich potential of self-
regulating fault current limiting (FCL), for example in case
of short circuits in an electrical distribution system. When
simulating current propagation, we accordingly have to con-
sider two mutually exclusive situations: energy losses and
quench during nominal conductor operation safely has to
be avoided, which means the actual conductor temperature,
current density and magnetic field have safely to be kept
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below their critical values. On the other hand, fault current
limiting relies just on overrunning the critical parameters.
Simulation of current propagation has to account for both
situations.

Attempts to develop FCL and successful realisations of
this advanced safety concept have very frequently been
reported in the literature and are an important step for-
ward. Summary reports prepared soon after the discovery of
high-temperature superconductivity, with reference to FCL
projects, can be found in [1, 2]; a more recent description,
again with numerous citations to original literature, is given
in [3], Chap. 8. Design and successful operation of fault
current limiters contribute to a deeper understanding of cur-
rent transport in general and to short-time, superconductor
materials behaviour under extreme current load.

Current limitation can be achieved if at least one of the
three critical parameters (temperature TCrit, critical mag-
netic field BCrit and critical current density JCrit) is exceeded
by actual values T, B and J. Roughly speaking, an Ohmic
resistive FCL integrated into an electrical circuit immedi-
ately after the start of a fault like J >> JCrit generates flux
flow resistances and corresponding losses which quickly
raise the conductor temperature to above TCrit; thus, a large
obstacle to fault current flow is generated. A flux flow
FCL, too, generates flux flow resistance but with the con-
ductor temperature below TCrit (no phase change to normal
conduction). Inductive current limiters comprise a primary
normal conductor winding and a shielded iron core. Shield-
ing of the core is realised by a secondary superconductor
winding (a cylinder positioned between the primary con-
ductor and iron core). Shielding is lost when large fault
currents quench the superconductor, which in turn increases
the impedance of the primary circuit.

Technically realised FCL are purposefully designed to
suppress fault current in a medium voltage grid to tolerable
residual values, preferentially to only a very small multiple
of nominal current. In the past, there were about ten indus-
trial, FCL projects of resistive and saturated iron core types,
and there are about five projects at present.

The major idea of this paper is fourfold: (a) show that there
is inhomogeneity of temperature and, as a consequence,
of current distribution, critical temperature, current density,
magnetic field and also of current limitation (because lim-
itation might occur in only part of the cross section); (b)
explain that a distinction between (solely) Ohmic resistive
and flux flow resistive current limiting, as is presently done
in the literature, becomes highly questionable; (c) introduce
random critical parameters as a new method to account for
shortages in materials development and manufacture issues;
and (d) investigate possibly existing correlations between
stability and current limiting.

Current limiters in this paper serve as extreme cases of
current propagation. But focus is on the physics behind

current propagation. We will describe by numerical meth-
ods how fast and to which extent a superconductor bundle
reacts to a sudden increase of current load (like in a fault).

Investigations of current propagation and limiting that
rely on homogeneous temperature distribution in the con-
ductor cross section have been presented, e.g. in [3–5]; there
are more numerous reports that apply the same simplify-
ing assumption. But there are another four shortages of
traditional stability models:

(a) The models assume instantaneous distribution within
the conductor volume, or thermalisation, of a local
disturbance.

(b) The models do not specify the location and intensity of
a disturbance in the conductor.

(c) The Stekly, adiabatic or dynamic stability models
derive results under quasi-stationary and adiabatic
conditions; for a survey, see Wilson [6] or Dresner [7].

(d) Flux flow resistive states are not included.

Among these, items (a), (b) and (d) are the most critical
ones. To improve the situation, standard stability models
have recently been extended by numerical models (Flik and
Tien [8], and by the present author). We have investigated
the reaction of superconductors under direct current (DC)
transport to either

(i) Transient disturbances [9]—a single (Dirac) heat pulse
locally released in the conductor by absorption of
infrared or particle radiation, or by a sudden trans-
formation of mechanical to thermal energy (conductor
movement under Lorentz forces)

(ii) Periodic disturbances [10, 11]—exposure of a sam-
ple to periodic energy pulses that as local disturbances
lead to periodic variations of local temperature and
corresponding, periodic variations of critical current
density and stability functions

Investigations in [8–11] apply the temperature depen-
dency of the critical current density as the sole basis to pre-
dict the maximum zero-loss transport current by a stability
function (this function is explained later). The investigations
have not considered losses that may arise under flux flow
resistive states (J > JCrit), with the conductor temperature
below the critical temperature.

A very interesting case (iii) accordingly appears when the
density of an alternating current (AC) itself initiates peri-
odic disturbances by flux flow losses. The disturbances then
are no longer point-like, isolated from each other or of only
a very short duration, but may be extended over a consider-
able part (or total) of the conductor cross section. They also
may oscillate and exist over extended periods of time. This
case will be studied in this paper.

The paper is organised as follows: In part I, a numerical
model will be described to calculate local electrical, magne-
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tic and thermal states of a high-temperature superconductor
(HTSC) under disturbances initiated by a transport or a fault
current. The simulations are applied to a bundle of several
hundred identical conductor filaments all switched in paral-
lel (the selection of a HTSC model conductor material is in
detail explained in Appendix A1). The bundle is integrated
into an electrical circuit (Fig. 1a) that allows comparison
with a similar system described in [4] with same root mean
square phase voltage, same conductor cross section and
same critical current density. We could in principle take any
large- or small-scale electrical grid, like in a laboratory
experiment, with an appropriately dimensioned supercon-
ducting component; the point is the analysis of this compo-
nent under high current load.

Figure 1a also incorporates a normal conductor with non-
zero resistance (in a large-scale experimental setup, the
normal conductor in Fig. 1a might be a conventional trans-
mission line or a standard power cable). The resistance of

Fig. 1 a Schematic view of an electrical grid. A sudden, strong
increase of current load onto a superconductor filament bundle will be
simulated, either in a small-scale laboratory experiment or, on large
scale, the grid could describe a medium voltage distribution system.
The normal conductor serves as an auxiliary variable; its assumed sud-
den decrease initiates the increase of transport current (not necessarily
a fault caused by accidents like short circuit or lightning). b Schematic
view, not to scale, showing an axial section of a superconductor fil-
ament (polycrystalline material) embedded in a metallic matrix (not
shown). Current direction is parallel to longitudinal axis of symmetry.
The figure assumes ideal c-axis orientation of grains (light blue; size
strongly enlarged) and circumferential direction of the magnetic field
(flux density; green circle). The flat grey surface illustrates the finite
element scheme of 4-node, plane model elements which are rotated
against the longitudinal axis to generate volume elements

this conductor, and thus the total resistance of the circuit, is
used as an auxiliary variable: Continuous, though fast,
reduction of the resistance serves for definition of a sudden
strong increase of transport current, a procedure that strongly
simplifies numerical calculations and stabilises the achieved
solutions.

Part II of the paper reports results for integral conductor
states like stability functions, maximum zero-loss currents
and current limiting. Part III deals with a possible correla-
tion between stability, current propagation and limitation.

2 Description of Stability, Current Propagation
and Limiting Calculations

The numerical concept (meshing, boundary conditions,
solution schemes) originates from a finite element method
(Reiss and Troitsky [12]) how to obtain thermal diffusivity
of opaque, transparent or semitransparent thin films; an ana-
logue of this procedure recently has been applied [9–11] to
the investigation of superconductor stability.

2.1 Data Input

Electrical resistances of the superconductor filaments com-
prise Ohmic, inductive, flux flow, hysteresis and coupling
resistances (the filaments shall be embedded in a metallic
matrix). Dimensions of the filaments, details of meshing and
solution schemes will be reported in Section 2.4.

Strictly speaking, we could take any reasonable super-
conductor material for stability analysis (reasonable in the
sense that it allows numerical, finite element simulations to
converge). This requests, for example, that the critical tem-
perature of the conductor is not 10−6 K or the like, or its
anisotropy is not in the order of 103. In principle, even an
LHe-cooled LTSC could be applied and also any conductor
architecture. Results like existence of transient temperature
profiles, large temperature gradients, local current distri-
bution and an anticipated correlation between stability and
current propagation and suppression, qualitatively were the
same. However, the computational problems were much
larger, and convergence of the results might be impossible
to obtain.

The numerical simulations thus have to be performed
with a simple conductor architecture and a HTSC material
(as mentioned, a model conductor) of which its electrical/
magnetic and thermal properties shall be available from
experiments, over a large range of temperature and, accord-
ing to experience, its anisotropy to current transport be
modest (in the order of 10; this is fulfilled with a YBaCuO
solid).

The application of a model conductor, as will be shown,
clearly illustrates the problems that would arise in any 1G or
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2G conductor under transient current propagation (the prob-
lems reflect the list of major ideas of this paper, as given
in Section 1): inhomogeneity of temperature and current
distribution; inhomogeneity of critical temperature, current
density and magnetic field; and inhomogeneity of current
limitation.

All parameters of the conductor take into account interac-
tive physical dependencies, like TCrit vs. BCrit1,2, or BCrit1,2

vs. T, and thermal diffusivity vs. T.
Modelling of Ohmic resistance states is straight-forward

with data from [13], and modelling of flux flow resistivity to
axial current (Fig. 1b) is made according to [14]. The weak-
link structure of a polycrystalline conductor constitutes a
potential obstacle that is laid upon is constituents; the obsta-
cle not only concerns electrical transport (electron charges)
but also magnetic (movement of vortices under flux flow)
and thermal transport. Resistance to magnetic transport has
to be considered separately in grains and in grain bound-
aries. A schematic, rather optimistic orientation of plate-like
grains and circumferential magnetic field, under axial cur-
rent, is indicated in Fig. 1b (small, light-blue shells). Flux
flow, if any, roughly occurs in radial directions only.

Reference [14] explains that the low temperature, empir-
ical relation between specific resistivity of flux flow, ρFF,
and normal conduction, ρNC

ρFF = ρNCB/BCrit,2 (1)

is applicable to also high-temperature superconductors.
However, this relation is valid for superconductor solids,
and as [15], p. 128, points out, there may be deviations from
(1) in type II superconductors (like HTSC) with large val-
ues of the Ginzburg-Landau parameter, κ; this accordingly
could indicate a problem in the present study but will not be
pursued here. Instead, in the present simulations, the over-
all structure of (1) shall be maintained but modifications
applied to account for weak-link behaviour.

References [12] and [14] report strong anisotropy of the
resistance against transport of magnetic flux vortices, much
larger than anisotropy of resistance to current. In a rough
approximation, we have estimated grain and grain bound-
ary volumes and the results used as weights assigned to the
anisotropy ratios that were estimated following [14, 16]. A
weighted mean accounting for porosity and anisotropy is
applied as a pre-factor to (1). Details of the procedure will
be reported elsewhere.

The final result, axial resistivity, ρFF, to current trans-
port, under radial flux flow in the porous, polycrystalline,
roughly layered material, is shown in Fig. 2. The resistivity
ρFF is larger than ρNC, contrary to what would be expected
from the standard (1). But (1), in its original form, applies
to solids, not to a network of solid particles surrounded by
weak-link shells; the comparatively large ρFF thus does not
necessarily indicate strong flux pinning. The resistivity ρFF

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

75 77.5 80 82.5 85 87.5 90 92.5 95

Temperature (K)S
p

ec
if

ic
 N

o
rm

al
 C

o
n

d
u

ct
io

n
 a

n
d

 F
lu

x 
F

lo
w

R
es

is
ta

n
ce

 (
O

h
m

 m
)

Fig. 2 Specific resistance to transport current under normal conduc-
tion (blue diamonds) and to flux flow (green diamonds) in porous
YBaCuO, vs. temperature, at magnetic flux densities that exceed the
lower critical field, BCrit,1. The large difference results from estimated
contributions of grain boundaries (weak links) to flux flow resistance;
for more explanations, see text

is also larger than the constant ρFF = 10−6 � m used in [4];
it is not at all clear that ρFF should be constant, independent
of temperature.

Thermal diffusivity, DT, of a YBaCuO superconductor
solid material (with conductivity from [17]) is between
4 10−6 and 2 10−6 m2/s, at temperatures of 77 and 120 K,
respectively. The values are the same as previously used [9
- 11]; compare the original literature cited therein. For a
periodic disturbance that initiates a local increase of temper-
ature, and when taking a mean value of DT in the expression
for the penetration depth δSC(ω) = C (2DT/ω)1/2of a ther-
mal wave ([18], p. 159), we have δSC(ω) ≈ 1600 μm, with
C a constant, for simplicity C = 4.6 for a flat, semi-infinite
sample, and ω = 50 Hz. Also, this estimate applies to a
solid; it does not take into account the porosity of the con-
ductor. However, a correction to DT using the traditional
Russell cell model (see below) does not yield substantial
alterations so that δSC(ω) safely exceeds rFil, the filament
radius defined in Section 2.4. Local temperature, T (x, y, t),
of all volume elements in the filament thus will very quickly
respond to any disturbance that propagates by thermal dif-
fusion through the polycrystalline network but does not,
as will be shown, guarantee a homogeneous conductor
temperature.

Geometry and orientation of the grains (Fig. 1b) assume
an ideal case, a layered distribution of platelets from which
the more deviations will have to be expected, the more lay-
ers would be generated. To obtain both electrical resistivity
and thermal conductivity of porous materials, the tradi-
tional Russell cell model is applied to the corresponding
solid state data ([19]; an old but flexible model since it
is applicable to particulates of rather arbitrary shape). We
use porosity, � = 0.1, of the superconductor material, and
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for the linear part of the normal state resistivity, ρNC, the
slope dρNC/dT = 4.27 10−9 � m/K reported in [14]. For
application of Russell’s cell model, it is assumed that the
resistivity against current transport in grain boundary vol-
umes is by a factor of at least five larger than within grains.
This ratio is a very rough estimate and not identical to, but
much smaller than, anisotropy of transport of magnetic flux
vortices.

Inductive losses of the filament bundle have been
estimated following traditional models (standard electro-
technical literature) and do not need specification. Hystere-
sis and coupling losses are modelled following [6], Chap.
8.2 and 8.3. All losses, if they depend on current, can
be transformed into expressions that contain correspond-
ing specific electrical resistances. Corrections to the most
important Ohmic and flux flow resistive losses by inductive,
hysteresis and coupling counterparts are small.

Electrical and thermal properties of the matrix material
are needed for description of current sharing (see the results
in Appendix A2, Figs. 14, 15, 16 and 17).

A new concept introduced in this paper is consideration
of critical current density, critical temperature, upper critical
magnetic field and the weak-link problem overlaid onto flux
flow transport as random variables:

No existing superconductor, if manufactured in techni-
cally important quantities, shows perfectly homogeneous
materials properties. Deviations from ideal conditions must
be taken into account that may arise during conductor design
and manufacture. Conductor inhomogeneity may turn out,
for example, as local deviation from oxygen stoichiom-
etry, or may result from high angle grain boundaries as
obstacles against current transport in basal planes, or from
tolerances in mechanical working steps, or from weak links,
in total a very large number of potential divergences aris-
ing in polycrystalline materials. Modelling their impact on
current propagation using, like in radiative exchange cal-
culations, cell models (for example, the well-known brick
wall model) is too simplifying and could lead to enor-
mous uncertainties. A possible way out of the problem is
to treat the most important critical parameters as statisti-
cal quantities (random values, with fluctuations around their
mean).

We have applied random values like those illustrated
in Figs. 12 and 13 (Appendix A1). In this model, criti-
cal current density and the other critical parameters of the
superconductor and its weak link, anisotropic resistance
against flux flow, are different in each of the finite ele-
ments (but with the traditional dependency on field and
temperature, respectively). Maximum fluctuation is roughly
estimated from experience [22]. Application of this model
seems plausible (though it introduces additional numerical
problems), but general validity of this concept has to be
verified in additional studies.

2.2 Overall Calculation Scheme

The overall numerical procedure consists of four steps:
(a) Calculation of transient temperature fields by a stan-

dard finite element method.
(b) Re-calculation of resistances and critical parameters.
(c) Determination of the new current distribution; com-

parison of conductor temperature, magnetic field and
current with the corresponding critical ones; and re-
calculation of resistances and losses.

(d) Specification of a fault (or, more generally, of a sud-
den, strong increase of current) and return to step
(a); we will in the following simply speak of a fault
although the simulated strong current increase might
not reflect an accident like short circuit or lightning.

In step (a), we use the same data for boiling LN2 as
in previous reports [9 - 11]. Close to the interface to the
coolant, oscillations of T(x, y, t) against coolant tempera-
ture are small; maximum amplitude variation in the present
study is within�T = 1 K, which means there will be almost
no periodic but approximately constant thermal boundary
conditions at the solid/liquid interface. After an initial set-
tling period needed for creation of the first nitrogen vapour
bubbles (in the order of 5 ms), the static description of boil-
ing heat transfer is applicable (we again take data reported
for smooth metallic surfaces; compare the original literature
cited in [9 - 11]).

In step (b), the Meissner effect has to be checked sep-
arately in each of the finite elements of the numerical
calculation scheme. Its property, “zero resistance” at mag-
netic fields below the lower critical field, cannot be handled
reasonably when in a transient numerical analysis current
distribution shall be determined fromKirchhoff’s laws. Very
small but finite values of the specific resistances (values
below 10−20 � m) then have to be assumed.

The resistances obtained in step (b) are the basis
to determine the new transient current distribution in
step (c). The new distribution not necessarily is the
same as obtained in previous time steps; instead, the
distribution may fluctuate and the current percolate
through the conductor, all in dependence of the actual
resistances.

Summation over all re-calculated local currents yields the
same total current in the conductor cross section, at all axial
positions of the conductor including the metallic matrix.

In step (d), it has been assumed that a strong increase of
current is initialized, under the nominal voltage of the cir-
cuit, by a sudden but controlled reduction, within 2.5 ms, of
the total AC resistance of the grid. As mentioned, this not
necessarily indicates really a fault (in a small-scale example
of Fig. 1a, a sudden current increase might result from cut-
ting off a large normal resistance from a laboratory circuit);
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Fig. 3 Absolute value of total (nominal plus fault) current, ITransp(t),
within 0 ≤ t ≤ 20 ms (note the logarithmic ordinate scale). The figure
shows to which extent the transport current will increase if the (AC)
phase resistance, within 6.5 ≤ t ≤ 9 ms, is reduced to 1/NCut off of its
undisturbed value. The length of the normal conductor is 105 m, in
order to keep the current load onto filaments small. Open black circles

denote the undisturbed normal conductor (NCut off = 1). Results are
obtained with TCrit, JCrit, BCrit,1 and BCrit,2 identical in each element
(not random numbers) and with the same field or temperature depen-
dency, respectively, and constant anisotropy for transport of magnetic
flux quanta. The local upturn of the curves is the stronger, the larger
NCut off

the point is that the method shall generally be applicable, not
only to public grids.

For this purpose, divisors, NCut off, beginning at
t = 6.5 ms after the start of the simulation, gradually
increase from an initial value, NCut off = 1, to their final
value at t = 9 ms and then are constant. The NCut off

are used as auxiliary variables. No attempt was made to
simulate details of a real short circuit like excursion of over-
current and inductive voltage, −L dI/dt, at the position of
the fault, temporarily existing arcs, resistances and their
lifetimes.

Increase of the total (nominal plus fault) current (abso-
lute value) is illustrated in Fig. 3 for different final NCut off.
Note the upturn of all curves (coloured diamonds) during
6.5 ≤ t ≤ 9 ms: Increase of the total current (under nomi-
nal voltage) by the reduced resistance to very large values
overcompensates its reduction expected from the oscilla-
tion of nominal current, ITransp(t) = I0 (sin ωt), during
this period.

2.3 Solution Scheme

The total simulated period has been split into periods
�t = 10−4 s. To obtain convergence of the results, the pro-
cedure within each period �t had to be repeated by up to
N = 10 iterations of steps (a) to (d) specified in Section 2.2.
The large number of iterations reflects the strong non-
linearity of almost all involved parameters. Integration time
δt within each �t is between 10−14 and 10−7 s. Conver-
gence is achieved at the end of each sub-step of duration

�t /N= 10−5 s. The calculations yield a series of converged,
quasi-stationary solutions. This scheme generates conver-
gence because the time interval �t /N is large in comparison
to

(i) Characteristic (diffusion) time, τC, of electrical or
magnetic fields and of currents, τC ≤ 4 r2Fil/(π

2 DC)

([6], p. 143) using for the diffusivity the expression
DC = ρNC/μ0, with ρNC the specific resistivity of the
filament material in the normal conducting state, and
μ0 the vacuum constant. We have DC = 0.361 m2/s.
This yields τC ≤ 10−7 s.

(ii) Time τR needed to establish new equilibrium charge
distributions (compare [21], Fig. 2b). This period cov-
ers total redistribution of electron pairs to the ground
states of the superconductor; this would request also
the exchange of charge between neighbouring ele-
ments. The estimates yield τR < 10−6 s except for
temperatures very close to the critical temperature.

No divergences (T < 77 K, or runaway to an extremely
high temperature) were finally observed that could result
from too large a time step or from too small an element
volume in the numerical procedure.

Both estimates (i) and (ii) justify calculation of the
transient current distributions in a stepwise numerical pro-
cedure to obtain quasi-stationary, discrete intermediate
states. If these conditions were not fulfilled, the procedure
would have to be altered to a continuous model of current
exchange between neighbouring finite elements to allow
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re-organisation of charge distribution in the whole conduc-
tor, too difficult a task to be solved presently.

Computational efforts to fully cover all these proce-
dures were enormous. The solution scheme applied sparse
matrix direct solvers (requests a large memory space; alter-
natives like JCG or ICG iterative solvers were tested but
convergence is not guaranteed). The calculation scheme
(a) to (d), with in step (a) the embedded finite element
core (a commercially available FE code), for simulation of
a total period of 10 ms, took a standard PC with 4 GB
workspace about 8 to 10 h, under Windows XP or Win-
dows 7. This mainly results from the large number of
IF. . . THEN. . . ELSE steps to be executed separately in each
of the elements, with respect to all potentially allowed
superconductor resistance states, and in each iteration
cycle.

Nodal temperature results from solution of Fourier’s dif-
ferential equation. In the present case, 4-node, plane model
elements have been applied, with rotation against the axis
of symmetry to generate volume elements. Element temper-
ature is the arithmetic mean of nodal temperatures.

2.4 Conductor Geometry and Critical Current Density

Finite element size is �r = 6 μm radial thickness and
200 μm axial length. The most inner elements are rods of
circular cross section, whereas all other elements (super-
conductor and matrix) are circular shells (annuli of constant
width).

Size of filaments in OPIT band-like (1G) conductors usu-
ally is about 20×200μm. Current transport and temperature
simulations in this fine structure would request too short
characteristic and integration times. Instead, modelling of
the conductor follows Wilson [6], Fig. 12.9, with a double
or multi-stacking technique: We call a “filament” a com-
posite of 1 < Nthr ≤ Nthr,max very thin, superconductor
threads (objects that result from extrusion). Definition of
this filamentary composite (threads plus matrix) is for cal-
culation purposes only; its radius is rFil = 300μm. The
conditions set for �r (radial width of finite elements), ar
(aspect ratio), rFil (filament radius) and Russelss cell model
then allow modeling of the interior of one filament as a
structural continuum (instead of explicitly modeling fine
threads). The calculated results (inhomogeneity of tempera-
ture, etc. within one filament) do not depend on the filament
(composite) radius rFil.

All filaments are bundled into a strand of identical fil-
aments. A number NFil = 354 filaments yields total
superconductor (bundle) cross section ASC = 10−4m2, the
value reported in [4]. The number Nthr of fine threads in the
total (strand) cross section, NFil < Nthr ≤ NFil × Nthr,max,
and the amount of weak link and metal matrix material are
adjusted to yield filament (not strand) porosity � = 0.1 to

be used in Russel’ cell model [19]. The amount 1−� in
one filament is occupied by the superconductor threads. The
relative amount of superconductor material in one strand is
much lower, like in LTSC strands.

The filaments are, in principle, of arbitrary length,
LFil > > rFil. Before the start of the proper simulations, con-
ductor length is limited to LFil = LSC = 500 m; see below
for this estimate.

We select one single filament to be simulated; it shall be
located close to the periphery of the bundle (close to the
solid/liquid interface to the coolant). Thickness of the metal
matrix at peripheral positions is about 200 μm (larger than
the clearance between filaments located in the interior of the
strand).

Assume as a macroscopic example of Fig. 1a that the
length of the normal conductor in Fig. 1a is LCu = 12.5 km
and the impedance of one phase amounts to 0.38 � (same
value as in [4]). With the specific resistance of Cu, ρCu = 1.8
10−8 � m, and a cross section ACu = 10−4 m2 (again
the same as in [4]), we have a loss of resistance of
�RCu = 22.5 � if the normal conductor resistance loss
were total, NCut off → ∞; this loss shall at least partly be
compensated by the superconductor filament bundle. By its
length and cross section, the resistance of the normal con-
ductor determines the current load onto the superconductor
filaments.

Assume for the moment that filament temperature
is homogeneous and above critical temperature, say
T = 100 K (TCrit0 = 92 K of YBaCuO), which means the fil-
aments altogether would act as an Ohmic resistance current
limiter. The specific resistance of the conductor at this tem-
perature is about ρSC = 4.5 10−7 �m. Length LSC of the fil-
aments then can be estimated from�RCu = ρSC LSC/ASC,
with the total cross section, ASC, of the bundle of fila-
ments. Using the said ASC = 10−4 m2, this yields the
above-mentioned LSC of about 500 m. Note that this sim-
ple estimate relies on a homogenous conductor temperature,
T = 100 K, of all filaments, which, as we will show, is not
the reality.

If only part of the filament cross sections would be in
Ohmic resistance state (it will be shown below that this is
indeed the case), or if the superconductor specific resistance
is larger than the ρSC = 4.5 10−7 � m, a strongly different,
smaller LSC could result. The LSC of 500 m is of the same
order of magnitude like the LSC = 232 m reported in [4] for
design of a flux flow current limiter.

In the following simulations, either number, NFil, of fil-
aments or filament and normal conductor lengths, LSC or
LCu, respectively, or the critical current density, JCrit, will
be varied:

(a) 177 ≤ NFil ≤ 881; NFil = 354 yields total conductor
cross section ASC = 10−4 m2, again the value used in
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[4]. In these tests, LCu = 103 m, ACu = 10−4 m2 and
LSC = 500 or 5000 m

(b) 102 ≤ LCu ≤ 105 m; NFil = 354,LSC = 500 or 5000 m,
ACu = 10−4 m2 kept constant

The LSC = 5000 m will be explained below. In the fol-
lowing cases (i) and (ii), “higher” and “lower” values of
JCrit(T , B) are calculated from corresponding random ref-
erence values, JCrit0 (the higher JCrit0 are plotted in Fig. 13,
Appendix A1).

Cases (i) and (ii) are defined as follows:

(i) A mean value of JCrit = 3.75 108 A/m2 at T = 77 K
and magnetic field B = 100 mT. In text and figure
captions, this value will be called the “higher” JCrit.

(ii) In order to replicate the results reported in [4], also a
mean value of tentatively JCrit = 107 A/m2 is applied
in the calculations (this is the “lower” JCrit taken from
[4]).

A field dependence of JCrit was neglected in [4]. Ran-
dom values of JCrit0 in the present calculations have been
adjusted to replicate the 107 A/m2, as a mean value, again at
T = 77 K and B = 100 mT. This JCrit is rather small; HTSC
filaments with significantly higher JCrit have become avail-
able which shall be accounted for by the higher JCrit, case
(i).

All calculations apply NCut off = 20 finally obtained at
t = 9 ms (and then are kept constant); this limit is applied to
interpret the results in a general sense and is not necessarily
restricted to faults arising from accidents and in medium
voltage grids only.

Except for the superconductor, the phase impedance
(0.38 �) is the only resistance considered in [4] (they
assume that no non-zero Ohmic resistance has sur-
vived the short circuit). In the present model, a length
LCu = 4.2 104 m of the normal conductor is required, under
NCut off = 20, to replicate the absolute value of total phase
resistance (the reported 0.38 �). When in the following fig-
ures length LCu = 4.2 104 m of the normal conductor is
indicated, it is done so to solely introduce an equivalent
resistance of 0.38 � into the circuit.

Results obtained with the higher JCrit in the following
figures are identified by coloured solid or open symbols or
black triangles. Light or dark grey symbols concern results
calculated for the design described in [4] using the lower or
higher JCrit, respectively.

If there was no temperature dependence of JCrit (but
only a dependence on the local magnetic field), the trans-
port current would flow in regions of the conductor cross
section where the magnetic field is small, in the present
case near the axis of symmetry. But this is not con-
firmed in reality. Both magnetic field distribution and
temperature distribution are responsible, not only for the

local JCrit(x, y, t) but also for transport current distribution,
J (x, y, t).

With the given filament radius and the calculated fila-
ment current, local values of B(x,y,t) as expected are in the
order 10−4 to 100 mT.

Random values of TCrit0 are shown in Fig. 14
(Appendix A1). They have to be converted to field-
dependent TCrit(B), which is achieved with the correspond-
ing inverse function derived from BCrit(T) = BCrit0(1 −
(T/TCrit)

2).
Both JCrit0 and TCrit0 are materials properties (ran-

domly distributed in the cross section), while JCrit(T,B)

and TCrit(B) are conductor properties because they reflect
the actual operational states of the conductor, with the
dependency on transient T andB; only these have to be con-
sidered in the numerical simulations and for calculation of
stability functions.

Accordingly, to determine the transient resistive states of
all parts of the conductor, the following relations have to be
checked separately in each element:

T ≤ TCrit(B),with T = T(x, y, t) and

B = B(x, y, t), and (2a)

JTransp ≤ JCrit(T,B),with JTransp = JTransp(x, y, t),

T = T(x, y, t) and B = B(x, y, t), (2b)

3 Results

3.1 Temperature Fields

Figure 4a shows the calculated temperature field, T(x,y,t),
in a section of 3.2 mm axial length of a single supercon-
ductor filament. It is not possible to simulate the current
propagation problem over the whole length of filaments (for
substantial limiting of fault current by flux flow resistances:
at least hundreds of metres). Attempts to do so would not
be very reasonable: We would immediately be driven back
to simplifications like homogeneous conductor temperature
and homogeneity of the other properties. If thermal con-
tact between filament and matrix, and between matrix and
coolant, remains the same over the whole length of a bundle
containing a large number of filaments (an ideal situation
but little speaks against it), the simulated short length is
justified.

Results are presented at t = 9 ms after the start of the
simulation for LSC = 232 m, LCu = 4.2 104 m, NFil = 354,
JCrit(T = 77 K, B = 100 mT) = 107 A/m2 (mean value,
the lower JCrit that equals the JCrit assumed in [4]). Tem-
perate variation in this case is within only 0.5 K (compare
the horizontal bar), in radial or axial directions within this
short section. Provisionally, this speaks in favour of current
limitation, if any, by flux flow resistance.



J Supercond Nov Magn (2015) 28:2979–2999 2987

Fig. 4 a Temperature field in an
axial section (3.2 mm length) of
a filament conductor (the
diagram is provided by the finite
element code). The horizontal
bar indicates the range of the
calculated temperature. Results
are given for t = 9 ms (the end
of the increase of NCut off(t))
with LSC = 232 m, LCu = 4.2
104 m, NFil = 354 filaments and
the lower JCrit values (compare
text; mean value JCrit (T = 77 K,
B = 100 mT) = 107 A/m2). The
calculation applies random
values of TCrit, JCrit and BCrit,2
and a divisor, NCut off = 20 (final
value obtained at t = 9 ms). b
Temperature field; same
calculation as in Fig. 4a but with
the higher JCrit (compare text;
mean value JCrit (T = 77 K,
B = 100 mT) = 3.75 108 A/m2).
Results are given for t = 9 ms.
Note the regular variations of
temperature observed at axial
distances of about 600 μm that
may develop to hot spots; they
probably result from application
of the random TCrit, JCrit and
BCrit,2 in the calculations (these
variations are absent in Fig. 5)

a

b

The situation changes significantly if instead of
JCrit = 107 A/m2 a mean value JCrit = 3.75 108 A/m2

(the higher JCrit) enters the calculations (Fig. 4b). No
homogeneous temperature distribution, except within small
regions close to and within the metallic matrix, can be
identified: Instead, radial variation of conductor tempera-

ture amounts to about 7 K. Accordingly, there are regions
where T (x, y, t) is below or, close to these regions, above
the individual, randomly distributed critical temperatures.
Current limitation, if any, thus would intuitively be expected
from solely the corresponding local Ohmic resistances.
But it is clear that a distinction between solely Ohmic
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Fig. 5 Temperature field as in
Fig. 4a, b; results have been
obtained immediately before the
start of the disturbance
(t = 6.5 ms) usingTCrit, JCrit,
BCrit,1 and BCrit,2 identical in
each element (no random
numbers, but with
corresponding temperature or
field dependency, respectively).
Note the homogeneous
stratification of the temperature
distribution within the
superconductor filament

or solely flux flow resistive limiting of current propaga-
tion becomes questionable if there are temperature pro-
files, with temperature variations of this magnitude, in a
conductor.

Both Fig. 4a and b alone do not allow to definitely make
a decision between possibly existing flux flow or Ohmic
resistances current limiting, respectively. Stability functions

have to be checked (Section 4.1) whether besides control of
temperature fields this additional method could be neces-
sary and sufficient to identify the physical origin of current
limitation.

When instead of random values of TCrit, JCrit, BCrit,1 and
BCrit,2 a set of variables is used that apart from their indi-
vidual field or temperature dependency would be identical
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Fig. 6 Element temperature, T(x, y, t), calculated at an axial dis-
tance of 100 μm from the lower end of the short conductor section
at positions close to the superconductor/matrix interface, for differ-
ent numbers, NFil, of identical filaments switched in parallel, then in
series, to the normal conductor.Coloured symbols apply LSC = 5000 m
and LCu = 103 m and the higher JCrit. Solid black triangles apply

LSC = 500, LCu = 104 m and the higher JCrit; solid light or dark
grey diamonds refer to the flux flow limiter design of [4], with
LSC = 232 m, LCu = 4.2 104 m and the lower and higher JCrit, respec-
tively. All results have been calculated using a divisor, NCut off = 20
(final value), and random critical variables that are different in each
element (but with the same field or temperature dependency)
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in each element, we obtain a very regular, stratified temper-
ature distribution (Fig. 5). Accordingly, the variations seen
in Fig. 4a, b might be the consequence of using random
TCrit, JCrit, BCrit,1 and BCrit,2. Since these were intended to
account for deviations from ideal conductor properties, the
well-known hot spot problem in first-generation HTSC (pre-
pared by the OPIT method) might be explained by statistical
variations of conductor materials quality or from tolerances
in production processes.

An example for excursion of local conductor (element)
temperature, T (x, y, t), with time is shown in Fig. 6 for
a different number NFil of identical filaments. After the first
3 ms of the simulation (a numerical settling procedure, with
fluctuations from numerical instabilities), element tempera-
tures gradually converge to values near critical temperature
to obtain quasi-stationary, discrete states (this settling pro-
cedure is shorter than the period of time that is needed to
generate bubbles at the superconductor/coolant interface,
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Fig. 7 a Coincidence of total (AC) phase resistance (open coloured
and light and dark grey circles) and total (AC) filament resistance
(solid coloured diamonds), for different numbers, NFil, of identical
filaments. Coloured diamonds are calculated with LSC = 5000 m,
LCu = 103 m and the higher JCrit. Solid black triangles apply
LSC = 500, LCu = 104 m and again the higher JCrit. Solid light or
dark grey diamonds and circles refer to the flux flow limiter design
of [4], with LSC = 232 m, LCu = 4.2 104 m and the lower and
higher JCrit, respectively. As before, all results are obtained with the
divisor NCut off = 20 (final value) and random, but equally field-
or temperature-dependent variables. Coincidence is obtained only

between open and solid coloured symbols. In other cases (all observed
with short filament lengths), the residual phase resistance is larger than
the filament resistance, and no substantial current limitation can be
obtained. b Coincidence of total phase resistance calculated as before
(Fig. 7a) but for different lengths, LCu, of the normal conductor in
the phase (initiating different current loads) and with constant number,
NFil = 354, of identical filaments. Coloured solid and open symbols
apply to LSC = 5000 m, LCu = 102, 103 or 104 m and the higher JCrit.
Coincidence is obtained only with the higher loads (permitted by the
smaller LCu) onto the filaments
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to justify modelling heat transfer to the coolant across a
smooth metallic surface under static conditions).

3.2 Phase and Filament Resistances

Figure 7a, b shows how total (AC) phase resistance and
total (AC) filament resistance develop with time, for differ-
ent numbers of filaments and different lengths of filaments
and normal conductor, respectively.

In Fig. 7a, coloured open symbols (the final total resis-
tance of the phase) coincide with total filament resistances
if LSC = 5000 m (coloured diamonds). This indicates that
only in this case will filament resistances finally become
responsible for the residual total resistance of this phase.
Such coincidence is not observed for shorter conductor
lengths (LSC = 500 m, or for the system described in [4],
with LSC = 232 m only). In these cases, the residual phase
resistance still is larger than the corresponding filament
resistance. No efficient current limitation can be expected
if current limiter resistance is much smaller than the total
residual phase resistance.

The same calculation is performed (Fig. 7b) with a con-
stant NFil but a different load on the filaments initiated
by different lengths LCu that specify current load on the
filaments. No coincidence is obtained if LCu ≥ 104 m.

In summary of Fig. 7a, b, total phase resistance only then
results from overwhelming total filament resistance if their
length is at least LSC = 5000 m and if there is a higher cur-
rent load which requests LCu below 104 m (the current load
is shown in Fig. 8).

It is obvious from Fig. 7a, b that the onset of a fault
current at t = 6.5 ms is not reflected by a corresponding
increase of calculated filament resistances. The fault current
does not (or does not sufficiently) trigger a substantial reac-
tion of the filaments. Instead, it is the filament resistance
that exists from the beginning of the simulations to which
the total phase resistance converges finally. This indicates
there might be Ohmic losses over all this period, not only
after a fault has been initiated.

Absence of a triggering signal also concerns the design of
[4]: When using the lower JCrit, the conductor temperature
in Fig. 6 (light grey diamonds) remains very close to 77 K.
When instead using, for the same design, the higher JCrit
(dark grey diamonds), a substantial increase of conduc-
tor temperature is not observed before t ≥ 7.5 ms. Fila-
ment resistances generated by concept [4] are too small,
at least under the small current load (LCu very large,
4.2 104 m, needed to replicate the assumed permanent
impedance of 0.38 �) to compensate reduction of total
phase resistance.

Can substantial current limitation be obtained with con-
cept [4] if the load would be increased? By assuming
reduced lengths LCu of the normal conductor below 104 m?

The answer can be given from inspection of the solid
black triangles in Figs. 6 and 7b: (a) The conductor tempera-
ture in Fig. 6 is driven close to or above critical temperature,
which means the limiting concept no longer relies on flux
flow but mostly on Ohmic resistances, and (b) total filament
resistance in Fig. 7b still would be too small to coincide with
the total phase resistance.
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Fig. 8 Total (nominal plus fault) current for different numbers, NFil,
of identical filaments (solid coloured diamonds) calculated using
LSC = 5000 m, LCu = 103 m and the higher JCrit. Solid black tri-
angles apply LSC = 500, LCu = 104 m and again the higher JCrit.
Solid light or dark grey diamonds refer to the flux flow limiter design
of [4], with LSC = 232 m, LCu = 4.2 104 m and the lower and
higher JCrit. Solid lilac circles denote transport current if there is no

superconductor and no disturbance (no short circuit or the like) of the
normal conductor, while solid yellow circles indicate current with no
superconductor but with the disturbance of the normal conductor ini-
tiated by the NCut off. The sharp peak of the yellow circles and of the
solid black triangles results from the discrete time steps in the simu-
lations. All results have been obtained with random (but equally field-
or temperature-dependent) critical variables
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A second attempt might be more successful: Length LSC

of the filaments (232 m in concept [4]) could be increased.
But the black triangles in Fig. 6 indicate an increase to
LSC = 500 m would not be sufficient while an increase
to LSC = 5000 m would early drive conductor temperature
out of the flux flow regime (coloured diamonds in Fig. 6).
Accordingly, it is not clear that substantial limitation could
practically be achieved with flux flow resistive conductor
states; a thorough re-design becomes necessary.

Shimizu et al. [4] assume that the FCL instantly, at
the very beginning of a fault, generates a resistance (and
would also be able to pass a load current immediately after
fault clearing). At least the first assumption is questionable
(compare again the gradual increase of element tempera-
ture in Fig. 6, solid dark grey diamonds and solid black
triangles).

3.3 Residual Total Current

The total phase current (nominal transport plus fault cur-
rents), calculated from nominal system voltage and from
the total phase resistances (Fig. 7a, b), is shown in Fig. 8.
This figure also shows excursion of current if (a) there is no
superconductor and no disturbance (no short circuit or the
like) of the normal conductor (solid lilac circles) while (b)
solid yellow circles indicate a current with no superconduc-
tor but with the disturbance of the normal conductor.

In medium voltage distribution systems, traditional
power switches (vacuum interrupters) are assessed to 12 to
24 kV, rated current 4000 A and rated short circuit breaking
current of 60 kA. The current peak (yellow circles in Fig. 8)
is higher, more than 120 kA, but is within range of fault cur-
rents that in medium voltage electrical systems may arise
(up to 250 kA if there is absolutely no current limitation).
Short circuits presently are handled by conventional current
(Is) limiters. Without protection, no electrical, medium volt-
age system could physically withstand this load, even within
the shortest periods of time.

Accordingly, it is this extreme case (yellow circles in
Fig. 8) to which the results obtained for the total limited cur-
rent (coloured diamonds) have to be compared. In the other
cases (black triangles, light and dark grey diamonds), a com-
parison has to be made with respect to the corresponding
peaked curves.

From comparison of the different curves in Fig. 8, the
filaments indeed provide substantial reduction of the total
(nominal and fault) current, without runaway of their tem-
perature, but a direct response to the simulated fault circuit,
at a specific time t ′ after onset of the fault (t ≥ 6.5 ms),
cannot be identified. Instead, if we neglect an initial settling
period, it seems limitation is achieved by the filaments from
the beginning, t = t0, of the simulations. But a limitation is
clearly seen and will explicitly be shown later (Fig. 11).

As final conclusions of Section 3, when using a bun-
dle of filaments and a model conductor, the properties of
which are not too far away from conductors in techni-
cally realised devices, we see that (a) conductor temperature
and, accordingly, critical and transport current distribution
in these filaments are not homogeneous and (b) efficient
fault current limitation, by solely flux flow resistance, is
hard to achieve. The amount of current limiting by the
filaments is clearly evident, but a sudden increase of fil-
ament resistance triggered by onset of a fault cannot be
identified.

4 Stability and Correlation with Current Limiting

4.1 Stability Functions

Though it appears current limitation by phase change is
observed in Figs. 7a, b and 8, a safe decision upon the real
limitation mechanism (Ohmic or from flux flow resistance)
cannot be made up to this point.

In this section, we will check whether stability functions,
an integral view of critical current density distributions, or
stability functions plus temperature fields, could provide
this information. If it is clear that current limitation is solely
by Ohmic resistances, stability functions reflect tempera-
ture distribution, T(x,y,t), in the conductor. For example,
oscillating temperature profiles should be reflected by cor-
responding oscillations of the stability function, as was
observed in [10, 11].

Experimental investigations of JCrit of high-temperature
superconductors (compare the original literature cited in
[9]) proved the relation between critical current density and
temperature

JCrit(T) = JCrit0[1 − T/TCrit]n (3a)

is applicable also to these materials if an exponent n = 2 is
applied. To take into account the dependence of JCrit on also
the local magnetic field (flux flow density, B), we apply as
an approximation a standard relation

JCrit(T,B) = JCrit(T)/(B0 + B(t)) (3b)

with local B(t) and B0 a constant.
The stability function, �(t), originally assumes critical

current density to solely depend on conductor temperature.
In this case, there are non-zero contributions to the stability
integral

0 ≤ �(t) = 1 −∫ JCrit(x, y, t)dA/ ∫ JCrit(x, y, t0)dA ≤ 1

(4a)
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only if element temperature T (x, y, t) < TCrit(x, y, t); oth-
erwise, JCrit(x, y, t) is zero. Equation 4a is approximated
by

0 ≤ �(t) = 1 −�JCrit(x, y, t)dA/�JCrit(x, y, t0)dA ≤ 1

(4b)

The summations are taken over all superconductor
elements in planes y= const; the result is summed up
over all planes and finally divided by the total num-
ber of planes in the conductor. The result is the sta-
bility function averaged over conductor volume. The
differential dA in (4b) denotes finite element cross
section.

The stability function assumes values 0 ≤ �(t) ≤ 1
of which �(t) = 0 are the optimum and �(t) = 1
the worst case. Time t0 = 0 denotes the start of the
present simulation; at this time, all element tempera-
tures are at their original values, T(x, y, t0) = 77 K,
and critical current density, JCrit(x, y, t0), is maximum.
Its distribution at t0 accordingly is homogeneous, apart
from statistical fluctuations caused by the random JCrit0
(the materials property). This situation quickly changes at
times t > t0.

In previous stability calculations [8–11], in (4a, 4b), only
the dependence of JCrit on temperature was considered; cal-
culations were performed for standard disturbances. These
were not induced by a nominal transport or fault current but
were of the familiar type, like transformation of mechanical
stress energy to thermal energy, absorption of particle radi-
ation or the like. In the present paper, however, we have to
apply temperature and field dependence of JCrit for calcula-
tion of stability functions because J > JCrit, too, constitutes
a disturbance, by flux flow losses. A problem then arises
from application of (4a, 4b):

When assuming flux flow resistive conditions, the con-
ductor temperature is below critical temperature, which
means integrals or summations in (4a, 4b) might apply
values of JCrit(x, y, t) close to JCrit(x, y, t0). Stability func-
tion then is small, and maximum zero-loss transport
current

Imax(t) = JCrit[T(x, y, t = t0)][1 − �(t)]ASC (5)

is close to Imax(t0), with ASC the total conductor cross
section.

But flux flow resistances and corresponding losses are not
directly correlated with conductor temperature; there is at
best a correlation with temperature indirectly by the temper-
ature dependence of normal conduction resistivity, ρNC, in
(1). Only the condition T < TCrit, at all times, t , has to be
fulfilled. Thus, flux flow losses are correlated neither with
values JCrit nor with �. Stability function � and maximum
zero-loss current, Imax(t), accordingly can reasonably be

calculated from (4a, 4b) and (5) only for Ohmic resistance
states (as was done in [8–11]) or, approximately, if there are
only few elements that show flux flow resistance. If flux
flow resistance would strongly contribute to total resistance,
the procedure using (4a, 4b) and (5) is no longer applicable.

This is illustrated in Fig. 9 that shows stability functions
for a different number of filaments. In all cases, the depen-
dence of (random) JCrit on temperature and magnetic fields
has tentatively been applied to (4a, 4b). Under small mag-
netic fields, as is mostly the case in the present simulations,
the difference between JCrit(T) and JCrit(T,B) is small. The
obtained � thus are very close to 1 since the T(x, y, t) are
close to or exceed TCrit(x, y, t). The large � indicate that
indeed only few elements are at temperatures below TCrit;
in other words, an overall phase change to normal Ohmic
resistance states has occurred, with little contribution of flux
flow to total resistance. The application of (4a, 4b) and (5)
thus was justified.

Though it appears at first sight that it is only a
theoretical discipline, the following relations shall be
checked whether they would provide benefits of practical
interest.

(1) Given T(x, y, t) > TCrit(x, y, t), then JCrit = 0 and
� = 1. This is clear from the previous comments (and is the
natural way of operation of an Ohmic resistive FCL). Check
whether the reverse (1′) of (1) is true:

(1′) From � close to 1, we cannot uniquely conclude
T > TCrit. Given a large transport current, it might create a
sufficiently largemagnetic field that at sufficiently high tem-
perature, in particular if it is close to critical temperature,
exceeds BCrit,2(T) = BCrit,2(x, y, t), with T = T(x, y, t).
Accordingly, the reverse relation (1′) to (1) “If is close
to 1 (which means the JCrit(x, y, t) are close to zero), then
T(x,y,t) > TCrit(x,y,t)”, holds only if the magnetic field
is small against BCrit,2(x, y, t). In the present simulations,
local B(x, y, t) fulfil the condition B(x, y, t) < < BCrit,2

(x, y, t) except for temperatures very close to the critical
temperature. This means that under the condition “B(x,y,t)
small”, the reverse (1′) is true. We have a logically, bijec-
tively connected correlation between stability, critical cur-
rent density and temperature.

The large � observed in Fig. 9 accordingly indi-
cates that element temperature, in a very large frac-
tion of the superconductor volume, is above critical
temperature (the result already seen in Fig. 4b). This
conclusion is also correct in case of the design in
[4], but only for t > 8 ms, and the stability func-
tion in Fig. 9 (dark grey diamonds) is plotted for this
period only.

The question then is whether a bijective correlation exists
also between superconductor stability and current limit-
ing. What can we learn for superconductor safety if such a
correlation would not exist?
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Fig. 9 Volume averaged stability functions, within 5 ≤ t ≤ 10 ms,
for different numbers, NFil, of identical filaments. Coloured diamonds
apply LSC = 5000 m, LCu = 103 m and the higher JCrit. Scattering of
the data results from the random JCrit0 (the materials properties). Solid
dark grey diamonds refer to LSC = 232m, LCu = 4.2 104 m, NFil = 354
(the flux flow limiter design of [4]) and the higher JCrit (this curve rea-
sonably can be calculated only for t > 8 ms; compare text). Results

obtained with the same LSC, LCu and NFil, but with the lower JCrit, are
not shown (the stability function again cannot be applied; if yet a for-
mal calculation is performed, the stability function at all t ≤ 10 ms,
with very small variations amounts on the average to 0.65, the average
taken over six planes located at the same axial positions as the JCrit in
Figs. 5b and 10)

4.2 Correlation of Stability with Current Limiting

Distribution of critical current density, JCrit(T,B), for the
flux flow resistance limiter design [4], calculated with the
lower JCrit, is shown in Fig. 10. The almost homogeneous
distribution reflects the homogeneous temperature field in
Fig. 4a (temperature variation within 0.5 K) and Fig. 6 (light
grey diamonds). The stability function, if again tentatively
calculated with an extension of (4a, 4b) to also include the
dependence of JCrit(x, y, t) on B(x, y, t),

0 ≤ �(t) = 1 − ∫ JCrit[T(x, y, t),B(x, y, t)]dA/

∫ JCrit[T(x, y, t0),B(x, y, t0)]dA ≤ 1 (6)

depends on ratios JCrit(t)/JCrit(t0), with JCrit(t0) = 107 A/m2

(“tentatively” means before it is clarified that there are only
or strongly dominating Ohmic resistance states). Apart from
statistical fluctuations, these ratios closely approach unity,
and the stability function accordingly should be small.

A limitation factor  shall be defined as the ratio
between absolutely unlimited total (nominal plus fault)
current to total limited current. In Section 4.3, this con-
cerns a comparison between solid yellow circles and solid
coloured diamonds, and between black triangles and grey
diamonds with the corresponding peaked curves. Note that
Fig. 11 shows  in dependence on LCu ( is given for a dif-
ferent current load onto the filaments), not the dependence
of  on LSC.

Fig. 10 Distribution of critical
current density in a
superconductor filament,
calculated at t = 9 ms after the
start of the simulation (the end
of the increase of NCut off(t))
using LCu = 4.2 104 m,
LSC = 232 m and NFil = 354
(the design reported in [4]) with
the lower JCrit. Axial positions
(distances from the lower end of
the conductor section) indicated
by blue, red, dark green, light
green, dark yellow and lilac
diamonds are 0.1, 0.7, 1.3, 1.9,
2.5 and 3.1 mm, respectively 0.00E+00
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(2) Given � = 1, then JCrit(x, y, t) = 0, and T(x, y,
t) > TCrit(x, y, t) and  are accordingly large. Again, this
correlation is clear from the previous comments. Check
whether the reverse (2′) or (2”) is true: Given large , how
large is �?

(2′) Substantial current limiting, , can be achieved if
the conductor length, LSC, is strongly increased, or the con-
ductor cross section, ASC, is made sufficiently small. All
this does not alter JCrit0, a materials property, and accord-
ingly does not alter �, if it is tentatively calculated from
(6), and for small B(x, y, t). Strong current limiting, ,
then either suggests T(x, y, t) > TCrit(x, y, t) that yields
JCrit(x, y, t) = 0 and � = 1 (a first extreme case) or,
under variation of conductor dimension (large LSC, small
ASC) and T (x, y, t) < TCrit(x, y, t), it suggests � → 0, the
other extreme case. This means: Contrary to (1) and (1′), a
correlation (2) and (2′) is not bijective.

Inspection of solely , if one does not know anything
about JCrit(T,B), with T= T(x, y, t) and B=B(x, y, t), also
does not allow a decision (2”): It is not clear that the device
would be stable against quench. Given large , how large is
�? Is the device stable?

(2”) Large  can be obtained with large LSC and small
ASC (large conductor resistance). The conductor tempera-
ture shall be below but possibly close to TCrit (most of the
conductor cross section in flux flow, but a considerable part
in Ohmic resistive states). In this case, flux flow resistance
or Ohmic losses might quickly drive the temperature beyond
this limit (compare the solid dark grey symbols in Fig. 6).
Thus, a correlation also between (2) and (2”) is not bijective.
This implies little stability of the device. Under practical
aspects, serious consequences for conductor safety would
arise if temperature and field distribution is not controlled
in parallel to the control of .

Finally, it would be interesting to check whether the prop-
agation velocity of a normal zone in YBaCuO cables as
reported in [23], in relation to a propagation of the tempera-
ture front, both calculated with a finite element method, can
be explained by a similar correlation analysis as presented
above, and whether inhomogeneities and current percolation
have been observed. This will be investigated in a separate
paper.

4.3 Limitation Factors

Limitation factors, , to fault current can be extracted
in Fig. 11 from the ratio between solid yellow cir-
cles and coloured diamonds for long conductor lengths,
LSC = 5000 m, and for short conductor lengths,
LSC = 500 m (solid black triangles) or LSC = 232 m (light
grey diamonds, the flux flow limiter design of [4]). A mod-
est limitation is observed: The total unlimited current (solid
yellow circles) is reduced by about a factor  ≤ 5 to the

total limited current. This result is achieved with the larger
conductor lengths. The reduction of unlimited fault current
is the higher the larger the load (the fault current) onto
the filaments. For the short conductor length, no substantial
limitation is observed.

5 Summary

If besides standard disturbances (like release of mechan-
ical energy) the transport current itself constitutes dis-
turbances, the determination of local temperature and of
local current distribution becomes mandatory. This is nec-
essary to appropriately handle stability models and for
making a step forward to conclude under which resistance
states (Ohmic or flux flow) current propagation would be
limited.

Temperature profiles observed in this paper, with varia-
tions �T up to about 7 K, do not allow a clear distinction
between Ohmic resistive or flux flow resistive fault cur-
rent limiting concepts. Though frequently made in the
literature, this separation is highly questionable. Ohmic
resistive and flux flow resistive states may locally coex-
ist, side by side, but are not very stable in conductor
volume.

The magnitude of the nominal plus fault current may
fluctuate in the interior and percolate through a polycrys-
talline, porous conductor by a network of grains and grain
boundaries.

Any superconductor, even if perfectly designed and man-
ufactured with highest available precision, over extended
lengths in reality never will exhibit perfectly homoge-
neous materials properties. An attempt has been made in
this paper to account for this problem by means of a
random variation of the most important conductor materi-
als properties; it is a potentially new method to improve
the safety of electrical circuits incorporating supercon-
ducting components and reliability of stability predic-
tions, but additional work is required to verify this con-
cept with different superconductor materials and conductor
architectures.

Unique (bijective) correlations cannot be found between
stability and current limiting if there is flux flow resistivity,
which probably constitutes a safety problem for all cases
of current propagation when the transport current exceeds
critical current density.

Appendix A1: Definition of Model Conductor
and Conductor Architecture

For convergence of the numerical simulations, we need a
combination of
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(A) Superconductor material, all properties of which are
suitable for finite element simulations of local, tran-
sient thermal states and current propagation

(B) Simple conductor architecture with preferentially
cylindrical symmetry and, in case of HTSC, and as far
as possible, c-axis orientation of the superconductor

As a straight-ahead selection of conductor material and
conductor architecture, a combination of BSCCO material
with powder in tube (OPIT) 1G (first-generation) conduc-
tor architecture apparently would be the ideal situation, with
technically realised 1G conductors immediately at hand.
While this selection conforms with manufacture issues, it
is not very suitable for numerical simulations of conduc-
tor stability. Though the missing weak-link problem would
be favourable for the modelling of current transport, the
anisotropy of BSCCO is too large, in the order of 103, to
yield convergence of the simulated results. Numerical sta-
bility analysis of the proper 1G conductor using BSCCO
thus is not possible.

Concerning solely materials properties, the situation
is better with YBaCuO (anisotropy in the order of 10).
Thermal diffusivity of this material is available from
77 to 600 K (to include also resistive states); other-
wise, convergence problems again would be expected.
But YBaCuO is not very suitable for standard metal-
lurgy (powder in tube) preparation steps. The material is
too hard and brittle; many cracks would be the conse-
quence. An efficient texture is not achievable with this
technique, and there is also the weak-link problem in this
material.

Similar convergence problems come up in simulations of
a 2G conductor: The large number of components involved,
a series of thin films, with strongly differing mechani-
cal/thermal properties and thicknesses constitutes a simu-
lation problem that finite element schemes do not like at
all. There would be a lot of interfaces between the sin-
gle layers of which, strictly speaking, absolutely no reliable
quantitative information on corresponding thermal contact
resistances is available.

Instead, a model conductor has been applied in the cal-
culations to circumvent both convergence problems and
manufacture concerns. The electrical/magnetic and ther-
mal properties of the model conductor shall allow gen-
erally valid, qualitative conclusions on possibly exist-
ing inhomogeneity within the conductor cross section of
temperature and current distribution and of the distribu-
tion of the other properties and parameters mentioned in
Section 1.

The model conductor consists of a bundle of YBaCuO
filaments integrated into a metallic matrix and with a sta-
tistical variation of its most important materials properties.
Presently, only this combination of HTSC material and con-
ductor architecture can be applied for numerical analysis
of current propagation in general, and of current limit-
ing. While preparation of YBa2Cu4O8 and YBa2Cu3O7−δ

multi-filamentary wires hardly could be realised with OPIT,
the situation is better with the metal precursor technique
described in [24] and, for one possible direction of its
development, [25], respectively. Although its cross section
resembles a 1G conductor, the model conductor is not of
the proper 1G type since it does not contain BSCCO as the
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Fig. 11 Limitation factor (damping), , the ratio of total (nomi-
nal plus fault) unlimited current to limited current, obtained with
NFil = 354 superconducting filaments, all switched in parallel and in
series to the normal conductor. Results refer to different lengths, LCu
(different current loads onto the filaments), of the normal conductor
(coloured diamonds); these are obtained with LSC = 5000 m and the

higher JCrit. Solid black triangles apply LSC = 500, LCu = 104 m and
the higher JCrit. Solid light grey diamonds refer to the flux flow limiter
design of [4], with LSC = 232 m, LCu = 4.2 104 m and the lower JCrit
(application of the higher JCrit coincides with the light grey symbols).
Substantial current limitation ( about ≥2) is observed only with the
shorter normal conductor lengths (increased load onto the filaments)
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Fig. 12 Random reference values, JCrit0 (materials properties) used
for calculation of the higher critical current density, JCrit(T,B), then
with its dependence on local temperature, T , and on local mag-
netic field (magnetic flux density), B. Solid black diamonds con-
nected by the solid horizontal black line indicate arithmetic mean,

JCrit0,m = 8.614 1010 A/m2. When using T = 77 K, TCrit = 92 K,
B0 = 6 T and B = 100 mT, we have JCrit(T , B) = JCrit0,m 1010

(1 − T/TCrit)
2/(B0 + B)= 3.75 108 A/m2 referenced as the higher JCrit

in the text and figure captions

standard material for the superconducting core. It is simply
a conductor that is suitable for a systematic study of current
propagation but the results are representative for also other
superconductor materials and architectures.

Thermal conductivity, specific heat of the model con-
ductor and density (after a correction to porosity) thus are
the same as used in previous work; see citation in the text.
Random reference values JCrit0 and TCrit0 for calculation of
JCrit(x, y, t) and TCrit(x, y, t) are shown in Figs. 12 and 13 as
examples. The upper and lower critical field (mean values,
again of a random distribution) is 90 T and 10 mT, respec-
tively, at 77 K. Parameters for the metallic matrix of each
filament are those of Ag taken from [20], but the simula-
tions could apply also other matrix metals, like Cu or alloys
Y-Cu.

Appendix A2: Current Percolation and Sharing

The results shown in Figs. 14, 15 and 16 refer to the design
[4]: LSC = 232 m, NFil = 354, but the higher JCrit, compare
Fig. 6, and LCu = 4.2 104 m (to provide in the present model
an equivalent to the reported impedance of 0.38 �). The
curves indicate total (nominal plus fault) current through the
elements. Current can be taken by solely the superconductor
elements at radial positions between 250 and 300 μm, and
between 225 and 300 μm, at t = 3 and 6 ms, respectively,
with successively reduced magnitude (Figs. 14 and 15; this
illustrates current percolation). This is no longer fulfilled
at t = 9 ms (Fig. 16) where almost all current is directed
to the metallic matrix (this illustrates current sharing). This
is in agreement with the upturn of element temperature at

Fig. 13 Random reference
values of critical temperature,
TCrit0 (again materials
properties) at zero magnetic
field. Data are given for a
sample of 1000 elements. Solid
black diamonds and the black
horizontal line indicate the
arithmetic mean. Like JCrit0
(Fig. 12), also TCrit0 is
subsequently converted to a
local dependence yielding
TCrit = TCrit(B), with
B = B(x, y, t)
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Fig. 14 Distribution of total (nominal plus fault) current in the super-
conductor filament and its matrix, calculated at t = 3 ms after the start
of the simulation (before onset of the disturbance), in dependence of
radial and axial positions in the conductor section. Results are calcu-
lated using LCu = 4.2 104 m, LSC = 232 m, NFil = 354 and the higher

JCrit. Axial positions (distances from the lower end of the conductor
section) are indicated by blue, red, dark green, light green, dark yellow
and lilac diamonds, which indicate distances of 0.1, 0.7, 1.3, 1.9, 2.5
and 3.1 mm, respectively. The vertical bar separates superconductor
filament elements (left) from its metallic matrix elements

Fig. 15 Distribution of total
(nominal plus fault) current in
the superconductor and matrix,
like in Fig. 14 but at t = 6 ms
after the start of the simulation
(still before onset of the
disturbance). Axial element
positions are the same as
described in the caption of
Fig. 14
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Fig. 16 Distribution of total
(nominal plus fault) current in
the superconductor and matrix,
like in Figs. 14 and 15 but at
t= 9 ms after the start of the
simulation. Element positions
are the same as described in the
caption of Fig. 14
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Fig. 17 Distribution of total
(nominal plus fault) current in
the superconductor and matrix,
like in Fig. 14 to 16 but using
LCu = 103 m, LSC = 5000 m,
NFil = 354 and the higher JCrit.
Results are given at t = 6 ms
after the start of the simulation
(before onset of the disturbance).
Axial element positions are the
same as in Fig. 14
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t > 8 ms in Fig. 6 while the decrease of sin (ωt) dependence
of nominal current in this time interval is overcompensated.

The current is larger in elements located near the super-
conductor/matrix interface compared to the inner parts of
the conductor. This confirms an early expectation [26], p.
374 (in the context of Fig. 8 of this reference): High JCrit
regions should be confined to the superconductor/matrix
interface. The same conclusion applies to current distribu-
tion:

Experimental distribution of local critical current den-
sities was in [26] correlated with the microstructure of a
Bi 2223 tape. Here, we look at the alternative (but proba-
bly more informative) local distribution of currents, not of
their densities. The distribution of critical current density
does not always equal the distribution of currents: Element
cross sections (concentring rings) in the present simula-
tions increase in the radial direction (element radial width
�x = 6 mm is constant). The current will be distributed
to generate losses as small as possible, i.e. it will flow
preferentially in the outer elements. The homogenous dis-
tribution of critical current density in Fig. 10 accordingly is
not reflected by a homogeneous distribution of currents in
Figs. 14, 15, and 16.

The other example (Fig. 17) refers to LCu = 103 m,
LSC = 5000 m and NFil = 354, again using the higher JCrit.
Here, the smaller LCu strongly increases the current load (by
about an order of magnitude), and a great part of element
temperatures is increased above TCrit(B). The current is by
more than 95 % directed to the matrix, not only at t = 6 ms.
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