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Abstract Carbon coated maghemite (γ -Fe2O3) particles
with nanoscale sizes were synthesized by an inexpensive
and environmental friendly hydrothermal electrochemical
method in a one-step process. Glucose and ferric citrate
were used as the carbon and iron source, respectively.
Transmission electron spectroscopy (TEM) analysis indi-
cated that a carbon layer was coated on the surfaces of
the individual γ -Fe2O3 nanoparticles prepared at 180 ◦C.
The composition and phase structure of as-prepared mate-
rials were characterized by Raman and Fourier transform
infrared spectroscopy (IR). Electromagnetic properties of
the carbon/maghemite complex materials were measured
using vibration sample magnetometer (VSM). The satu-
ration of as prepared γ -Fe2O3/C nanocomposition was
31.2 emu/g.

Keywords Carbon · γ -Fe2O3 · Complex · Hydrothermal
electrochemical method

1 Introduction

Nanoscale magnetic iron oxides offer a high potential appli-
cation in several areas such as electronics, optoelectron-
ics, medicine, magnetic storage, and biotechnologies [1–4].
Nanosized materials are known to take on peculiar prop-
erties compared to the bulk material. For instance, iron
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oxide magnetic nanoparticles have received considerable
attention concerning the cleanup of environmental contam-
inants because of their small particle size, high surface
area, catalytic activity, low cost, and ease of preparation
[5]. However, iron nanoparticles are sometimes unstable,
and their stabilization particularly in terms of aggregation
and oxidation in air is a crucial point to be solved. These
deficiencies could be avoided by coating ferromagnetic
nanoparticles with different stable and nonmagnetic mate-
rials [6–10]. Among them, carbon materials have attracted
more interest than other materials due to the high electri-
cal conductivity, low cost, broad chemical, and physical
stability [9, 10]. Various techniques have been developed
for synthesis of such nanocomposite structures, including
arc techniques [9], laser pyrolysis method [11], catalytic
chemical vapor deposition (CVD) [12], and magnetron and
ion-beam sputtering [13]. However, one-step method has
not been reported for the synthesis of C/γ -Fe2O3 complex
materials from solution so far.

In this paper, we reported the preparation of γ -Fe2O3

core carbon shell obtained by hydrothermal electrochemical
method in one step. γ -Fe2O3/C materials were synthesized
under mild aqueous conditions. The γ -Fe2O3/C obtained
this way could be dispersed well in aqueous solution, and
there were functional groups on its surface, which facilitated
further modification in future applications.

2 Experimental

Ta substrates with 10 × 10 × 0.1 mm3 dimensions of 99.9 %
purity were mechanically polished and degreased with ace-
tone using an ultrasonic cleaner. Ferric citrate and glucose
were of reagent grade and were used without any further
purification. To form a transparent ferric citrate solution,
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1.22 g ferric citrate (FeC6H5O7, 0.005 mol) was dissolved
in 100 mL distilled water Then, 1.0 g glucose (C6H12O6,
0.005 mol) was added into the solution and stirred.

The detailed description of the deposition facility and
the growth method has been given elsewhere [14]. A typi-
cal preparation process was carried out under galvanostatic
conditions with a constant current density 0.001 mA/cm2

for 20 h. And the temperature of bath was maintained at
180 ◦C or 170 ◦C. After each experiment, black powders
were obtained. The powders were washed with water, ultra-
sonically in ethanol, and air-dried prior to characterization.

Raman (Labram HR 800, Jobin-Yvon) and IR spec-
troscopy (Nicolet Nexus 670) were employed to character-
ize the structure and bond parameters. The morphology of
the samples was examined by TEM (JEM-1200EX). And
the magnetic properties (M–H curve) were measured using
VSM (HHZ15) at room temperature.

3 Results and Discussion

3.1 FTIR Spectroscopy

Figure 1a, b showed the FTIR spectra of as-prepared sam-
ples prepared at 180 ◦C (sample A) and 170 ◦C (sample B),
respectively. FTIR spectra revealed the coexistence of γ -
Fe2O3 and carbon, in which 580 and 630 cm−1 was assigned
to maghemite [15], and 2927, 2854, 1627, 1562, 1387 and
1113 cm−1 to carbon [16–21]. The absorption bands at
2927, 2854, and 1387 cm−1 were corresponding to hydro-
gen bonded sp3 carbon [16, 17], 1627 cm−1 to C=O bonds
[18], 1562 cm−1 to C=C bonds [19], and 1113 cm−1 to
C=C–H or C–O–C groups [20, 21]. Among them, the rela-
tive intensity of Fe–O, C=C–H, and CH3 bonds in sample
A was stronger and the peak at 1562 cm−1 was only found
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Fig. 1 FTIR spectra of samples
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Fig. 2 Raman spectra of samples A at different laser power

in sample A, indicating that the hydrothermal electrochemi-
cal reaction was more exhaustive at 180 ◦C. Beside the main
products, the peaks at 3435 and 2373 cm−1 implied the exis-
tence of residual hydroxyl groups [22] and byproduct of
CO2−

3 [23].

3.2 Raman Spectroscopy

The Raman spectra were searched by exciting the sam-
ple with the visible light (488 nm) of an argon ion laser.
Figure 2 showed the Raman spectra of samples A under
different excitation energies. As shown in Fig. 2, the laser
power has no clear effect on the sample, indicating no sam-
ple degradation by laser irradiation. The displayed spectrum
revealed the presence of γ -Fe2O3 at 378, 524, and 678 cm−1

[24] and as an other phase carbon at 1361, 1589, and 1428
cm−1 [25, 26]. The peak around 1361, 1589 and 1428 cm−1

was assigned to D, G and sp3-CHn, respectively [25, 26].
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Fig. 3 Raman spectra of sample B at different laser radiation power
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Fig. 4 TEM image of sample A

Fig. 5 TEM image of sample B

The Raman spectrum also showed a band at 1045 cm−1

owing to the presence of CO2−
3 [23].

The Raman spectra of sample B are shown in Fig. 3.
The spectrum recorded with 1 mW showed the same behav-
ior as sample A, but when the laser power was raised to 5
mW, new bands showed up. The new bands at 179, 218, and
282 cm−1 were characteristic of hematite [27]. Moreover,
the intensity of the D and G peak strongly decreased with
increasing laser power. It indicated that unstable carbon pre-
pared at 170 ◦C gradation by laser irradiation, the carbon
could not afford effective protection, and maghemite was
assumed to transform into hematite during high-power laser
radiation.

3.3 TEM Analysis

Figures 4 and 5 showed the TEM images of sample A
and sample B, respectively. According to Fig. 4, dispersible
carbon-stabilized γ -Fe2O3 nanoparticles with average par-
ticle size of 10 nm could be obtained at 180 ◦C. However,
coarse aggregates consisting of tens of γ -Fe2O3 particles
were observed in Fig. 5.

3.4 VSM Analysis

Figure 6 showed the magnetization curves of the sample
A and sample B at room temperature. The corresponding
saturation magnetizations strengths (Ms) were 31.2 and
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Fig. 6 Magnetization hysteresis loops of the samples
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13.6 emu/g, respectively. These values were much lower
than 76 emu/g of the corresponding bulk magnetite [28],
which could be attributed to the nanosize of the γ -Fe2O3

particles and the presence of carbon [29, 30].
The saturation magnetization for sample B was lower

than that of sample A. This might be attributed to high
proportion of non-crystal form of carbon, OH− and non-
magnetic iron oxide.

4 Conclusion

The C/γ -Fe2O3 powders with high magnetization (31.2
emu/g) was obtained by a hydrothermal electrochemical
technique at 180 ◦C one step. The dispersible γ -Fe2O3

nanoparticles with average particle size of 10 nm were sta-
bilized by carbon. The carbon could afford an effective pro-
tection against maghemite transforming into nonmagnetic
hematite.
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