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Abstract The time-dependent Ginzburg–Landau equations
have been solved numerically by a finite-element analysis
for mesoscopic superconducting ring structures with dif-
ferent inner radii. For given applied magnetic fields, we
have studied the influences of the inner radius on the vor-
tex states and the magnetization properties of these systems.
Our results show that the multivortex states can be stabi-
lized in the mesoscopic superconducting ring with proper
inner radius. Magnetization curves show that the magnetic
vortices penetrate easily into the superconductor, and the
system is magnetized easily for the superconducting ring
with smaller inner radius.
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1 Introduction

Modern microfabrication and measurement techniques
enable one to study the properties of superconducting sam-
ples with sizes comparable to the magnetic field penetration
depth λ or the coherence length ξ . The behavior of these
mesoscopic systems in an external magnetic field is con-
siderably influenced by the boundary conditions besides its
size and geometry and may lead to new superconducting
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states. The mesoscopic samples of different shapes sur-
rounded by vacuum or an insulator medium have been con-
sidered extensively both experimentally and theoretically
[1–10]. It has been shown that two kinds of superconduct-
ing states can exist in these samples, i.e., the giant vortex
state [11, 12] and the multivortex state [13–16]. In a super-
conducting system with circular holes, the superconducting
state is characterized by a definite angular momentum that
is similar to the Little–Parks oscillations [17]. In 2000, an
even more exotic vortex state was predicted to exist in meso-
scopic samples with a discrete symmetry (e.g., triangles,
squares, regular polygons): the vortex–antivortex state [18],
where vortices and antivortices coexist and form the ther-
modynamically stable ground state. On the other hand, the
geometry of a mesoscopic sample can strongly influence the
critical field and the current. Especially, by nanostructuring,
i.e., the introduction of nanoscale structures (such as holes,
pinning centers, and so on) in a superconductor, meso-
scopic superconductors can be tuned to exhibit uniquely
mesoscopic effects, such as vortices and antivortex config-
urations [3], vortices trapped in blind holes [19], and so on.
These effects are expected to shed light on the d-wave sym-
metry [20] and the strip structure [21] in high-temperature
superconductors.

Recently, an experimental investigation was made of
flux jumps and irreversible magnetization of mesoscopic Al
superconducting rings, which indicated that the change of
vorticity with magnetic field could be larger than unity [7].
A direct observation of vortex states in small superconduct-
ing disks for vorticity L = 0 to 40 was also reported [22].
Therefore, there still exists a need for alternative proposals
of a different system in which the vortex states can be stabi-
lized. The purpose of this paper is to use the finite-element
method [4, 16] to determine the magnetic vortex prop-
erties of the mesoscopic superconductor rings by solving
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the time-dependent Ginzburg–Landau (TDGL) model. The
finite-element method is characterized by approximate solu-
tions that are piecewise polynomial functions with respect
to some grid. A specific finite scheme is defined by choos-
ing a particular space of such functions in which to seek
approximate solutions. In the present paper, we focus on the
influences of the inner radius on the vortex states and the
magnetization properties of these systems.

2 Time-Dependent Ginzburg–Landau Model

We consider that the two-dimensional mesoscopic super-
conducting ring and the external magnetic field H are
uniform and directed normal to the ring plane. For a type
II superconductor, the TDGL equations coupled to a pen-
etrating magnetic field B = ∇ × A, with A being the
magnetic vector potential, gives an accurate description of
the superconducting state of low-Tc superconductors and is
well suited to incorporate boundary effects in the treatment
of the mesoscopic superconductors. After the normalization
and the gauge transformation, the TDGL equations were
given by [16, 23]

∂ψ
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is the so-called GL parameter and
describes the ability of the sample to screen the applied
magnetic field. The λ and ξ denote the London pene-
tration depth and the GL coherence length, respectively.
Here, all distances are measured in units of the coher-

ence length ξ (T ) = ξ0

/√
1 − T

/
Tc. Temperature T is

scaled to Tc. The vector potential A is expressed in units
of Hc2 (0) ξ (0), where the upper critical field is given by
Hc2 (T ) = Hc2 (0)

(
1 − T

/
Tc

)
. The superconducting order

parameter ψ in units of ψ0 =
√
−α

/
β, such that |ψ |2 = 1

in the pure Meissner phase and |ψ |2 = 0 in the normal
conducting state (with α and β being the GL coefficients
[16]). |ψ |2 represents the local Cooper-pair density. B =
∇ × A stands for the magnetic induction field inside the
superconductor.

The vortex state of a small mesoscopic superconductor
is strongly influenced by the imposed topological confine-
ment. The shape of the sample boundaries is introduced in
our calculation through the Neumann boundary condition,
which sets the supercurrent perpendicular to the boundary
equal to zero:

n · (−i∇ − A) ψ
∣∣
r=Ro = 0, (3)

n · (−i∇ − A) ψ
∣∣
r=Ri = 0, (4)

where n is the normal unit vector on the surface. Suppose

the surface of the type II superconductor
(
κ > 1

/√
2
)

in

the x-y-plane and a uniform external magnetic field (H =
(0, 0, H)) along the z-direction. Thus, the problem is two-
dimensional, and the z-component of the magnetic potential
is always zero, that is, A = (Ax , Ay , 0). The initial condi-
tions are |ψ |2 = 1 corresponding to the Meissner state and
zero magnetic field inside the superconductor. The calcu-
lation is repeated until the relative difference of the order
parameter between the two consecutive iteration steps is less
than 10−6.

3 Results and Discussions

For circular configurations such as disks, the giant vortex
state (or the multivortex state) is characterized by the total
angular momentumL [1].L isthe winding number and gives
the vorticity of the system. Due to the nonlinearity of the GL
equations, an arbitrary superconducting state is generally a
mixture of different angular harmonics L even in axially
symmetric systems. Nevertheless, we can introduce an ana-
log to the total angular momentum L, which is still a good
quantum number. In sufficiently large disks, the transitions
between multivortex states are described by the saddle-
point states which correspond to the energy barrier states
between those states [24]. Figure 1(a–d) shows the Cooper-
pair density |ψ |2 plots in the superconducting rings for the
Ro = 5ξ and Ri = ξ at H /Hc2 = 0.8, the Ro = 5ξ and
Ri = 2ξ at H /Hc2 = 0.8, the Ro = 5ξ and Ri = 4 at
H /Hc2 = 0.8, and the Ro = 5ξ and Ri = 2ξ at H /Hc2 = 0.8,
respectively. It is observed that strong finite-size effects in
conjunction with strong shape effects determine the vortex
configuration [1]. When external magnetic field is applied,
more flux is easily trapped in the hole for the superconduct-
ing ring with smaller inner radius, and eventually the stable
multivortex states can be formed inside the superconduct-
ing ring. For instance, we can find the multivortex state with
L = 10 for the case of Ri = ξ and the multivortex state
with L = 7 for the case of Ri = 2ξ at H /Hc2 = 0.8 (see
Fig. 1(a, b)). Meanwhile, at H /Hc2 = 1.2, we observe
these multivortex states with L = 38, 24, and 12 for
the case of Ri = ξ , 2ξ , and 3ξ (see Fig. 2 (a–
c)), respectively. With increasing inner radius, how-
ever, the multivortex states vanish due to strong finite-
size effect (see Figs. 1(c, d) and 2(d)), which indi-
cate that the magnetic vortices penetrate easily into
the superconducting ring with smaller inner radius.
Figure 1(e–h) shows the corresponding vector plots of the
supercurrent in the superconducting rings. When a super-
conducting ring sample is placed in an external magnetic
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Fig. 1 (Color online)
Cooper-pair density |ψ |2 for the
rings with Ri = ξ , 2ξ , 3ξ , and
4ξ (a, b, c, and d, respectively).
Supercurrent J for the rings with
Ri = ξ , 2ξ , 3ξ , and 4ξ (e, f , g,
and h, respectively). The other
parameter values are Ro = 5ξ ,
κ = 4, and H/Hc2 = 0.8

2

(a) (b) (c) (d)

J

(e) (f) (g) (h)

field, the magnetic field is expelled from the superconductor
due to screening currents near the sample outer bound-
ary. It is clear that the screening currents near the sample
outer boundary flow clockwise and the currents near the
sample inner boundary counterclockwise, i.e., the magnetic
field penetrating the superconductor from the sample inner
boundary creates currents flowing in a direction opposite
to the screening currents. The competition between these

currents and the screening currents results in the existence of
vortices [1]. In addition, the vortices also experience inward
forces [25]. During the whole process, the vortex–vortex
interaction is always repulsive (attractive) between vortices
of same (different) sign. Eventually, the vortices will find
an equilibrium position, in which the inward and outward
forces cancel exactly and the vortices become stable. The
similar cases can be found in Fig. 2(e–h).

Fig. 2 (Color online)
Cooper-pair density |ψ |2 for the
rings with Ri = ξ , 2ξ , 3ξ , and
4ξ (a, b, c, and d, respectively).
Supercurrent J for the rings with
Ri = ξ , 2ξ , 3ξ , and 4ξ (e, f , g,
and h, respectively). The other
parameter values are Ro = 5ξ ,
κ = 4, and H/Hc2 = 1.2
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Fig. 3 (Color online) a Hysteresis curve of the magnetization M vs
the applied magnetic field for Ro = 5ξ , Ri = 2ξ , and κ = 2. b Mag-
netization of as a function of applied magnetic field for Ro = 5ξ ,
Ri = 2ξ , and κ = 2. c Magnetization of as a function of applied
magnetic field for Ro = 5ξ , Ri = 2ξ , and κ = 2, 4, 6. d Magnetiza-
tion of as a function of applied magnetic field for κ = 2, Ro = 5ξ ,
and Ri = ξ , 2ξ , 3ξ , and 4ξ . The insets show the possible vortex
configurations at the relevant magnetic field

Subsequently, the magnetization curves are calculated for
the superconducting rings. The external magnetic field is
increased from H /Hc2 = 0 to H /Hc2 = 2.5 with the step

H

/
Hc2 = 0.05. In Fig. 3, the magnetization M vs the

external magnetic field are plotted. The area of magnetiza-
tion M = 〈B〉−H can be observed experimentally, which is
the difference between the applied field H and the measured
field 〈B〉 [7]. Previously, the individual superconducting and
ferromagnetic disks were studied, and an excellent agree-
ment with the above formula was found [2, 5]. Therefore,
the dimensionless magnetization in our work, which is a
direct measure of the expelled magnetic field from the
mesoscopic superconducting ring, can be defined as M =
(〈B〉 −H)

/
4π , where 〈B〉 is the magnetic induction aver-

aged over the mesoscopic superconducting ring surface area

S, i.e., 〈B〉 = (
1
/
S
) ∫

B
(
⇀
r
)
d
⇀
r . In the initial magneti-

zation process, the superconductor is in the Meissner state.
Figure 3a shows the hysteresis curve of the magnetization
M vs the external magnetic field for the superconducting
ring with the outer radius Ro = 5ξ and inner radius Ri =
2ξ . As the magnetic field is applied, the magnetic flux pen-
etrates into the region of order λ near the surface boundary.
As the magnetic field is further increased, the magnetization
curve shows a peak at Hp = 0.9. The system is in the mixed
states for H /Hc2 >Hp, which can be proved by the corre-
sponding vortex states (see the insets of Fig. 3b). When the
magnetic field is reversed and decreased to H

/
Hc2 < −Hp,

the magnetic flux near the surface boundary is transformed
into vortices. Then, they penetrate into the system.

Moreover, the transition field Hp will be decrease with
the increasing GL parameter κ (see Fig. 3c). In Fig. 3d,
we demonstrate the influence of the inner radius of the
superconducting ring on the magnetization behavior. It is
observed that the magnetization drops forH /Hc2 >Hp when
the system is in the mixed state and the transition field Hp

is strongly influenced by Ri. The smaller the inner radius
of the superconducting ring, the smaller the transition field
Hp, i.e., the magnetic vortices penetrate easily into the
superconductor and the system is magnetized easily.

4 Conclusions

In summary, the time-dependent Ginzburg–Landau equa-
tions have been solved numerically by a finite-element
analysis for the mesoscopic superconducting ring struc-
tures with the different inner radii. We demonstrate that
the multivortex states can be stabilized in the mesoscopic
superconducting ring with proper inner radius. Magnetiza-
tion curves show that the magnetic vortices penetrate easily
into the superconductor, and the system is magnetized easily
for the superconducting ring with the smaller inner radius.
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