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Abstract Ba(LaZn)xFe12−2xO19 (0 ≤ x ≤ 0.5) powders
with Bi2O3 as an additive was synthesized by a sintered
route at 900 °C or 950 °C. The structure and magnetic prop-
erties of La–Zn substituted M-type barium ferrites were also
investigated. When 0 ≤ x ≤ 0.5, only one crystal phase ex-
isted in the sample, and the morphology of the grains were
shown to be gradually irregular. The little amount of La3+
ions and Zn2+ ions changed the equilibrium of Fe2+ and
Fe3+ at the 2a site, which increased the Fe3+–O–Fe2+ su-
perexchange interaction strength, and the saturation magne-
tization (Ms) of the samples was also improved. Meanwhile,
the substitution of La3+ and Zn2+ ions and the grains’ size
bought great effects on the magnetocrystalline anisotropy
field. As a result, with sintering at 950 °C for 6 h, the max
Ms value of the samples with x = 0.1 was 67.26 emu/g, and
the minimum coercivity (Hc) value was 1718.89 Oe with
x = 0.3, respectively.

Keywords M-type barium ferrite · La–Zn substitution ·
Magnetic properties

1 Introduction

M-type barium ferrite has been widely applied in perma-
nent magnets and perpendicular high density for its good
magnetic properties and low price to produce [1, 2]. Mean-
while, the next generation magnetic microwave devices re-
quired the barium ferrite with a high remanent magnetiza-
tion. The applications of recording media required a higher
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standard for barium ferrite materials [3, 4]. In the present
study, three important methods have been employed to adapt
the requirement of low temperature cofired ferrites technol-
ogy and produce devices with a multilayer process: low-
ering the sintered temperature [5, 6], increasing the value
of saturation magnetization [7], and changing the magne-
tocrystalline anisotropy constant [8]. As for improving the
magnetic properties of barium ferrite, many works focused
on the synthesis of ferrite [9–11], such as optimizing the
sintering process [12–14], and the substitution of suitable
ions, [15] etc. Among these methods, the ions’ substitution
is considered an effective approach to change the proper-
ties of BaM ferrites. The substitution of Ba2+- or Fe3+-sites
has been extensively investigated in recent years, for ex-
ample, La3+, Gd3+, Sm4+–Zn2+, Cr4+–Zn2+, La3+–Zn2+,
and Sn4+–Mg2+ [16–23]. Low coercivity and high satu-
ration magnetization values were synchronously required
for use in recording media applications; therefore, reduc-
tion in the coercivity along with the increase in the satu-
ration magnetization was a new goal in preparing barium
ferrites.

Recently, with the development of low temperature
cofired ceramic (LTCC) technology, the low temperature
cofired magnetic materials have drawn more concerns. Bar-
ium ferrites keep excellent properties at a low sintering tem-
perature, which is the aim of the investigation. The influence
of the La–Zn substituted barium ferrites have been reported,
but almost all were Ba1−x(LaZn)xFe12−xO19 materials. In
this work, the Ba(LaZn)xFe12−2xO19 ferrite powders were
synthesized with the solid state method and sintered with a
low temperature, and the structure and magnetic properties
of the ferrites were discussed.
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Table 1 Variation of hexagonal
lattice parameters, cell volume
and density with La–Zn
substitution

x a (Å) c (Å) V (Å3) Density (g/cm3)

0.0 5.8865(2) 23.1843(2) 695.73 5.3046

0.1 5.8907(2) 23.1833(3) 696.72 5.2980

0.2 5.8923(4) 23.1849(5) 697.04 5.2948

0.3 5.8946(3) 23.1850(2) 697.65 5.2909

0.4 5.8937(3) 23.1762(3) 697.19 5.2943

0.5 5.8941(2) 23.1804(4) 697.35 5.2912

Fig. 1 X-ray patterns of the Ba(LaZn)xFe12−2xO19 samples sintered
at 950 °C

2 Experiment

Powders of Ba(LaZn)xFe12−2xO19 with 0 ≤ x ≤ 0.5 were
prepared using the solid state method. BaCO3, Fe2O3,
La2O3, and ZnO, as the raw materials, were mixed by the
molar ratio and ball milled for 24 h and presintered in air at
950 °C. Then the powders were mixed with 2.5 wt% Bi2O3

and milled for 18 h, dried, and sintered at 900 °C and 950 °C
in the air.

The phase compositions of the samples were investigated
by an X-ray diffractometer (XRD, DX-2700, Haoyuan Co.)
with Cu Kα radiation; the lattice parameters and cell vol-
ume, and the density of the samples were calculated based
on XRD data. The micrographs of the samples were car-
ried out using a scanning electron microscope (SEM, JEOL,
JSM-6490). The magnetic properties of the samples were
measured using a vibrating sample magnetometer (VSM,
MODEL BHV-525).

3 Results and Discussion

The XRD patterns of Ba(LaZn)xFe12−2xO19 ferrites sin-
tered at 950 °C with different x contents are shown in Fig. 1.

It can be seen that with the increased x content, all the sam-
ples show the typical peaks of the pure hexagonal ferrite
phase (P63/mmc (194)-M-type BaFe12O19). The lattice pa-
rameters, cell volume, and the density of the samples sin-
tered at 950 °C were listed in Table 1. When x ≤ 0.3, the
lattice parameters, a and c reach the maximum value with
x increasing. The slight changes in the lattice constant were
attributed to the ionic radius of La3+ (1.061 Å) and Zn2+
(0.74 Å), which are larger than that of Fe3+ (0.645 Å).
It could be probable that the La3+ and Zn2+ ions entered
the crystalline lattice and changed the lattice properties of
the samples. Thus, the decreased lattice constant showed
that the La–Zn ions substitution was accomplished. When
x ≥ 0.3, superfluous La–Zn ions existed between the crys-
talline, which resulted in the decrease of the lattice parame-
ters.

The micrographs of fractured cross-sections of the sam-
ples were characterized by SEM and shown in Fig. 2. The
SEM of the sample showed that well-formed hexagonal
grains and the mean particle sizes were 1 µm. With the
increase of La–Zn, the shape of samples became irregular
gradually and some small particles appeared. The difference
between the samples could be the content of La–Zn substitu-
tion and the agglomeration of grains. The ferrites formation
reaction was promoted by the La3+ and Zn2+ ions, which
was in agreement with other researches [24].

The changes of the saturation magnetization (Ms) and
coercivity (Hc) of the samples with the La–Zn substitution
were shown in Fig. 3. Variations in Ms and Hc for the sam-
ples were shown in Fig. 4. With different sintering tem-
peratures, the Ms of the samples increased with x contents
and reached 54.54 emu/g and 53.68 emu/g at x = 0.1, and
then decreased gradually. Meanwhile, the Hc first decreased
to the minimum value of 1969.07 Oe and 1635.54 Oe at
x = 0.3, which revealed the samples exhibit a typical soft
magnetic characteristic trend with a specific saturation mag-
netization. However, Hc increased when x ≥ 0.2.

The natural magnetic properties of the ferrites were im-
pacted directly by the chemical composition. In the basic
structure of M-type barium ferrites, Fe3+ ions occupy five
different interstitial sites: tetrahedral 4f1 (↓), bipyramidal 2b
(↑), and three octahedral sites 12 K (↑), 4f2 (↓), and 2a (↑).
When La3+ and Zn2+ substitute Fe3+ ions, the La3+ ions
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Fig. 2 SEM micrographs of the
samples sintered at 950 °C

preferentially substitute the Fe3+ ions at the 2a or 4f2 sites,
and nearly all Zn2+ ions substitute Fe3+ ions at the 4f1 site,
which results in a valence change of Fe3+ to Fe2+ at the 2a
site. This position will increase the number of Fe3+ ions in
spin-up sites compared with spin-down sites, and as a re-
sult, it increases the saturation magnetization of the samples
with the increase of x (x ≤ 0.1). However, when x > 0.1,
the saturation magnetization decreased because of superflu-
ous nonmagnetic Zn2+ ions.

According to the Stoner–Wohlfarth model theory, the
magnetictocrystalline anisotropy energy (EA) of the sample
is approximated by

EA = KV sin2 θ

where K is anisotropy constant, V is the volume of crys-
tal, and θ is the angle between the easy axis and the direc-

tion of filed-induced magnetization. Hc is closely related to
EA, which is proportional to the product K and V , and Hc

is related to the grain size. The first decrease of coercivity
Hc may be due to the fact that the decrease of the magne-
tocrystalline anisotropy field results from the substitution of
nonmagnetic Zn2+ ions and the changes of the grains’ size.
When x > 0.3, the increase of Hc can be attributed to the en-
hancement of the magnetocrystalline anisotropy, which dues
to too many Fe2+ ions locating on 2a site.

4 Conclusions

Ba(LaZn)xFe12−2xO19 (0 ≤ x ≤ 0.5) powders with Bi2O3

as an additive was synthesized by a sintered route at 900 °C
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Fig. 3 M–H hysteresis loops of the samples with composition 0 ≤ x ≤ 0.5 in Ba(LaZn)xFe12−2xO19 prepared by sintering at 900 °C (a) and
950 °C (b) in air

Fig. 4 Compositional dependences of the saturation magnetization and the coercive force

or 950 °C. When 0 ≤ x ≤ 0.5, only one crystal phase ex-
isted in the sample, and the morphology of the grains were
shown to be gradually irregular. The lattice parameters were
adjusted by the content of the La–Zn substitution. The satu-
ration magnetization increased at a low substitution content
of x = 0.1 and decreased for x > 0.2. The coercivity de-
creased from x = 0.0 to x = 0.3, and then increased. The
phenomenon was attributed to particle size, nonmagnetic
impurity phases, and the site preference of the La–Zn sub-
stitution.
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