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Abstract Topological media are systems whose properties
are protected by topology, and thus are robust to defor-
mations of the system. In topological insulators and su-
perconductors, the bulk-surface and bulk-vortex correspon-
dence gives rise to the gapless Weyl, Dirac, or Majorana
fermions on the surface of the system and inside vortex
cores. In gapless topological media, the bulk-surface and
bulk-vortex correspondence produce topologically protected
gapless fermions without dispersion—the flat band. Fermion
zero modes forming the flat band are localized on the surface
of topological media with protected nodal lines and in the
vortex core in systems with topologically protected Fermi
points (Weyl points). Flat band has an extremely singular
density of states, and this property may give rise in partic-
ular to surface superconductivity, which in principle could
exist even at room temperature.

Keywords Weyl point · Flat band · Fermi arc · Surface
superconductivity

Discovery of topological insulators and graphene gave new
impulse to investigation of topological media, which started
after discovery of topological phases of superfluid 3He
in the 1970s. Many quantum condensed matter systems
are strongly correlated and strongly interacting fermionic
systems, which cannot be treated perturbatively. However,
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topology allows us to determine generic features of their
fermionic spectrum, which are robust to perturbation and
interaction. Topological matter is characterized by a non-
trivial topology in momentum space. The momentum-space
topological invariants are in many respects similar to the
real-space invariants, which describe topological defects in
condensed matter systems, and cosmic strings and mag-
netic monopoles in particle physics (see Fig. 1). In par-
ticular, the Fermi surface in metals is topologically stable,
because it is analogous to the real-space vortex line in su-
perfluids and superconductors. Its topological charge—the
winding number—cannot continuously change from 1 to 0.
This makes the Fermi surface robust to perturbative interac-
tions and is actually in the origin of the Landau theory of
Fermi liquid, which is the effective low-energy theory of the
systems with Fermi surface.

In the same way, the Fermi point in the energy spectrum
(Dirac or Weyl point) is the analog of the real-space point
defects, such as hedgehog in ferromagnets and magnetic
monopole in particle physics. Different Fermi points may
collide, annihilate, and split again, but their total topologi-
cal charge is conserved in the same way as topologically-
charged ’t Hooft–Polyakov magnetic monopoles in real
space. The splitting or recombination of Fermi point in mo-
mentum space represents an example of topological quan-
tum phase transitions. Examples of systems with Weyl
points are superfluid 3He in phase A, topological semimetals
first discussed by Abrikosov and Beneslavskii in 1971 [11],
and the vacuum of the Standard Model of particle physics.
The effective theories describing these systems at low en-
ergy are the theory of relativistic quantum fields and grav-
ity, which emerge in the vicinity of the Weyl point. In the
Standard Model, either Fermi points with opposite topolog-
ical invariants annihilate each other, giving rise to a Dirac
mass (the process commonly known as Higgs mechanism),
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Fig. 1 Topological matter, represented in terms of topological objects
in momentum space. (Top left): Fermi surface is the momentum-space
analog of the vortex line: the phase of the Green’s function changes
by 2πN1 around the element of the line in (ω,p)-space. (Top middle):
Fermi point (Weyl point) is the counterpart of a hedgehog and a mag-
netic monopole. The hedgehog in this figure has integer topological
charge N3 = +1, and close to this Fermi point the fermionic quasipar-
ticles behave as Weyl fermions. Nontrivial topological charges N1 and
N3 in terms of Green’s functions support the stability of the Fermi sur-
faces and Weyl points with respect to perturbations including interac-
tions [1, 2]. (Top right): Topological insulators and fully gapped topo-
logical superfluids/superconductors are textures in momentum space:
They have no singularities in the Green’s function, and thus no nodes
in the energy spectrum in the bulk. This figure shows a skyrmion
in the two-dimensional momentum space, which characterizes two-
dimensional topological insulators exhibiting intrinsic quantum Hall

or spin-Hall effect [1]. (Bottom left): Flat band emerging in strongly
interacting systems [3]. This dispersionless Fermi band is analogous to
a soliton terminated by half-quantum vortices: the phase of the Green’s
function changes by π around the edge of the flat band [4]. Topologi-
cally protected flat band emerges on the surface of materials with nodal
lines in bulk; see Fig. 2 and [5, 6]. (Bottom right): Fermi arc on the sur-
face of 3He-A [7] and of topological semimetals with Weyl points [8, 9]
serves as the momentum-space analog of a Dirac string terminating on
a monopole. The Fermi surface formed by the surface bound states ter-
minates on the points where the spectrum of zero energy states merge
with the continuous spectrum in the bulk, i.e., with the Weyl points.
The nodal topological systems with Weyl points also demonstrate the
bulk-vortex correspondence. The core of the 3He-A vortex contains the
topologically protected one-dimensional flat band which terminates on
Weyl points [10]

or these Fermi points do not annihilate, but split in momen-
tum space, giving rise to Lorentz violation presumably in
neutrino sector [12, 13].

The fully gapped topological matter—topological insu-
lators and fully gapped topological superfluids such as su-
perfluid 3He-B—have no nodes in their bulk spectrum or
any other singularities in momentum space. These systems
are analogs of nonsingular objects in real space—coreless
vortices, textures, and skyrmions. The fully gapped sys-
tems, which have nonzero value of topological invariant in
bulk, have gapless fermions on the boundary and in the core
of quantized vortices. This relation between the bulk and
edge properties is called the bulk-surface and bulk-vortex
correspondence. In some systems, the edge states or/and
bound states in the vortex core have Majorana nature. The
first discussion of the topological insulators can be found

in [14, 15]; recent reviews are in [16, 17]. Exotic proper-
ties of the surface of topological insulators and fully gapped
topological superfluids and superconductors can be found in
[18, 19].

The nodal topological systems with Weyl fermions also
demonstrate the bulk-surface and the bulk-vortex correspon-
dence. Due to bulk-vortex correspondence, the core of the
3He-A vortex contains the dispersionless branch of bound
states with zero energy—one-dimensional flat band, which
was first discussed by Kopnin and Salomaa in 1991 [20].
The end points of this flat band are determined by projec-
tions of the Weyl points to the direction of the vortex axis.
Due to bulk-surface correspondence, the surface of 3He-A
and of 3D topological semimetals contains another exotic
object—the Fermi arc—the 1D Fermi line in the 2D mo-
mentum space, which terminates on two Weyl points (Fig. 1
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Fig. 2 The nodal line in the 3D topological semimetal gives rise to
topologically protected bound states on the surface of the material. The
energy spectrum of these bound states form the flat band, which ter-
minates on the projection of the nodal line to the surface; all the states
within the flat band have zero energy. Flat band emerging on the surface
has an extremely singular density of states. In [6], the special scenario
of formation of the surface flat band has been considered, when it is
obtained by stacking of N graphene-like layers in the limit N → ∞, if
some discrete Z2 symmetry is obeyed. For N > 2, the singular density
of states (DoS) takes place, νN (ε) ∼ ε2/N−1. For N = 4 layers, one
comes to ν(ε) ∼ ε−1/2, which corresponds to the DoS at the edge of
a one-dimensional band. The latter for a long time has been discussed
as a possible source of enhancement of the superconducting transition
temperature; see, e.g., [21]. Finally, in the limit of large number of lay-
ers, the flat band with DoS ν(ε) ∼ ε−1 is formed on the top and bottom
surfaces of the material

bottom right). The flat band in the vortex core and the Fermi
arc on the surface are analogs of the Dirac string terminating
on two magnetic monopoles.

Another important class of gapless topological systems
contains 3D semimetals and superconductors with topologi-
cally protected lines of zeroes in momentum space. For sys-
tems with nodal lines the bulk-surface correspondence gives
rise to the 2D flat band on the surface of material of this
class or at the twin boundaries—all electrons within this
band have zero energy. The flat band spectrum terminates
by the line obtained by projection of the nodal line to the
plane of the surface; see Fig. 2. Flat band has an extremely
singular density of states, and this property of systems with
flat band is very important. In particular, it gives the linear
dependence of the critical temperature of superconducting
transition on the coupling: Tc ∼ gSFB, where SFB is the area
of the flat band in momentum space. This should be con-
trasted with the exponential suppression of transition tem-
perature in bulk superconductors. Flat band may give rise to
surface or interface superconductivity with high transition
temperature [6, 22, 23] (see Fig. 3) and may open the route
to room-temperature superconductivity.

In conclusion, the momentum space topology became
the main tool for investigation of the robust properties

Fig. 3 Superconductivity formed on the surface of a system, which
has nodal line in bulk, and thus the flat band on the surface. Due to
the singular DoS ν(ε) ∼ ε−1 of the surface flat band, superconductiv-
ity emerges on the surface earlier than in the bulk material. The critical
temperature Tc of the surface superconductivity depends linearly on
the coupling g, which should be contrasted with the exponential sup-
pression of transition temperature in the bulk superconductors

of fermionic condensed matter systems and exotic gapless
fermions, including Weyl fermions, Majorana fermions (see
recent review [24]), Fermi arc, and flat band. It is also ap-
plicable for investigations of the topologically nontrivial
vacua in relativistic quantum field theories, including quan-
tum chromodynamics; see [25, 26] and references therein.
The highly degenerate topologically protected state—the flat
band—is a generic phenomenon. The classes of topological
matter, which experience the flat band, are waiting for its ex-
ploration. To reach the room-temperature superconductivity,
we must search for or artificially create the systems which
experience the nontopological flat band in bulk or topologi-
cally protected flat bands on the surface or at the interfaces.
In the latter case, the proper arrangement of many twins or
grain boundaries is needed to obtain the bulk superconduc-
tivity with high temperature. Existence of localized super-
conducting domains at elevated temperatures has been sug-
gested in [27, 28].
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