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Abstract The ratio JCrit[T (x, y, t)]/JCrit[T (x, y, t0)] of
critical current densities (t0 indicating start of a disturbance)
integrated over sample cross section serves to calculate the
“stability function”, Φ(t), to predict under which conditions
zero-loss transport current is possible. Critical current den-
sity and stability function are correlated with (conventional)
timescale, t , in the superconductor (the “phonon aspect”).
However, the stability problem is not simply restricted to
coupled conduction/radiation heat transfer. It is questionable
whether decay of electron pairs and subsequent recombina-
tion of excited electron states to a new dynamic equilibrium
(the “electron aspect” under a disturbance) proceeds on the
same timescale. A sequential model has been defined to cal-
culate lifetimes of the excited electron states. These are esti-
mated from analogy to the nucleon–nucleon, pion-mediated
Yukawa interaction, from an aspect of the Racah-problem
(expansion of an antisymmetric N -particle wave function
from a N − 1 parent state) and from the uncertainty prin-
ciple, all in dependence of the local (transient) temperature
field; with these approximations, the sequential model ac-
counts for the retarded electron–phonon interaction. The nu-
merical analysis is applied to NbTi and YBaCuO filaments
in a standard matrix. As a result, the difference between both
timescales can be significant, in particular near the phase
transition: in the NbTi filament, a minimum distance of at
least 60 µm (in this example) from the location of a distur-
bance should be observed for reliable stability analysis. This
difference could have consequences also for safe operation
of a resistive fault current limiter.
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1 Survey to the Stability Problem

A superconductor is stable if it does not quench under a
disturbance, i.e., performs an undesirable phase transition
from superconducting to normal conducting state. Distur-
bances comprise conductor movement, absorption of radi-
ation, fault currents, or cooling failure. Disturbances fre-
quently are transient, but there are also permanent distur-
bances like hysteretic losses. Stability models predict under
which geometrical, thermal, and magnetic field conditions a
transport current, during thermalization of the disturbance,
will propagate without losses through the conductor. Tra-
ditionally, stability models rely on solely conduction heat
transfer using analytical expressions; for a survey, see, e.g.,
Wilson [1] or Dresner [2]. Numerical investigations of the
stability problem were presented, e.g., by Flik and Tien [3]
and Reiss [4]. The impact of also radiation has been included
only very recently [5].

Quenching proceeds on timescales, t , in the order of mil-
liseconds or less. In standard stability analysis, decrease
dJCrit[T (x, y, t > t0)]/dt of critical current density (t0 the
time indicating start of the disturbance) during the corre-
sponding warm-up period is considered to closely follow
increase dT (x, y, t)/dt of local temperature in the super-
conductor. Local temperature T (x, y, t), usually measured
with sensors thermally (mechanical or radiative) connected
to the solid thus reflects the “phonon aspect” of the transient
stability problem. In reality, superconductor stability is not
confined to analysis of transient conduction/radiation heat
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transfer. Instead, the question is whether decay of electron
pairs, the “electron aspect” under a disturbance and sub-
sequent recombination of excited electron states to a new
dynamic equilibrium carrier concentration, proceeds on an-
other timescale t ′ and whether this timescale is identical
with the traditional (phononic) timescale, t .

Further, normal/superconductor phase transition dur-
ing warm-up or cool-down periods traditionally is consid-
ered to occur at exactly the instant when solid temper-
ature, T (x, y, t), the output of the phonon aspect, coin-
cides with critical temperature, TCrit. Critical current den-
sity, JCrit(x, y, t), under the assumption t = t ′ then should
become zero (or during cool-down return from zero to
JCrit(x, y, t) > 0), exactly at this instant t . But it is not clear
that during cool-down from normal conducting state, when
at the time t , the temperature T (x, y, t) becomes less than
TCrit, the previously normal conducting electron system of
the superconductor has already completed return to a dy-
namic equilibrium mixture of normal conducting and super-
conducting components, in a two-fluid model.

Instead, at very low temperature, the superconducting
electron system is decoupled from propagation of thermal
waves. It reflects its own dynamic response to this or other
specific excitations, by corresponding relaxation times, τEl

(in the following, we will call this time also a time constant,
or a decay or average lifetime). Thermal diffusivity, on the
other hand, determines a relaxation time, τPh, for propaga-
tion of thermal (phonon) waves in solids after a thermal dis-
turbance. Both relaxation times, τEl and τPh, after the same
disturbance, are not necessarily identical; the lattice, if ex-
cited, behaves quite differently from the electron system.

A similar situation (two or more different relaxation
times) arises in multifilamentary superconductors, again af-
ter a thermal disturbance: time constant, τB , for propaga-
tion of magnetic flux density, B , in the superconducting fil-
aments is relatively small while thermal relaxation time, τPh,
is much larger, by orders of magnitude. The inverse of this
relationship in the matrix material is of enormous impor-
tance for obtaining stability against quench in multifilament
superconductors, in particular for high field applications.

In the present paper, lifetimes of thermally excited elec-
tron states are numerically calculated from their decay rates
using a sequential model with contributions (a) from an
analogy to an aspect of the nucleon–nucleon, pion-mediated
Yukawa interaction, (b) from the Racah-problem (expan-
sion of an antisymmetric N -particle wave function from an
N − 1 parent state; this aspect is to be observed in sum-
mations of individual decay widths to total lifetime, τEl, of
the excited electron system), and (c) from the uncertainty
principle. The sequential model is designed to account for
the retarded electron–electron interaction since the phonon
mediating this interaction travels at finite speed. The model
serves to estimate the time τEl needed to reorganize the elec-
tron states to a new dynamic equilibrium that is described

by an antisymmetric total wave function. Calculations are
performed in dependence of transient temperature fields,
T (x, y, t), that are obtained from a rigorous finite element
analysis. The analysis is applied to NbTi and YBaCuO fila-
ments embedded in standard matrix materials.

The paper is organized as follows: in Sect. 2, a provi-
sional comparison is made between thermal relaxation time,
τPh, and its electronic counterpart, τEl; this is made to moti-
vate investigation of the existence of, and relation between,
the two timescales. Section 3 analyzes decay of excited elec-
tron states resulting from a thermal disturbance. Section 4
introduces details of the numerical calculations to extract
lifetime, τEl, of the excited electron system to define the
timescale (roughly, t ′ = t +τEl). Section 5 reports results for
critical current density and stability function, and Sect. 6, in
an example, shortly describes consequences of these results
for operation and reliability of a resistive fault current lim-
iter. Part of the description of the sequential decay model
in Sects. 2 and 3 and in the Appendix A has been reported
in [6], recently published by the author.

2 Provisional Estimates of τPh and τEl

At constant temperature, breaking of electron pairs and re-
combination can be described as a statistical process that es-
tablishes a dynamic equilibrium of the density of pairs and
their decay products. Pair breaking and recombination pro-
ceed above a “Fermi sea” of single electrons that is unstable
to even the weakest attractive electron–electron interactions
between all electrons.

Because of the weak binding energy (some meV, cor-
related with an energy gap, 2�E, in the single-electron
energy spectrum), electron pairs, besides statistical decay
and recombination at constant temperature, are subject to
also thermal excitations at any nonzero temperature. When
kT � 2�E (k the Boltzmann constant), only few excita-
tions will occur, and the electronic state is highly degenerate,
otherwise the number of excitations may become large. Ac-
cordingly, after a sudden temperature increase, pair breaking
will be observed before a new dynamic equilibrium is estab-
lished at the increased temperature, and the new equilibrium
is obtained after the relaxation time, τEl, of the disturbed
electron system, from recombination of the decay products
to electron pairs.

As will be shown in this paper, mismatch between τPh

and τEl occurs in particular near the phase transition. If this
mismatch occurs, it will have significant impacts not only
on critical current density and stability. Also onset or decay
of persistent currents and results of experiments like levita-
tion, or measurement of observables like electronic part of
specific heat, or of thermal conductivity, can be affected.

We will in the following very generally speak of elemen-
tary excitations of the electron states if the superconductor
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is below critical temperature (but not in the ground state), of
electrons if single particle aspects in the superconductor are
in the foreground (or if decay products from electron pairs
are in normal conducting state), and of quasi-particles when
collective electron aspects are considered.

Also (Bogoliubov) quasi-particles are elementary excita-
tions in a superconductor. Properties of quasi-particles are
similar to those of solid electrons if they reside near the
Fermi level, which means that they can be assigned mass
and momentum. They consist of a moving electron together
with a surrounding exchange correlation hole, which means,
in a pictorial description, that when an electron fights its way
through a solid, other electrons must move out from its way,
because of the Pauli exclusion principle, and to minimize
the repulsive Coulomb energy. If the interaction between
electrons is weak, all interactions that a single electron in
a solid experiences can be renormalized into a self-energy
state that defines the effective mass of a new particle, the
quasi-particle. The original many-body problem among in-
teracting particles that cannot be solved is, by renormaliza-
tion, reduced to a one-body problem of free particles. For de-
tails, consult standard volumes on superconductivity; a pic-
ture describing quasi-particles in a superconductor that has
become quite popular is presented by Mattuck [7], Chap. 1.

The special case of quasi-particles has to be taken into
account when comparing the lifetimes of thermally initi-
ated disturbances (as in the present paper) and disturbances
initiated in current injection experiments. Though in both
cases (thermal disturbances, current injection) decay of exci-
tations proceeds by completely different mechanisms, com-
parison between both kinds of disturbances and their life-
time is illustrative: in current injection experiments, the
decay of electron excitations is studied after an artificial
increase of the number of quasi-particles. Instead, in the
present case, we have an increase of the number of excita-
tions if sample temperature, T , increases (while T < TCrit),
with the total number of particles conserved. In current in-
jection experiments reported, e.g., by Gray [8] or Epperlein
et al. [9] in low temperature superconductors (LTSC; Al,
Sn), thin films are used, with the injected electrical charge
being collected in very thin surface layers, and data are taken
at temperature far below TCrit. Instead, here we investigate
solid samples (filaments of NbTi and of YBaCuO) at tem-
peratures close to TCrit. Yet a provisional estimate of τPh and
τEl can be made, even under these quite different experimen-
tal conditions.

Because Gray [8] or Epperlein et al. [9] applied thin
films, for this provisional estimated, we also consider a thin
film of d = 100 nm thickness onto the surface of which a
very short thermal pulse (a “Dirac pulse” from a laser) is de-
livered (later, the analysis is focussed on filaments). Though
the sample thickness in current injection experiments is def-
initely smaller than 100 nm, it is doubtful whether the fol-
lowing series expansion of rear sample surface temperature,

T (t), based on solely thermal conduction transport, would
still be valid. For example, Al coatings evaporated onto thin
6 µm Mylar foils, with coating thickness below 50 nm, be-
come transparent to radiation, and it is also questionable
whether laser pulses short enough not to interfere with the
thermal wave can be generated.

Assuming the thermal diffusivity, Dth, of the film is con-
stant (independent of temperature), a series expansion of
T (t), see Carslaw and Jaeger [10], Chap. III, reads

T (t) =
∑

bn sin
[
(nπx)/d

]
exp

(−Dthn
2π2t/d2) (1)

with expansion coefficients bn and the summation in Eq. (1)
over the index n taken from n = 1 to n → ∞. If retaining
only the n = 1 term and using for the diffusivity Dth of the
film a value in the order of 5 m2/s, typical for very pure
(99.999 %) Al or Sn in their superconducting state, the ther-
mal relaxation time, τPh = d2/(Dthπ

2), would be several or-
ders below 1 ns, and if film thickness is below 0.1 µm, as is
the case in injection experiments, thermal relaxation would
be completed even after much shorter periods of time. This
value of τPh is definitely smaller than τEl, the lifetime of dis-
turbed electron states, in the order of tens of microseconds,
as is well known: such lifetimes have been observed in a va-
riety of current injection experiments using Al or Sn films
of about the same thickness or other materials like W or Ta
under optical pulses.

Measurement of the quasi-particle recombination time
(lifetime of the disturbed electron system) in superconduct-
ing Sn after injection of a current pulse was performed in [9]
with current iP = 10.1 mA and with the pulse duration
tp = 1 µs. There were about 6.3 × 1010 unit charges in-
jected into a (total) volume of at least 3 × 10−14 m3, which
means an average of the injected particle density of about
2.1 × 1024 1/m3 (compare Fig. 3 in [9]).

Analogously, provisional estimate can be made for high-
temperature superconductors (HTSC) like YBaCuO. Dur-
ing a thermal disturbance, the probability for exciting the
electron system is proportional to exp[−�E(T )/kT ], un-
der dynamic equilibrium conditions. Assume that a thin film
HTSC sample of the same thickness as before (0.1 µm) is
heated locally from 90.5 to 91.999 K (just below phase tran-
sition, TCrit = 92 K). With the electron density at tempera-
tures close to absolute zero of about 6 × 1027 1/m3 of which
a fraction of about ( 1

2 ) (1/10) is available for pair formation,
with the same (total) volume in which current was injected
in [9], and using a standard (BSC) temperature dependence
of �E(T ) (see Eq. (24) in the Appendix A), this yields the
number of thermally excited electron states (over the statis-
tically generated number) of about 4.7 × 1026 1/m3. This
number is by a factor M of about two orders of magnitude
larger than in the current injection experiment (and still has
to be considered as a lower limit).
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A naïve order-of-magnitude estimate of the relaxation
time τEl in YBaCuO then can be made by assuming
τEl,therm excit ≈ MτEl,Current inject, with M the above constant
and with τEl,Current inject again in the order of 0.1 to 1 µs.
This would result in a τEl of at least 10 to 100 µs after a ther-
mal disturbance in the HTSC, provided that the temperature
is not too close to TCrit. The result is much larger than the
corresponding τPh, here about 0.3 ns at T = 90 K using for
YBaCuO the value of the diffusivity Dth = 3.4 × 10−6 m2/s
in Eq. (1), if again a Dirac pulse is applied to the film sur-
face.

Diffusion length of quasi-particles is comparable to dif-
fusion length of electrons, in low-temperature superconduc-
tors (LTSC) in the order of 10 to 100 µm at cryogenic tem-
perature (e.g., 12 µm in Al at 14 K, see Table 44.1 in [11]).
Diffusion length in HTSC is smaller, and thus we can safely
assume that it can be neglected against sample dimensions
in the experiments to be described in the following sections.

From the results of this provisional estimate of the two re-
laxation times it is quite interesting to investigate this prob-
lem in appropriate details. This is the aim of this paper.

3 Decay of Excited Electronic States

The superconducting state consists of two components that
under (a) dynamic equilibrium or (b) nonequilibrium condi-
tions, respectively, can be specified as follows:

(a) After a purely statistical fluctuation, under strictly ther-
mal equilibrium: a super-fluid of electron pairs and
a fluid of excited electron states, electrons or quasi-
particles that exhibit some coherence behavior, both ex-
isting solely under statistical decay and recombination.

(b) After a temperature increase (under a thermal distur-
bance) and before a new thermal equilibrium is estab-
lished: again a super-fluid of electron pairs and a fluid of
excitations that now results solely from the temperature
variation.

In both cases (a) and (b), the total number of solid particles is
conserved. The situation is different from ordinary evapora-
tion/condensation of conventional fluids, for example, a liq-
uid with well-defined evaporation temperature and satura-
tion vapor pressure: in superconductors, under a temperature
variation well below critical temperature, contrary to evap-
oration/condensation in classical liquids, neither is there a
measurable idle “background” (e.g., idle spectators consist-
ing of excited electron states populated from decaying pairs
and depopulated by recombination, both initiated sponta-
neously), nor will it be possible to simultaneously measure
a dynamic “foreground”, with a net decay rate of pairs af-
ter the end of a temperature increase, or a net condensation
rate. Following a thermal disturbance, dynamic equilibrium

state (a) exists only when the nonequilibrium state (b) has
decayed completely until the next disturbance, and before
this is accomplished, there is only one state, namely the pre-
dominant, nonequilibrium state (b) that can be observed in
experiments and should be treated in the following analysis.

Generally, summation over the inverse of average life-
times, τi , of the ith excited electron state, at a given constant
temperature (T > 0), with the summation index, i, taken
over all 1 ≤ i ≤ NExc (with NExc the number of thermal
electron excitations), describes the decay rate (negative of
the corresponding generation rate, GExc) at time t per unit
volume:

GExc
[
T (t)

] = (1/V )
∑{

1/τi,Exc
[
T (t)

]}; (2a)

dimension of GExc[T (t)] accordingly is [1/(m3 s)].
Dynamic equilibrium between electron pairs and their

excitations exists and is described by Eq. (2a) if after hav-
ing obtained equilibrium, recombination of excited electron
states to electron pairs on the statistical average compensates
decay, and vice versa. Equation (2a) essentially is identical
to Eq. (3) in [8]; only a dependence on time of tempera-
ture, T (t), has been added. At constant temperature, the rate
GExc[T (t)] on the time average is constant.

Equation (2a) can be written also in terms of decay
widths, Γ ,

GExc
[
T (t)

] = (1/V )
∑{

Γi,Exc
[
T (t)

]}
/(h/2π) (2b)

of statistically or of thermally excited states, with the usual
definition Γi = (h/2π)/τi and the summation index 1 ≤ i ≤
NExc of the excited electron states (h denotes the Planck
constant). Advantages resulting from use of decay widths
will later become obvious.

3.1 Thermal Disturbance of an Equilibrium and
Subsequent Decay of Nonequilibrium States

Thermal equilibrium is displaced if, at a time t0, temperature
is suddenly increased to T1 = T + �T , still with T1 < TCrit.
Assume that the temperature increase is initiated by local
absorption of a short heat pulse. More electron pairs will de-
cay (more than observed under dynamic equilibrium), and
the positive generation rate, GExc[T (t)], of excited electron
states accordingly increases. After the end of the pulse, at
time t1, now the disturbed system decays, with negative gen-
eration rate GEl[T (t)] = −GExc[T (t)], and after a time t2
returns to a new dynamic equilibrium, where we observe, at
the new temperature, T (t2), new constant (on time average)
but dynamic decay and generation rates of electron pairs.

If under dynamic equilibrium a total wave function,
ψ(t0), or a set of individual wave functions, φi(t0), of which
ψ(t0) is appropriately composed, describes the supercon-
ducting quantum state at the original time t0, a thermal dis-
turbance requires the whole set of the φi(t0), not only part of
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them, to be rearranged to a new total wave function, ψ(t1),
at the end of the disturbance. As is the subject of this paper,
ψ(t1) subsequently has to be rearranged to ψ(t2) because of
decay of the excited state ψ(t1). The difference, t2 − t1, then
is the lifetime, τEl, of the disturbed electron states.

For rearrangement to the new total wave function, i.e., the
procedure running from ψ(t1) to obtain ψ(t2), emphasis is
on the whole set of the φi(t), not only part of them, that has
to be taken into account. The situation is an analogue to cal-
culation of “coefficients of fractional parentage” in atomic
and nuclear physics (Mayer–Kuckuk [12], pp. 210–211, and
references cited therein): if the antisymmetric, total wave
function of a nuclear state incorporating N of nucleons shall
be formulated, it can formally be expressed by appropriate
coupling of an antisymmetric wave function of (N − 1) nu-
cleons with a one-particle wave function. This yields the
product

ψ
(
(N − 1), I,α

) × φi(j) (3)

with I and j indicating angular momenta and the symbol α

summarizing other quantum states to identify the (N − 1)-
and 1-particle configurations, respectively. But this wave
function still has to be antisymmetrized. For this purpose,
the wave function of the N -particle state will be expanded
as a product of antisymmetric wave functions of (N − 1)-
particle states. In this expansion, addition of the one-particle
state then requires rearrangement of all previous N − 1
states to correctly obtain the new wave function, ψ(t2),
that has to fulfill the Pauli exclusion principle; the corre-
sponding expansion coefficients are the well-known Racah-
coefficients. We are not interested in the exact formulation
of the wave functions ψ(t1) and ψ(t2), but have to take into
account all contributions to decay time, τEl, that quite anal-
ogously to the Racah-problem result from reordering of the
whole set of all particles involved in the antisymmetrizing
procedure, from ψ(t1) to ψ(t2). After end of the distur-
bance, this concerns the constituents of still existing electron
pairs plus the excited electrons.

In an ensemble consisting of an arbitrary number N of
any kind of particles (not only excited electron states) that
have to be reordered, after a disturbance from their corre-
sponding equilibrium state, rearrangement of the total wave
function then cannot proceed instantaneously (this is well
known and will become also obvious for the superconductor
in the following), but requires a time interval, the total life-
time τ = (t2 − t1) > 0, of the disturbed system, before it has
completed its return to dynamic equilibrium. Regardless in
which manner reordering proceeds, the rearrangement rate,
on the average, will be proportional to the ratio N/τEl. In
this paper, we will consider rearrangement (decay) of the
excited states under two different points of view: decay pro-
ceeds in time and in space.

Assume that a local disturbance (a temperature increase)
occurs at a particular position x′ in the superconductor solid
and at a time, t0 (bold symbols denote vector quantities).
At t1 > t0, we accordingly have at this position an increased
concentration, c(x, t), of excited electron states over the pre-
vious equilibrium value.

The picture “decay in space and in time” then simply fol-
lows from the variation of the concentration c(x, t)

dc(x, t)/dt = (
∂c(x, t)/∂x

)
(∂x/∂t) + ∂c/∂t, (4)

which identifies the contributions “decay in space” =
(∂c(x, t)/∂x)(∂x/∂t) and “decay in time” = ∂c(x, t)/∂t .

Because of propagation of the thermal wave,

(1) Decay in space means that the increased concentration,
c(x′, t1 > t0), from any arbitrary position x′ of excited
states is distributed by a transport process to positions
x �= x′; a particular simple transport mechanism is dif-
fusion.

Application of the usual diffusion approach requires
a definition of a corresponding mean free path of a step-
wise (in space) propagating process that must be small
compared to the sample dimensions. The final (stagna-
tion) result will be c(x, t∞) > c(x′, t0) for all positions
x (including x′) after a sufficiently long period of time,
t∞.

Rearrangement of the total wave function of the su-
perconducting state cannot be completed before the dis-
turbance (surplus number of excited state) has decayed
completely to the concentration c(x, t2 > t1). Other-
wise, rearrangement would lead to local surplus con-
centrations that again would have to be depopulated by
subsequent diffusion steps.

(2) Decay in time means that the disturbed total wave func-
tion, ψ(x, t > t0), that describes all electron states re-
turns to equilibrium shape by recombination processes,
with the stagnation result ψ(x, t2). Thus decay in time
means rearrangement of the total wave function by an
operation that models recombination and transforms the
total wave function from ψ(x, t > t0) to its stagnation
value, ψ(x, t2), identical for all x.

Contributions from both items (1) and (2) have to be
summed up to lifetime, τ = τEl, of the disturbed system.

In the present paper, we will concentrate on only the sec-
ond item, decay in time (see next sections), because this con-
tribution is much larger than the contribution from item (1),
decay in space, and it is thus already sufficient to demon-
strate the magnitude of the difference, if any, between the
two timescales, t and t ′. Calculation steps for item (1) will
be described in the Appendix A.

A general method to calculate lifetimes is provided by
elements of perturbation theory, with operators describing
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recombination of single particles to pairs, but (a) this proce-
dure would require a large number of repeated applications,
and (b) perturbation theory breaks down near phase tran-
sitions. Mattuck [7], Chap. 15, explains why the only way
of handling retardation is to treat the mediating phonons
field-theoretically, from the very beginning of an analysis.
An alternative perhaps is time-dependent Ginzburg–Landau
theory of the order parameter. In both cases, the computa-
tional effort is enormous due to the very complicated struc-
ture of the wave functions, each comprising components of
a very large number of particles involved. Instead, we will
use in Sect. 4 for item (2) an aspect of the Yukawa model
of nucleon–nucleon interaction: a “time-of-flight” concept
with a mediating Boson, considered as an analogue that can
be used (with some caution, compare Sect. 3.2.3) to describe
binding of two electrons to a pair in a superconductor.

While statistical fluctuations like those around the ini-
tial dynamic equilibrium concentrations are superimposed
on the proper decay process (initiated by the thermal dis-
turbance), they cannot substantially alter decay of disturbed
states. This is explained by the mere existence of persistent
currents of constant magnitude in superconductors: if there
were very strong fluctuations, they would not be “statisti-
cal”, which means that there would be no constant persistent
currents at all.

For item (2), decay in time, and by practical reasons,
the recombination of excited electron states to electron
pairs is divided into two contributions (2a and 2b, com-
pare Sects. 3.2.1 and 3.2.4) when calculating intrinsic decay
widths Γ and lifetimes τ :

(2a) Contributions Γij for two arbitrary particles i and j

that determine an “intrinsic lifetime” of the nonequilib-
rium state. This contribution results from “correlation”
efforts, a first step to be taken for recombination of par-
ticles i and j of a very large number, N . It requires
a finite (though tiny) time interval needed before the
proper condensation or recombination event to a pair
can take place. “Correlation” in the sense used here
strictly speaking means exchange of “information” be-
tween two quantum states; in reality it is the exchange
of phonons that mediate binding interaction between
single particles and that have to travel a nonzero dis-
tance between the particles concerned.

The basic question is whether in principle an imme-
diate response of the electron system to a thermal dis-
turbance or during recombination, or an immediate in-
teraction between two particles, could be possible and
the decay time, τ , simply be zero. With finite distances
between particles to be correlated, this is certainly not
fulfilled (exchange of phonons proceeds with rather
limited speed), apart from conclusions from the uncer-
tainty principle (the electron–electron interaction, ac-
cordingly, is retarded).

(2b) Contributions ΓRec = (h/2π)/τ resulting from the un-
certainty principle, for the proper condensation (or re-
combination) event, once the particles i and j are cor-
related (identified) in step (2a) that generates one pair
from recombination of two, then correlated, particles i

and j .
For recombination to one electron pair, each of the

individual decay widths, Γij , and ΓRec, of the excited
electron state contributes by about 10−12 and 10−14 s,
respectively, to individual lifetimes τij , for an energy
gap of some tens of meV. While these are very small
contributions to total τ , there is a very large number of
individual Γij , and ΓRec, and correspondingly τij , that
have to be taken into account so that the total lifetime,
τ , of the total disturbed state (the time needed to re-
arrange the total wave function) may become large, in
particular near the phase transition; this will be shown
later.

Because of the Pauli exclusion principle (and again in view
of the Racah-problem), calculation of total lifetime, τ , from
the two contributions (2a) and (2b) has to proceed in a step-
wise manner; we will later call this procedure a “sequential
model” (Sect. 3.3).

3.2 Decay in Time

The two contributions (2a) and (2b) to item (2) will now be
estimated to find the individual lifetimes, τij . We start with
the contribution (2a) applied to arbitrary particles i and j

(excited electrons, as decay products from any previously
existing electron pair).

3.2.1 Estimate of the Contribution Γij (Step 2a to Item 2)

For this approach, averages of the lifetime must be taken
over a (virtual) volume VC at all positions x. It is clear that
determination of the size of VC may become one of the crit-
ical points of the analysis: on the one hand, we have to con-
fine calculation of the average to small volumes, otherwise
the number of particles concerned would be too large to be
reasonably handled with numerical methods; on the other
hand, an arbitrary dependence of the final results on size of
VC must be avoided. In the following, we will first estimate
VC .

3.2.2 Estimate of the Virtual Volume VC

Two arbitrary electrons cannot have exactly the same wave
function, because of the Pauli exclusion principle. If elec-
trons could be considered as purely classical particles (point
masses), with no interactions among each other, they all
would statistically be independent, and the probability of
finding an electron at a position xj near an electron at a given



J Supercond Nov Magn (2013) 26:593–617 599

position xi would be the same as for finding an electron at
any position xj . This is not the case in a superconductor or,
generally, if the Pauli exclusion principle is to be followed.

In the ground state (gs), the total wave function, with par-
ticles i and j counted by numbering 1,2,3, . . . ,N , reads
(compare standard volumes on superconductivity, e.g., An-
nett [13], Chap. 13, for an introduction)

Ψgs = C
∑

(−1)P P
[
φ(1,2)φ(3,4)φ(5,6)

· · ·φ(N − 1)φ(N)
]

(5a)

with the summation extended over all N ! permutations,
P , of the total number, N , of particles and zero center of
mass motion. All pair wave functions, φ(i, j), must be anti-
symmetric with respect to exchange of particles i and j .

As usual, each of the φ(i, j) is written as a product of
a symmetric space dependent part, φS(i, j), and of an anti-
symmetric, spin dependent part, χA(i, j). To determine the
distance, d = ri − rj , between two arbitrary electrons i and
j , we in principle need expectation values of the space part,
φS(i, j), that describes the charge distribution of particles i

and j . In a particularly simple picture, the φS(i, j) are ex-
panded in terms of Bloch waves each of which is a free-
electron plane wave,

φS(i, j) =
∑

ak exp
[
ik(xi − xj )

]
, (5b)

for description of s-wave states. This can be generalized to
functions f (|xi − xj |)Ylm(θ, η), with inclusion of direction
of the vector (xi −xj ), but we need in the following only the
distances, |(xi − xj )|.

For a description of excited states, instead of a transform-
ing Ψgs (Eq. (5a)) to a total wave function, ΨExc = Ψ (t1),
the BCS model starts with creation and destruction opera-
tors acting on the vacuum and in the following on the ground
state. If just one electron pair is broken into two electrons,
they have momentum vectors k′ and k′′. With uncorrelated
electrons, there is no electron with exactly k′′ = −k′. Indi-
cation of spin-up or spin-down is omitted for simplicity. In
the BCS-model (compare, e.g., Blatt [14], pp. 174–180, or
again [13], Chap. 6), the total wave functions of ground and
excited states, in terms of creation and destruction operators,
read

Ψgs = Ψ (t0) =
[∏(

uk + vkb
+
k

)]|0〉, (6a)

Ψexc =
[∏(

uk + vkb
+
k

)]
a+
k′,+a+

k′′,−|0〉, (6b)

with probability amplitudes uk and vk to find the corre-
sponding k-correlated pairs: for each broken electron pair,
the k-pairs in the BCS-picture consist of two quasi-particles,
one state unoccupied and the other occupied, respectively
(the missing electron with momentum k′′ = −k′ is repre-
sented by the “unoccupied” state). Creation and destruction

operators are denoted by ak and bk , one for each index, k,
and the index runs over all k �= k′, k′′. The vacuum state is
denoted by |0〉.

The operators a+
k′,+, a+

k′′,− in Eqs. (6a), (6b) do not al-
ter the functional dependence of the φS(i, j) on particle–
particle distance (this does not imply that the distances are
the same as before the excitation). While wave functions
for central potentials are tabulated, centers of mass posi-
tions, ri, rj , cannot be calculated using the corresponding
|φS(i, j)|2: because of symmetry of the φS(i, j), the results
would be identical. Wave functions for other than central
potentials are difficult to handle. An alternative is to directly
estimate distances, without explicit recourse to wave func-
tions, and this is made in the following.

To determine VC , assuming a spherical volume, we need
its radius, rC . A first, direct but very rough estimate for the
ground state can be performed using the interparticle dis-
tances, d = (V/N)1/3, with N the number of particles filling
a sample volume, V . With the inverse of the electron density
in high-temperature superconductors (ρEl = 6×1027 1/m3),
this yields a mean distance, dm, between any two (among
all) electrons of about 0.55 nm, or when taking only that part
of the electrons that condense to electron pairs, a fraction of
(1/10) of the total number, the mean distance increases to
about 1.2 nm. This is about the coherence length of an elec-
tron pair in the ab-plane of high temperature superconduc-
tors.

A similar result is obtained from consideration of the
Coulomb interaction within a (spherical) cloud of volume,
VC , of a large number of electrons. The radius, rC , of VC

shall be given by the condition that the Coulomb potential
energy between two arbitrarily selected electrons i and j ,
EC , is minimized and below the binding energy, 2�E, of a
single electron pair. The Coulomb energy amounts to

EC(rC) = χeiej /(4πε0rC) ≤ 2�E(T ) (7)

with ei and ej denoting electron charge and ε0 the dielectric
constant.

In metals, the effective Coulomb force is modified by
screening. In the solid, the electrostatic (repulsive) Coulomb
potential consists of (a) the repulsive interaction (interpreted
as a mean field) and (b) the (attractive) positive ion charges
in the solid. The two contributions are superimposed. In the
simplest form, this can provisionally be simulated using a
screening factor, χ , in Eq. (7) that essentially modifies the
dielectric constant. Comparison with the Thomas–Fermi po-
tential, as the classical example of a screened Coulomb po-
tential, will be made below.

Pairing of electrons in conventional superconductors is
by formation of highly symmetric, singlet s-waves of charge
distribution (S = s1 + s2 = 0, from s1 = 1/2, s2 = −1/2,
and L = l1 + l2 = 0, from l1 = 0 and l2 = 0), and the energy
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gap is finite and isotropic around the Fermi surface, in the
ground state.

Pairing of electrons in unconventional superconductors
like YBaCuO, with S = 0 and L = 2, is identified by spins
and angular momenta s1 = 1/2, s2 = −1/2, l1 = 1, and
l2 = 1. The corresponding charge distributions can approach
each other more closely than in the highly symmetric case
s1 = 1/2, s2 = −1/2, l1 = 0, and l2 = 0 states. Also, the en-
ergy gap is nonuniform, with zeros in particular directions.

Accordingly, if we estimate rC using Eq. (7), singlet s-
waves of charge distribution cannot approach distances be-
low rC , which in turn means that the virtual sphere, VC , of
radius, rC , roughly contains only S = 0 and L = 2 elec-
tron pairs (states with larger but even angular momentum,
L = 4,6, . . . , are not very probable because they would in-
dicate too large a rotational energy). Accordingly, in this
very rough approximation, almost all electrons, NEl(t0) =
( 1

2 )(ρElVC)/10, contained within the volume VC do not be-
long to S = 0, L = 0 but to S = 0, L = 2 spin and an-
gular momentum states. Crystal imperfections and impu-
rities could lead to false, s-wave-like charge distributions
(see [15]); this will be neglected by simply assuming per-
fect crystalline order and very clean materials in this study.

Positions xi, xj of particles i and j , in one dimension, at
time t ≥ t1 are predicted in the following using random vari-
ables RNDi and RNDj , with 0 ≤ RNDi,j ≤ 1 applied to the
rC , which yields the random distance d(t) = xi(t) − xj (t)

of particles before condensation to electron pairs. Selection
of a lower limit of d(t) does not have significant influence
on the final results (in the calculations for the HTSC case,
the coherence length of YBaCuO in c-axis direction was as-
sumed for this limit).

As an alternative, results can be obtained also using the
Thomas–Fermi potential,

ETF = EC(rC) exp(−r/rTF), (8)

with EC(rC) from Eq. (7), without the factor χ , and rTF the
scattering length. Literature values of rTF are in the order
of 0.5 nm.

As Blatt ([14], p. 212) explains, screening of the Coulomb
field in the superconducting state of the sample does not dif-
fer much from screening in the normal state; accordingly,
we will continue with the familiar, normal state expression,
Eq. (7), or with Eq. (8).

3.2.3 Analogue to Nucleon–Nucleon Exchange
Interactions

The second information needed to calculate total lifetime τ

of the excited electron system concerns the Boson that me-
diates binding of two electrons to a pair, as the final state
(all of which constitute the new dynamic equilibrium). As

Fig. 1 Yukawa interaction between two nucleons (n) mediated by ex-
change of a pion (π , dashed line), as a particle system to which refer-
ence will be made in the text. The arrow on the right side denotes the
direction of time, t

an initial approach, we consider a nucleon–nucleon interac-
tion model (with some caution) as an analogue to binding
between two electrons in an electron pair.

Nuclear forces (compare standard volumes on nuclear
physics, e.g., again [12]) are short-range saturation forces.
In the Yukawa model (Fig. 1), the pion (π ), a Boson with
spin zero, needs a time interval (in a rough picture a “time
of flight”) of about �tπ = 4.7 × 10−24 s, much smaller than
lifetime of charged pions (about 10−8 s), to mediate the
binding energy between two nucleons. This time interval is
estimated from the uncertainty principle using �E = mπc2,
with mπ the rest mass of the pion and c the velocity of light.
It is not clear that its mass necessarily would be the rest mass
of a free solid particle, but the range of the pion-mediated
nuclear binding force (the “uncertainty of the nucleon ra-
dius”), d = �tπc, is about 1.4 × 10−15 m, a value surpris-
ingly close to the radius of the nucleon.

In the deuteron, the only stable bound, two-particle nu-
cleon system, we have a central binding force (plus a small
electrical quadrupole moment) and a comparatively small
binding energy so that the inter-particle distance between
proton and neutron even exceeds the range of the nucleon–
nucleon interaction force. This is in analogy to binding in the
BCS-model: it is sufficient that there is a (negative) binding
energy that even may be arbitrarily small.

There are of course differences between the three cases
considered (nucleon–nucleon interaction, deuteron and elec-
tron pair): (a) in the deuteron, proton and neutron couple to
a spin triplet (3S1)-state (parallel spins), and it is a free par-
ticle; (b) while the exchange Boson in the nucleon–nucleon
interaction interacts between two solid particles, it does so
only in the interior of a nucleus (we do not consider p–p or
p–n scattering reactions); (c) in electron pairs of a supercon-
ductor, the exchange is between electrons, with the lattice
vibrations that provide virtual Bosons to mediate exchange
of energy and momentum.

But the other aspects of the electron pair formation, i.e.,
a two-particle interaction, a Boson (the phonon ω) as the
(virtual) exchange particle and weakly bond, two-particle
states, get the electron pair in superconductors, though only
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from formal aspects, at least marginally similar to its nu-
cleon/nucleon analogues. An alternative comparison could
be made with the two-electron system in the 4He-atom, but
this comparison formally suffers from the central potential
that the electrons in superconductors do not experience.

Formation of both a nucleonic bound state and of an elec-
tron bound state (the electron pair) in this model then would
proceed within a time interval (the time of flight or lifetime,
�tπ or �tij , respectively) that the corresponding exchange
Boson (π or ω, respectively) needs to mediate the bind-
ing interaction (or correlate the corresponding single par-
ticles before recombination). After the time interval �tπ ,
re-arrangement of the two single wave functions of the nu-
cleons to a wave function describing a coupled state of two
nucleons is accomplished, and �tπ accordingly is the life-
time of two uncoupled nucleons considered as virtually dis-
turbed states before they “condense” to a bound two-particle
state in a nucleus. In the same way, �tij is the time interval
that is needed for recombination of two electrons to a pair
and, when considering all �tij and their appropriate summa-
tion, for rearrangement of the total wave function to describe
the new dynamic equilibrium state obtained at time t2.

The present model to estimate the contributions Γij or
�tij in a superconductor to decay in time accordingly is
based on the following analogy:

(1) In the Yukawa model, time of flight of the mediating
Pion determines the uncertainty of the size of the nu-
cleon (or the lifetime of two uncoupled nucleons before
they combine to a nucleon–nucleon pair in a nucleus);

(2) In the electron pair, time of flight of the mediating Bo-
son determines the uncertainty of the size of the electron
pair (or the lifetime of two excited states before they re-
combine to an electron pair in a superconductor). The
uncertainty of the size of the electron pair is the average
“distance” between the two particles concerned.

In both cases, dividing this distance by the velocity of the
corresponding exchange Boson, d(t)/vBoson, gives a mea-
sure for the “lifetime of the interaction” and, if appropriately
summed up over all particles concerned, the intrinsic part of
the “lifetime of the disturbance”, τ = τEl, to be identified
with the term ∂c(x, t)/∂t in Eq. (4). This intrinsic lifetime
concerns the disturbed state, not the proper existence of a
pair; lifetime of a bound, two-particle system is of course
different from this value (the deuteron is a stable particle,
and without disturbances electron pairs in superconductors
apart from statistical fluctuations on the average exist indef-
initely, otherwise there would be no persistent currents).

3.2.4 Estimate of the Contribution ΓRec (2b to Item 2)

The estimate of this contribution is made according to an
analogue to numerous examples reported in atomic, molec-
ular, and nuclear physics in which decay of excited states is

made by application of the uncertainty principle,

�t1EP = (h/2π)/�E1EP, (9)

with the binding energy (the energy gap), �E1EP. The time
interval, �t1EP, holds for decay of one electron pair (1 EP)
to two excited electrons as well as for the present purpose,
namely recombination of two excited electrons to one elec-
tron pair, or if an arbitrary large number of electron pairs
are formed instantaneously from particles contained in the
volume of the superconductor. With provisionally �E of
60 meV (at very low temperatures in HTSC), the contribu-
tion �t1EP amounts to about 10−14 s.

3.3 Sequential Model

Calculation of total lifetime, τ , requires contributions �tij
and �t1EP to be weighted by the number of allowed open
decay channels. Weighing has to take into account the Pauli
exclusion principle: only when rearranging the total wave
function after creation of a new (recombined) pair (i, j ) is
completed, following this principle, the next re-arranging
step can be allowed (this is an analogue to calculation of
the coefficients of fractional parentage, compare Sect. 3.1).
At a time t , this prevents formation of pairs φ(1,2) and
the corresponding total wave functions, ψgs, if at a previous
time this pair would already have been formed, in any of the
permutations in Eq. (5a). Formation of the total wave func-
tion, ψ(t), cannot be completed before each permutation,
P [φ(1,2)φ(3,4)φ(5,6) · · ·φ(N −1)φ(N)], contributing to
the total sum is completed.

The maximum number NCor of possible correlations (two
potential candidates suitable for building one pair) therefore
is to be determined from a total of NExc particles by

NCor = NExc(t)!/
[(

NExc(t) − 2
)!2!]. (10)

While the ratio d(t)/vPH on the average determines the time
needed for one correlation attempt, the total time for medi-
ating the exchange energy between all potential candidates i

and j to one electron pair (i, j) then is obtained by summa-
tion over all NCor open correlation steps to yield �tij (t), the
time needed to rearrange the total wave function obtained
by the recombination of particles i and j to the pair (i, j):
the excited electron system will in the rearranging procedure
not take just the very first from an arbitrary sequence of all
potential combinations! The summation breaks up when for
a particle, i, its appropriate particle partner, j �= i, has been
identified, to recombine to the pair (i, j); in the summation
taken over a very large value of NExc(t) particles, we thus
have on the average a factor of 1

2 to be considered in the
�tij (t).

Only when by this procedure the two electrons i and j

properly are identified (by the conditions si = 1/2,
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sj = −1/2, li = 1, lj = 1, and pi = −pj , namely at posi-
tions xi(t), xj (t) within VC ), the time interval �t1EP from
Eq. (9) is added to �tij (t) to yield �t rec

ij (t) = �tij (t) +
�t1EP. This time interval incorporates correlation and re-
combination (index “rec”) of two electrons to one pair, in
terms of the total wave function, after one more electron
pair has been added to the number of already existing pairs.
After formation of a number NEP of electron pairs, we have
NExc(t) = NExc(t1) − 2NEP as the number of excitations
to be used in Eq. (10) for the next selection of potential
electron pairs, now from the reduced number NExc(t). This
process is repeated until all NEl candidates (available in VC )
are coupled to pairs, which means that we have for the total
time interval, �t total, needed to accomplish rearrangement
of the total wave function, a second summation,

�t total =
∑

�t rec
ij (t), (11)

with the summation index running over 2 ≤ �k ≤ NExc(t)

in Eq. (11) using �k = 2. It is clear that this procedure to
calculate lifetime strongly differs from the balances given
in Eqs. (8) and (9) of Ref. [8] that reflect a particle related
picture to explain current injection experiments.

But computation time required to calculate the sum in
Eq. (11) is enormous: for the HTSC, at T = 90.5 K, we have
NEl(t1) and NCor in VC in the order of 104 and 108, respec-
tively, which means that summations over a number of terms
in the order of 1012 contributions would be the consequence.
To simplify the procedure in such cases, instead of calcula-
tion of d(t) from random positions xi , xj , we instead apply
mean values, dm, of the inter-particle distance, d(t).

Distances, dm, have been calculated for a value χ = 0.01
of the screening factor (for numerical values of dm obtained
with an HTSC sample, compare [6]). It was found that the
choice χ = 0.01 sufficiently reproduces the results obtained
with the Thomas–Fermi potential. When in the HTSC, tem-
perature T → TCrit (92 K), all dm diverge, due to the depen-
dence of �E on T and thus of the radius rC of the volume
VC in Eq. (7). This result is indeed the familiar one: all elec-
tron pairs finally decay into single, uncorrelated electrons as
T → TCrit. The divergence of dm at temperatures close to
TCrit (dm > 10−6 m) yet should be interpreted as a tendency
only, but it is clear that probability of decay of electron pairs
increases as soon as the distance between both particles ex-
ceeds coherence length.

Note again that in this subsection we speak of “correla-
tions”, to identify potential partners for building a pair. In
the traditional particle picture, particle–particle distances as
T → TCrit become much larger than average electron dis-
tances in any normal conducting solid. There is no longer
any interaction between two electrons separated by such dis-
tances (except for very exotic cases) that would be sufficient
to build up pairs. In a superconductor and in the correla-
tion picture used here, strongly increased dm thus destroys

correlation between two potential candidates. Accordingly,
neither pairs can be formed, to overcompensate statistical
decay/condensations events, nor do electron pairs any longer
exist at all if T → TCrit, and superconductivity breaks down.

In summary, the sequential model to determine lifetimes
accordingly is based on

(a) the uncertainty principle to estimate the time interval
needed for the proper (condensation-like) recombina-
tion or (evaporation-like) decay of a pair,

(b) the total wave function of excited states factorized into
space components, ΦS(i, j), of which solely the depen-
dence on distance between arbitrary particles i and j out
of a large multiple is considered here,

(c) a model to estimate the distance between particles i and
j before recombination,

(d) an analogy between the phonon-mediated binding force
between two electrons with the pion-mediated Yukawa
nucleon–nucleon force (together with the “time-of-
flight” concept), and

(e) the Pauli principle, which is reflected in a sequential
model for the calculation of total lifetime, τ , of dis-
turbed state.

But the situation still might be more complicated for more
than only one reason. For example, de Gennes ([16], p. 99)
reports that ion charges oscillating near the resonance fre-
quency of thermal ionic motion could “over-screen” the neg-
ative charge of either electrons 1 or 2 in Eq. (7), or the mean
field of all other electrons. As a consequence, the uncertainty
of the estimate of dm will increase, with corresponding un-
certainties in the summation indices. We have to leave open
this and other problems to another study.

Summarizing the contributions from diffusion (decay in
space, Appendix A) and sequential model (decay in time),
we have for the total lifetime near the phase transition, in a
good approximation, τ ≈ τEl = �t total, because the contri-
bution to τ from decay in space was found to be very small,
at least for the HTSC case.

3.4 Decay Rates

Total conversion rate, from NExc(t > t1) excited electrons
located in the volume VC to NExc(t)/2 electron pairs, by ap-
plication of the lifetimes, τ ≈ �t total, estimated in the previ-
ous section, read

GExc(t) = dNExc/dt = NExc(t)/τ. (12)

For temperature clearly below TCrit, the total volume of the
solid contains a very large number of single spherical cells,
VC , with the GExc in each cell being identical. This means
that the decay rates GExc calculated in Eq. (12) per unit cell
volume yield also the decay rates of the whole solid because
decay will most probably, apart from differences resulting
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Fig. 2 (a) Time constant
(relaxation time for decay, or
average lifetime), τEl, of excited
electron states needed for decay
of thermal excitations in a
superconducting NbTi filament,
calculated at constant
temperature and using a
screening factor, χ = 0.01, to
the Coulomb potential (Eq. (7)),
in a virtual conductor volume,
VC (see text for more
explanations). (b) Time
constant, τEl, for decay of
thermally excited electron states
in a virtual volume, VC , of a
superconducting YBaCuO
filament. Compare the figure
caption to (a) (Color figure
online)

(a)

(b)

from variations of the temperature field, proceed in paral-
lel in each cell. The decay rates depend on the volume VC

because �t total is calculated by means of the number of par-
ticles contained within this volume. The procedure thus re-
lies strongly on the size of the cells, VC , but the situation
relaxes if temperature during warm-up converges to TCrit.
The distances, d(t) or dm, and thus the volume, VC , increase
strongly, which means that the VC finally will fill the total
sample volume. At a certain time, t , the distances d(t) or dm

exceed sample dimensions. Then GExc(t) → 0, and depen-
dence of GExc(t) on the size of VC has disappeared. This
means that the approximations used here will become the
more appropriate the more the temperature in the cells ap-
proaches critical temperature.

Decay times, τ = τEl, that result from application of
Eq. (12) are plotted in Fig. 2a, b vs. temperature (compare
Sect. 4). The curves approach very large values as temper-
ature T → TCrit. The divergence of τEl simply indicates the
tendency of the system to approach dynamic thermal equi-
librium, which at constant temperature is of quasi-infinite
lifetime (again apart form statistical fluctuations). The τ

in the temperature region very close to TCrit accordingly
indicates probabilities for stability of a certain electronic
state. It is not possible to extend these calculations to ex-
act T (constant) = TCrit: divergence resulting from the de-
pendence on temperature of �E, see Eq. (24) in the Ap-
pendix A, is too strong to be handled numerically already
if the temperature difference between T and TCrit is below
10−6 K. In the extreme case [TCrit −T (constant)] → 0, with
T constant, it would take the superconductor indefinitely
long time to allow recombination of all available excitations
to pairs, again a natural consequence of the uncertainty prin-
ciple: the case T = TCrit (T constant) simply is the dynamic
equilibrium of the electron state when no more disturbances,
apart from statistical fluctuations, have to be compensated.

This result, increase of τ to indefinitely large values if
[TCrit − T (constant)] → 0, cannot be achieved if summa-
tions over contributions d(t)/vPh or dm/vPh would be omit-
ted and in total be replaced by constants. The same conclu-
sion applies to the decay widths that for T → TCrit would
not increase strongly without the summations over the NCor

potentially open decay channels.
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Fig. 3 (a) Initial and mean
decay rates (per unit volume) of
thermally excited electron states
in the virtual conductor volume,
VC , calculated for the NbTi
filament at constant temperature
and for the same screening
factor to the Coulomb potential
as in Fig. 2a, b (see text for
more explanations). (b) Initial
and mean decay rates (per unit
volume) calculated for the
YBaCuO filament at constant
temperature and for the same
screening factor to the Coulomb
potential as in Fig. 2a, b (see
text for more explanations)
(Color figure online)

(a)

(b)

But since warm-up continues and the temperature, T (t),
is not constant but increases, all quantities that depend on
temperature like JCrit and the stability function (and others,
see Sect. 6), accordingly, are not constant, too, and this ap-
plies also to lifetimes, τ . Accordingly, we have to consider
correction of “real” time, t (the standard timescale), to an-
other timescale, see Sect. 4.3.

The decay rates decrease with increasing number of al-
ready existing electron pairs (from recombination of the de-
cay products after the disturbance). We therefore can iden-
tify not only final (τEl) but also initial and mean recombina-
tion rates, as has been done in Fig. 3a, b. Initial decay rates
at temperatures close to TCrit are much larger than the mean
rates.

3.5 Comparison with Classical Exponential Decay
Formula

As a conclusion of this section, we can compare the decay
of the thermally excited electron states with the classical ex-
ponential decay formula. If NExc(t) denotes the number of

excitations still existing after start of decay of the excited
electron system after a thermal disturbance, in the classical
picture we would have

NExc(t)/NExc(t = 0) = exp
[−λ(T ) × t

]
(13)

with a decay constant, λ(T ), that in the present model de-
pends on temperature and time. This can be explained as
follows: using Γ (t) = (h/2π) × λ(t), the decay of the ex-
cited states can be described by the decay width, Γ (t), i.e.
the probability for decay, that should increase as the number,
NExc(t), approaches zero. This is different from classical,
e.g., radioactive, decay: there, the probability of decay of
instable nuclei is always constant, regardless how large the
number of still existing nuclei, and so are λ and Γ . Here, the
smaller NExc(t), the faster the decay of this number, and the
larger the decay width or decay probability as time increases
until decay is completed. If the number NExc(t) has already
become small, for the still existing excitations (single elec-
trons), it is “easier” to find suitable partners to form pairs,
see below.
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Fig. 4 Section of a superconductor filament (NbTi or YBaCuO) em-
bedded in a matrix material (Cu or Ag, respectively). Schematic
presentation (not to scale), under cylindrical symmetry (the vertical
dashed-dotted line indicates axis of symmetry). All radii are given
in micrometers. Superconductor and matrix material are identified by
light grey and dark grey shading, respectively. The target area (of radius
6 µm) is indicated by the horizontal thick black line. Horizontal blue
lines indicate planes 1 to 4 used for calculation of the stability func-
tion and of zero loss transport current in Figs. 10, 11, and 14 (compare
text for definition), at different axial distances from the target area. The
finite element mesh is schematically indicated by thin horizontal and
vertical lines (Color figure online)

Using Eq. (13), with the number of still existing exci-
tations, after start of decay of the thermal disturbance, we
calculate in the usual way, from LN [NExc(t)/NExc(t = 0)],
the decay constant λ(t) and the decay width Γ (t), compare
Fig. 15 in [6] for YBaCuO, T = 91.9 K, and a screening
factor χ = 0.01 (if using other temperatures or screening
factors, the qualitative behaviour Γ (t) is the same).

As was expected, the decay width, or the probability of
decay, increases with time as soon as NExc(t) approaches
zero (compare Fig. 15 in [6] or Fig. 15 in Appendix B): if
only few particles are left to recombine to pairs, completion
of recombination or rearrangement of the total wave func-
tion proceeds the faster the smaller this number (particles i

find their partner particles j more quickly), and the proba-
bility for decay accordingly increases.

This behavior, strong increase of the decay probability
as T → TCrit, would not be obtained without the correlation
steps, i.e., the summations described in Sect. 3.3.

4 Details of the Numerical Calculations

4.1 Data Input to Finite Element Simulation

Figure 4 schematically shows a section of a cylindrical su-
perconductor sample, a filament of 30 µm radius and of ar-
bitrary length (in this example, at least 300 µm). The vertical
dashed-dotted line indicates the axis of symmetry. The fila-
ment is embedded in a cylindrical, 5-µm-thick standard ma-
trix material (here Cu; shaded region in Fig. 4; this means

that, in a multifilament wire, each filament would be sepa-
rated from its neighbors by at least 10 µm). A target spot
(thick horizontal line at y = 0) indicates location of a distur-
bance. Radius of the target spot is rTarget = 6 µm. Without
loss of generality, the disturbance is modeled as a surface
source; a disturbance occupying a finite volume could be de-
signed as well. Because of symmetry, only the region x ≥ 0
is modeled.

Calculations are performed for NbTi and YBaCuO fil-
aments. One could argue that a radius of 30 µm could be
rather large for NbTi filaments in a multifilament wire while
it is difficult to produce high-quality YBaCuO filaments
of this radius at extended conductor lengths. However, the
overall results of this study will not be affected from this
assumption.

At the axial position (or plane) y = 0 of the filament, a
single heat pulse onto the NbTi and YBCO filaments of in
total 2.5 × 10−10 or 3 × 10−8 W s, respectively, shall be dis-
tributed as a thermal disturbance of �tP = 8 ns duration;
the pulse is uniformly distributed over the target radius. Be-
cause of symmetry, the light-grey shaded region experiences
a heat pulse of half this value. The length �tP is the same
as applied in [5, 6], and [17].

Like in [5, 6], and [18], for a first check of coinci-
dence of the FE result with stagnation temperature, stagna-
tion temperature, T (∞), was calculated using temperature-
independent values of thermal conductivity, λ, and specific
heat, cp . Coincidence was found, at a time t = 104 s after
start of the disturbance, at all internal positions of conduc-
tor volume; the maximum difference between both meth-
ods was in the order of 10−2 per cent. Isotropic conductiv-
ity and specific heat, mapped meshing, and time steps of at
least 10−12 s were used in this initial finite element (FE)
calculation. This procedure simply serves to check whether
meshing and time steps appropriately were chosen for the
strongly nonlinear finite element method.

But in all following calculations, λ and cp are treated
as temperature-dependent quantities; data for the NbTi fil-
ament and Cu are taken from various standard literature
sources, data for the YBaCuO filament and Ag are the same
as used in [5, 6], and [18]. Thermal conductivity in the fol-
lowing calculations also takes into account anisotropy of
conductive heat transfer in YBaCuO, in directions parallel
or perpendicular to the crystallographic ab-plane of this ma-
terial (like in the mentioned references, an anisotropy factor
of 10 has been applied in the calculations).

As a result, Fig. 5a, b shows calculated nodal tempera-
ture evolution, T (x, y, t), at the central position of the tar-
get spot (x = 0, y = 0), at the periphery of the filament
(x = 30 µm, y = 0), and, for the same x-positions, at an
axial distance y = 300 µm from the target spot. Data are cal-
culated for the thermal disturbance Q = 2.5 × 10−10 (NbTi)
or 3 × 10−8 W s (YBaCuO). At the end of the disturbance,
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Fig. 5 (a) Nodal temperature,
T (x, y, t), obtained from a finite
element simulation, at front
(x = 0, y = 0) and rear positions
(x = 0 or 30 µm, y = 0 and
300 µm, respectively) calculated
for the superconducting NbTi
filament under a heat pulse
absorbed at radial positions
0 ≤ x ≤ 6 µm, y = 0, of
Q = 2.5 × 10−10 W s during a
period of 8 ns. (b) Nodal
temperature, T (x, y, t), in the
superconducting YBaCuO
filament. Same finite element
calculation as in (a), with
absorption of a heat pulse of
Q = 3 × 10−8 W s during 8 ns
(Color figure online)

(a)

(b)

t = 8 ns, the nodal temperature at the position (x = 0, y = 0)
indicates the maximum temperature that is obtained in the
samples during the whole simulated period. Critical temper-
atures are 10.1 and 92 K for the NbTi and YBaCuO fila-
ments, respectively. All curves T (x, y, t) in Fig. 5a, b (and
also temperatures at all other positions in the filaments and
matrix materials) converge to their stagnation temperatures.

Figure 6a, b show NbTi and YBaCuO element tempera-
tures calculated from the corresponding nodal values. Mag-
nitudes of the thermal disturbances were chosen to yield
maximum element temperatures close to but safely below
TCrit (this choice avoids divergence of the decay rates that
would be observed if T → TCrit and the related numerical
problems). At the axial distance y = 300 µm, there is hardly
any observable increase of element temperature above start
values (temperature of the coolants) that could be observed
after end of the disturbance.

4.2 Critical Current Density

Different temperature fields must lead to different predic-
tions of superconductor stability. This follows immediately

from the temperature dependence of critical current density,
JCrit. This dependence provides a single-valued mapping of
the temperature field T (x, y, t) to the field JCrit(x, y, t) of
critical current densities if there is no magnetic field.

The temperature dependence of JCrit(T ) can be modeled
as

JCrit(T ) = JCrit(T = 0) × [1 − T/TCrit]n. (14)

The theoretical Ginzburg–Landau value of the exponent n

in Eq. (14) is 3/2. This exponent was used for the NbTi-
filament calculations.

For the YBaCuO filament, experimental investigations
show that the exponent neither is independent on the method
of preparation (thin films, substrate and its microstructure,
1G and 2G wires?) nor is identical for all temperature re-
gions below TCrit (quantum creep, flux line core pinning,
or thermally activated depinning regimes; see the discus-
sion in [5] that will not be repeated here. The value n = 2
should approximately be applicable for the present pur-
pose.
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Fig. 6 (a) Element
temperatures (elements in the
finite element scheme, Fig. 4) in
the NbTi filament calculated for
elements located near front and
rear nodal positions from the
nodal temperatures in Fig. 5a.
(b) Element temperatures in the
YBaCuO filament. Same
calculation as in (a) (Color
figure online)

(a)

(b)

Assuming JCrit(x, y, t = 0) = JCrit(T = 4.2 K) = 7 ×
105 A/cm2 of NbTi and JCrit(x, y, t = 0) = JCrit(T =
77 K) = 105 A/cm2 of YBaCuO in zero magnetic field, this
fixes the corresponding JCrit(T = 0).

Accordingly, at positions close to the target spot, JCrit

will become small in both cases, but the larger the axial dis-
tance (and the larger time t), the larger JCrit, in strict corre-
spondence to the behavior of the transient temperature field,
T (x, y, t).

Using Eq. (14), Fig. 7a, b shows critical current den-
sity JCrit(x = 0, y, t) calculated for the NbTi and YBaCuO
filaments from the corresponding element temperatures
(Fig. 6a, b). Since there is hardly any temperature increase
at positions (x, y = 300 µm), the critical current densities
are not affected at these positions, at all times t . The stabil-
ity functions that result from these distributions of critical
current density accordingly will be close to zero at these
positions (Sect. 5).

4.3 Numerical Estimate of Lifetimes

Following Eqs. (10)–(12), results for decay rates and life-
times of thermally excited electron states in NbTi and
YBaCuO correspond to constant temperature. In order
to correctly reflect increasing sample temperature during
the disturbance, lifetimes have to be transformed to val-
ues t ′, the internal timescale. Time dependency of life-
time has to reflect the temperature dependency, dτEl/dT ,
of lifetime, τEl, and the time dependency, dT /dt , of the
corresponding temperature fields, T = T (x, y, t). Real
time t thus is shifted, from timescale t to timescale t ′,
by t ′ = t + �t ′, using for the time shift �t ′ the quan-
tity

�t ′ = τEl = (dτEl/dT )(dT /dt)�t. (15)

In Eq. (15), the first and second factors (derivative of τEl

with respect to temperature and derivative of temperature
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Fig. 7 (a) Critical current
density in elements located near
front and rear nodal positions in
the NbTi filament calculated
using Eq. (14) with the exponent
n = 3/2 from the element
temperatures reported in Fig. 6a.
(b) Critical current density in
elements of the YBaCuO
filament calculated using
Eq. (14) with the exponent
n = 2. Same calculation as
in (a) (Color figure online)

(a)

(b)

field with real time) are obtained from Figs. 8a, b and 9a, b,
respectively.

The stability function, Φ(t), then can be plotted vs. time
in the real time scale, t , and for comparison vs. time in the
alternative “shifted” timescale, t ′, as explained in the next
section.

5 Results for the Stability Function

We will first explain the standard definition of the stability
function, Φ(t), in dependence of real time t .

5.1 Conventional Presentation of Φ(t) on the Timescale t

The stability function applies the ratio JCrit(x, y, t)/JCrit(x,

y, t = 0) of transient critical current densities to critical cur-

rent density at t = 0

0 ≤ Φ(t)

= 1 − (1/A)

∫ (
JCrit(x, y, t)/JCrit(x, y, t = 0)

)
dA ≤ 1

(16)

with the integral taken over the conductor cross section, A,
at an axial position (plane), y ≥ 0. The ratio JCrit(x, y, t)/

JCrit(x, y, t = 0) gets Φ(t) close to zero if JCrit(x, y, t) is
close to JCrit(x, y, t = 0), in other words, if the temperature
field is not seriously disturbed from its initial values (tem-
perature of coolants). In this case, almost the whole con-
ductor cross section remains open, with high critical current
density, to zero loss transport current. However, if T (x, y, t)

becomes close to TCrit, JCrit(x, y, t) is very small at these
positions, and Φ(t) → 1; zero loss current transport current
flow then is hardly possible (in a magnetic field, flux flow
resistance would come up first). If T (x, y, t) > TCrit, we are
finally in the Ohmic resistance regime, in these elements.
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Fig. 8 (a) Derivative dτEl/dT

of the time constant, τEl, with T

the element temperature, for
decay of thermally excited
electrons states in the virtual
volume, VC , of the NbTi
filament. (b) Derivative
dτEl/dT of the time constant,
τEl, for the YBaCuO filament.
Same calculation as in (a)
(Color figure online)

(a)

(b)

Accordingly, there could be “mixtures” comprising, in the
conductor cross section, regions of zero loss transport cur-
rent, regions of flux flow resistance, and regions of Ohmic
resistance.

In order to determine whether a particular conductor
cross section meets the stability criterion expressed by
Eq. (16), the stability function Φ(t) has to be determined,
in principle for all axial distances, but it might be sufficient
for stability analysis to consider only the maximum of Φ(t)

obtained for all planes, as suggested in [3].
Figure 10 shows Φ(t) at four axial distances (planes) for

the NbTi filament. Position of the planes is identified as fol-
lows: plane 1: y = 0, plane 2: y = 18.75, plane 3: y = 37.5,
plane 4: y = 56.3 µm. Because rather small thermal dis-
turbances have been assumed, the magnitude of the Φ(t)

curves is below 0.3. But the deviation in zero loss transport
current (Fig. 11),

ITransp(t) = JCrit(x, y,4 K)
[
1 − Φ(t)

]
, (17)

in the four planes and between 10−6 ≤ t ≤ 10−4 s yet be-
comes significant.

So far the results for Φ(t) in the NbTi filament when they
are plotted vs. real time, t . Corresponding results for Φ(t)

and ITransp(t) for the YBCO filament are similar to the re-
sults reported in [5] for HTSC pellets and need not be re-
peated here.

5.2 Stability Function in the Timescale t ′

For a plot of the stability function vs. time, t ′, we now cal-
culate the quantities �t ′ from Eq. (15) for both samples. It
is expected that the correction �t ′ to real time, t , could per-
haps be strong at positions where temperature approaches
TCrit. This is confirmed in Fig. 12a, b that shows a plot
of shifted time, t ′, vs. real time, t . For the NbTi filament,
a strong peak is observed near the position (x = 0, y = 0).
In case of the YBaCuO filament, there is also a sharp peak,
but its magnitude is much smaller, so that we can as before
plot the stability function vs. real time, t . In the NbTi fil-
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Fig. 9 (a) Derivative dT /dt of
element temperature, T ,
calculated for elements located
near front positions of the NbTi
filament under a heat pulse
absorbed at radial positions
0 ≤ x ≤ 6 µm, y = 0, of
Q = 2.5 × 10−10 W s during a
period of 8 ns. The figure shows
dT /dt during heating, warm-up
(after end of the heat pulse), and
cool-down periods (note the
minus sign). The warm-up
period results from
redistribution of heat delivered
from the nodes of the concerned
finite element and its neighbors.
(b) Derivative dT /dt of element
temperature, T , near front
positions of the YBaCuO
filament under a heat pulse
absorbed at radial positions
0 ≤ x ≤ 6 µm, y = 0, of
Q = 3 × 10−8 W s during a
period of 8 ns. The figure shows
dT /dt during heating and
cool-down periods (no
intermediate warm-up period is
observed) (Color figure online)

(a)

(b)

Fig. 10 Stability function,
Φ(t), of the NbTi filament,
calculated using Eq. (16) under
a heat pulse absorbed at radial
positions 0 ≤ x ≤ 6 µm, y = 0,
of Q = 2.5 × 10−10 W s during
a period of 8 ns. The figure
shows Φ(t) at planes 1 to 4
(axial distances from the target
spot) of y = 0,18.75,37.5, and
56.3 µm, respectively (Color
figure online)

ament, however, the shifted time, t ′, locally differs strongly

from real time so that critical current density and, as a result,

also the stability function, if plotted against shifted time, t ′,
will strongly be different from the corresponding standard

plots of JCrit(x, y, t) and Φ(t). The magnitudes of Φ(t) are

shifted on the time axis to the proper times, t ′.
Figure 13a, b shows critical current density plotted vs.

real time (t , solid symbols) and shifted time (t ′, open sym-
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Fig. 11 Zero loss transport
current, I , in the NbTi filament
calculated using Eq. (17) under
a heat pulse absorbed at radial
positions 0 ≤ x ≤ 6 µm, y = 0,
of Q = 2.5 × 10−10 W s during
a period of 8 ns. The figure
shows I at planes 1 to 4 (axial
distances from the target spot)
of y = 0,18.75,37.5, and
56.3 µm, respectively (Color
figure online)

Fig. 12 (a) Time interval, �τEl,
as a function of time, t ,
calculated in the NbTi filament
for the element (in the finite
element scheme, Fig. 4)
positioned near the central front
node (x = 0, y = 0). See text for
more explanations. (b) Time
interval, �τEl, in the
superconducting YBaCuO
filament. Same calculation as in
(a). See text for more
explanations (Color figure
online)

(a)

(b)

bols). For the NbTi material, the deviation is strong since
the time shift, at position (x = 0, y = 0), reaches values up
to 5 s. But in the YBaCuO filament, the deviation between
the curves JCrit(x = 0, y = 0, t) and JCrit(x = 0, y = 0, t ′)
is very small, as was to be expected.

A corresponding behavior has to be expected for the sta-
bility function. In case of the YBaCuO filament, there will
be hardly any difference between Φ(t) and Φ(t ′), but with
the NbTi filament, the deviation may be significant. It is ex-
actly for this reason that a problem comes up.
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Fig. 13 (a) Critical current
density in the superconducting
NbTi filament. Data are
calculated from the element
temperatures reported in Fig. 6a
using Eq. (14) with the exponent
n = 3/2 and are given for the
element (of the finite element
scheme, Fig. 4) positioned near
the central node (x = 0, y = 0).
The solid symbols are the same
as in Fig. 7a. Data JCrit(x, y, t)

are plotted vs. real time scale t

(solid symbols) and the “shifted”
time scale t ′ = t + �τEl (open
symbols), with the shift �τEl
from Fig. 12a. See text for more
explanations. (b) Critical current
density in the superconducting
YBaCuO filament. Data are
calculated from the element
temperatures reported in Fig. 6b
using Eq. (14) with the exponent
n = 2 and are given for the
element (of the finite element
scheme, Fig. 4) positioned near
the central node (x = 0, y = 0).
The solid symbols are the same
as in Fig. 7b. Data JCrit(x, y, t)

are plotted vs. real time scale t

(solid symbols) and the “shifted”
time scale t ′ = t + �τEl (open
symbols), with the shift �τEl
from Fig. 12b. See text for more
explanations (Color figure
online)

(a)

(b)

Corrections �t ′ = �t ′(x, y, t) = τEl(x, y, t) and shifted
times t ′ = t ′(x, y, t) = t + τEl(x, y, t) are different in each
element (i.e., at each arbitrary position x, y in the conductor)
because the temperature field T (x, y, t) is different in each
element, and so is τEl(x, y, t). It is therefore not possible to
define a unique shifted time, t ′, that would exactly be the
same for all elements in any plane located close to the target
spot. This excludes the usual plot of the stability function,
Φ(t), in dependence of one and only one, uniquely defined
time, at positions near the disturbance.

This problem becomes the weaker the larger the ax-
ial distance of the planes y from the target spot. This is
demonstrated in Fig. 14: if we tentatively calculate the arith-
metic mean of Φ(x,y, t ′) taken over all elements in a single
plane y, then the curves Φ(x,y, t ′) approach the standard
Φ(x,y, t) the more the larger the axial distance, y, from the
target spot.

Stability analysis accordingly should be performed not at
exactly the position y = 0 where the disturbance is located

or at distances close to this position. Instead, the analysis
should observe appropriate, safety-related distances. These
distances are correlated to propagation of the correspond-
ing temperature field. For the NbTi filament, the minimum
distance to be observed, at the given conditions, is at least
60 µm, while it is near zero in case of the YBaCuO fila-
ment. It is clear that the minimum distance depends on the
evolution of the particular temperature field, i.e., on the geo-
metrical and thermal parameters (radius and material of fil-
ament and matrix, boundary conditions, diffusivity, location
and magnitude of heat pulse, and others). The minimum dis-
tances thus may become larger if the temperature field looks
different, e.g., under strong thermal disturbances (note that
the disturbances, Q, in the two filaments were chosen not to
increase transient temperature above TCrit).

Another consequence from the different timescales, t and
t ′, not only affects the stability function. In a step before,
it might directly concern critical current density: if under a
disturbance the electron system is thermally excited, which
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Fig. 14 Stability function, Φ(t), of the NbTi filament, calculated using
Eq. (16) under a heat pulse absorbed at radial positions 0 ≤ x ≤ 6 µm,
y = 0, of Q = 2.5 × 10−10 W s during a period of 8 ns. The figure
shows Φ(t) at planes 1 and 4 (axial distances from the target spot) of
y = 0 and 56.3 µm, respectively. The solid symbols are the same as

in Fig. 10. Data Φ(t) are plotted vs. real time scale t (solid symbols)
and the “shifted” time scale t ′ = t + �τEl (open symbols), as a rough
approximation with an arithmetic mean �τEl of the shift �τEl(x, y, t)

taken over the corresponding planes. See text for more explanations
(Color figure online)

means that there is a reduction of the density of electron
pairs available for zero loss transport current (or in a mag-
netic field, shielding current), there could be a reduction of
the magnitude of critical current density, or if critical current
density is conserved, a reduction of the available conductor
cross section that is open for zero loss transport. In other
words, it is not clear that during the interval τ = τEl, a suf-
ficiently large number of electron pairs would (already?) be
available. Consequences for a technical application, possi-
bly arising from this observation, will be discussed in the
next section.

6 Consequences for Safe Operation of a Resistive Fault
Current Limiter

A current limiter shall respond, within very short periods of
time, to a disturbance (short circuit, lightning), and clearly
below 50 ms (for stable operation conditions, a difficult task)
create an electrical resistance large enough to limit the fault
current to values prescribed by safety aspects of the electri-
cal circuit to be protected. The question is: which magnitude
of critical current density (before start of the disturbance) is
at least required to successfully operate a resistive current
limiter if an appropriate superconductor material (generat-
ing no hot spots over extended conductor length) is avail-
able?

In the following, for simplicity, we assume adiabatic con-
ditions. This assumption is justified because it usually takes
the thermal wave, generated under fault current by the in-
creasing electrical resistance, considerably more time (sev-

eral 10 ms, even under a large fault current) to arrive at
the conductor periphery, where it could induce pool boiling,
much longer than it takes the conductor to enter a highly
resistive state. Heat transfer to the coolant by conduction
and convection that would be created earlier than pool boil-
ing can be neglected, within these time intervals (the cor-
responding heat transfer rate are by orders of magnitude
smaller than for pool boiling). Accordingly, the conductor,
due to the fault current, is already in a resistive state.

Assuming a maximum tolerable fault current density,
Jmax, the resistive heat loss per unit conductor volume, V ,
from this current amounts to

(dQ/dt)/V = ρElJ
2
max (18a)

with ρEl the specific electrical resistance of the conductor.
We replace the derivative (dQ/dt)/V by the ratio of finite
differences, (�Q/�t)/V , where �Q = ρcp�T is the heat
generated within the reaction period, �t , of the limiter (the
triggering time detected when the conductor finally arrives
at large Ohmic electrical resistance). In this expression, ρ

and cp denote the density and specific heat of the conductor
material. Again for simplicity, we assume that both quan-
tities ρ and cp are independent of temperature (in any real
application, this assumption would have to be checked care-
fully). We now expand the right side of this equation as

(�Q/�t)/V = J 2
Crit(ρcp�T/�t)/

(
V J 2

Crit

)
, (18b)

which finally, from comparison with Eq. (18a), yields

M = Jmax/JCrit = K/JCrit (18c)
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with a constant K = [(ρcp/ρEl)(�T/�t)]1/2. Accordingly,
if the electric circuit to be protected can tolerate a maxi-
mum fault current density Jmax that is a multiple M of JCrit,
then this multiple depends inversely on JCrit. In order to
safely protect the circuit, M should be as small as possi-
ble. Medium voltage transformers usually cannot steadily
stand multiples M larger than 1.5. Small M can be achieved,
within these approximations, if JCrit is large, assuming that
the constant K really is constant and does not depend too
strongly on temperature (via the materials parameters) and
not too strongly, and directly, on the excursion (�T/�t).

Relation (18c) has successfully been confirmed in exper-
iments with Bi2223-conductor by Abeln et al. [19].

It is clear that safety of the electric circuit would danger-
ously be affected if JCrit would temporarily become small
during a “dead time” interval �τEl.

7 Summary and Conclusions

We have studied the impact of decay of excited electron
states on superconductor stability. A sequential model has
been presented to estimate the time, τ , needed for return of
the disturbed electron system of a superconductor to a new
dynamic equilibrium. Average decay rates of the excited
electron system were estimated using a time-of-flight con-
cept (the process of exchanging information between two
quantum states by a mediating Boson). From the obtained
numerical results, the period of time (relaxation time), τ =
τEl, needed to rearrange the total wave function to a new dy-
namic equilibrium has been calculated. These results cannot
be obtained in solely particle-related experiments like cur-
rent injection where conservation of charge, mass, etc. are
in the foreground.

From the preceding analysis it has to be expected that
temporal mismatch between relaxation times τPh and τEl

creates different timescales, t and t ′, of which the scale t ′
is not a constant but is different in different regions of the
superconductor. The effect could be strong at temperatures
near conductor phase transition. Besides the magnitude of
critical current density and stability function, this difference
could affect also measurement of observables like levitation
of a superconductor in a magnetic field or results of the elec-
tronic part of the specific heat measurements, i.e., in all ex-
periments where critical current density is concerned in any
way. As an example, the possibly existing effect has been
discussed for operation of a fault current limiter. A decrease
of critical current density due to a “dead time interval” dur-
ing which only a reduced number of electron pairs would be
available for zero loss current transport could dangerously
affect safe operation of the limiter and the electrical circuit
to be protected.

Appendix A: Decay in Space, Lifetime from a Diffusion
Model Approach (Supplement to
Sect. 3.1)

Because of its finite thermal diffusivity, nonequilibrium ther-
mal states, during warm-up or cool-down periods, always
arise locally in a superconductor, from local temperature
gradients, from different thermal boundary conditions, or
from internal heat sources. Temperature evolution in real
solid samples never develops perfectly uniformly.

The situation in superconductors when exposed to ab-
sorption of a heat pulse is analogous to standard laser flash
experiments in which at a time t0 a very short radiation pulse
is directed onto a thin film sample. Assume that the sample
initially is at uniform temperature. Absorption of the pulse
locally increases sample front surface temperature to a max-
imum obtained at a time t1 > t0 that is overlaid onto the
previous uniform temperature (background) level. The laser
flash experiment then involves observation of front or rear
surface temperature to obtain the thermal diffusivity of the
sample material; in the most simple procedure, the diffusiv-
ity is obtained at a time, t1/2, when rear surface temperature
has increased to half its maximum value.

Determination of the lifetime of thermally excited states
of superconductors, the diffusion aspect (or decay of the ex-
citation in space) is modeled in the following in a quite anal-
ogous way, with the exception that we do not look for the
time t1/2 when the concentration of surplus excited states
has decayed to half its initial value after end of the distur-
bance. Instead, we look for the time t∞ when the disturbance
(the concentration of excited electron states) has decayed
completely, c(x, t∞) = const. This concept has successfully
been applied in [20], where an instantaneous, internal pulse
method was used in an exotic material.

In the tunnel (current injection) experiment described in
Fig. 3 of [9], delivery of a short electrical current pulse to
the active contact area of the upper film (the source being a
very small volume, VJ , about 10−24 m3) causes the previous
dynamic equilibrium concentration of electron excitations to
increase to transient values. These excitations decay accord-
ing to electrical conduction properties of the tunnel junction
into electronic states that can be occupied in the lower film
and by loss of phonons that cannot contribute to reabsorp-
tion/generation of new quasi-particles.

Delivery of a short heat pulse, e.g., from a laser directed
onto the surface of a thin film or of a pellet, with the heat
pulse absorbed in a small volume, Vth � VJ , near the sur-
face that is part of the total volume, V , of the sample causes
local temperature in Vth to increase above equilibrium (start)
temperature. As a consequence, there is propagation of (a)
a thermal wave and (b) of a concentration wave of ex-
cited electron states from Vth, because of thermal conductive
properties of the solid material and because of a concentra-
tion gradient, respectively. It is tempting to assume that not
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only propagation of the thermal wave but also redistribu-
tion of the concentration of excited electron states can be
described as a diffusion process.

These two decay channels have to be distinguished as fol-
lows:

(i) Propagation of the thermal wave from Vth into the
solid increases temperature over local start values, T =
T (x, t0). This also initiates increase of concentration of
excited states, at the same positions outside Vth, over
local start values, c = c(x, t0), because of coupling be-
tween temperature and temperature-dependent density
of excitations (there are accordingly “source terms” ini-
tiated by the temperature field for increase of concen-
tration).

(ii) Propagation of the concentration wave from Vth into the
solid increases the concentration of excitations over lo-
cal start values, c = c(x, t0), now merely by diffusion
under a concentration gradient but without source terms
(source and sink terms, if any, would cancel each other).

This means that there is a diffusion “front” of the concentra-
tion of excitations driven by two different mechanisms, one
of which is closely coupled to propagation of the thermal
wave. Both mechanisms, propagation of a diffusion front of
concentrations and of a thermal wave, penetrate in parallel
into the solid material, but with different speed.

With this separation, de-excitation of the over-concentra-
tion of excited electron states in Vth originating from absorp-
tion of the heat pulse can be described by evolution of the
total wave function ψ(x, t): if x = x(t) indicates the diffu-
sion front of the order parameter, c =| ψ(x, t)|2, we have, in
one dimension, the expression (given already in Eq. (4))

dc(x, t)/dt = (
∂c(x, t)/∂x

)
(∂x/∂t) + ∂c(x, t)/∂t. (19)

The first factor in Eq. (19), the concentration gradient
∂c(x, t)/∂x, describes de-excitation (decay of the distur-
bance) by diffusion (or decay “in space”), the second factor,
∂x/∂t , the speed at which the diffusion front propagates, and
the term ∂c(x, t)/∂t indicates the decay “in time” of the dis-
turbance. The first contribution, (∂c(x, t)/∂x)(∂x/∂t), ac-
cordingly comprises channels (i) and (ii) mentioned above
that both will be modeled using diffusion methods. The con-
tribution ∂c(x, t)/∂t is investigated in Sects. 3 to 5 of the
present paper.

An analogue to “decay in space” is an expanding cloud
of radioactive particles. In this picture, “decay in time” con-
cerns decay rates following from classical exponential decay
law. In comparison with the present case, excited electron
states and electron pairs are the analogues of mother and
daughter terms, respectively.

Since superconductor solids are opaque, radiation from
the laser source (the incident heat pulse) will penetrate to

only a very small distance, dRad, into the solid volume. To-
gether with the diameter of the target spot, this defines a
source volume. For simplicity, we will assume that the sam-
ple is kept at adiabatic conditions, at least during a time
interval that is long compared to the lifetime of the distur-
bance.

For modeling the propagation of excited electron states
in the solid by diffusion, i.e., the decay channel (ii) of the
above, the following questions have to be answered:

(1) Which kind of interaction is observed that in a diffusion
manner (if any) has to proceed stepwise?

(2) How large is the mean free path, in relation to sample
dimensions, between two such interactions?

(3) How fast will the interaction propagate into the sample,
in particular compared to the thermal wave?

(4) Is it possible to assign a diffusivity to the propagation of
the interaction?

At positions x inside the source volume, Vth, and during de-
cay of the disturbance, the order parameter increases with
time because the number of excitations decreases. Outside
this volume, under solely thermal conduction condition, the
order parameter decreases (distribution of the thermal distur-
bance at these positions leads to local increase of the num-
ber of excitations). It is thus the order parameter that diffuses
within the solid volume. What then is the driving mechanism
that would cause the order parameter to diffuse?

Consider inside the source volume, Vth, a number of N

excited electron states that result from previous decay of
N/2 electron pairs in the same volume. The excited states,
or concentrations thereof, can be assigned an enthalpy, gExc,
that is larger than the corresponding enthalpy, gEP, of elec-
tron pairs, and it is the enthalpy difference that drives ex-
cited states to recombine to electron pairs (consistent with
temperature evolution in this volume).

Ohm’s law for transport of electrical current of density,
J, under an electrical field, E, is a classical diffusion law:
in metals, J = [(ne2τ)/2m]E (with n the concentration of
electrons, e and m the unit electrical charge and mass of
electrons, and here τ the time of flight between two scat-
tering events). The electrons under the electrical field move
with the drift velocity, vD = −eEτ/(2m), in Cu at RT with a
mean free path of only about 5 nm. A simple expression like
Ohm’s diffusion law of the movement of single charge car-
riers (electrons) is distinct from correlation between pairs:
a current density J > 0 exists only if the coherent state of
all electron pairs moves with a common, nonzero center-
of-mass velocity. Neither is it possible to define a mean free
path of one electron pair nor of a cloud of all coherently cou-
pled pairs. Therefore, the main precondition for a diffusion
approach, drift of individuals (or of a cloud), under a poten-
tial difference and with interactions imposed by obstacles,
for both species is not available in a superconductor.
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This problem can be removed if we consider propagation
of concentrations of pairs and of excitations. In this case, it
is no longer necessary to specify the behavior of individuals,
and the mean free path can be defined with respect to de-
crease of concentration over a path the length of which can
be estimated from exponential decay of the concentration, as
in radiative heat transfer where the mean free path indicates
exponential decay of the radiation intensity, not of a single
but of multiple photons, on the statistical average. The mean
free path of the concentration of excited electron states un-
der diffusion is given by the Ginzburg–Landau (GL) coher-
ence length, ξGL. With ξGL in the order of 1 nm in YBaCuO,
this is very small in comparison to sample dimension, which
means that the precondition for “diffusion” to be a stepwise
process would be fulfilled.

The velocity by which the diffusion propagates can be
approximated by the phonon velocity, vPh, because vPh is the
velocity of the Boson that mediates the binding interaction
between two electrons. As a rough estimate, we take a value
vPh of about 1/100 of the Fermi velocity (the latter describes
the velocity of electron pairs carrying a supercurrent).

Calculation of the evolution with time of the concentra-
tion, cExc(t), of excited states propagating by the two above-
mentioned channels (i) and (ii) then is performed by use
of Fourier’s differential equation. For description of cExc(t),
again in one dimension, we have

∂c/∂t = Dc∂
2c(t)/∂x2 with Source terms (20)

at all times t > t1 where t1 indicates the end of the thermal
disturbance (approximately the duration of the heat pulse).
For description of the temperature evolution, we have

∂T /∂t = Dth∂
2T (t)/∂x2 without Source terms. (21)

Both Eqs. (6a) and (6b) are coupled by temperature depen-
dence of the concentration cExc(t), see below.

The thermal diffusivity, Dth = Dth(T ), in Eq. (21) is cal-
culated from temperature-dependent values of conductivity,
specific heat and density of YBaCuO applied already in [5]
and the other publications of the author as cited in the text.

The concentration diffusivity, Dc, in Eq. (22) in analogy
to thermal transport, can, probably only very roughly, be de-
termined from

Dc = (1 + δ)(5/2)vPhξGL (22)

(see Kennard [21], Chap. 4, Sect. 102, and references cited
therein). Equation (22) applies the conductivity of a two-
atomic gas in the hard core approximation. The quantity δ

is small, in the order of 1/100. Numerical values of Dc ,
for vPh constant at about 9.4 × 103 m/s, and in a broad
interval 0.1 ≤ ξGL ≤ 10 nm are between 7.9 × 10−7 and
7.9 × 10−5 m2/s. For ξGL = 3 nm, Dc is about one order

of magnitude below the diffusivity (2.5 × 10−4 m2/s) re-
ported in Loidl et al. [22] for quasi-particle diffusion in a
W/Al bi-layer diffusion film. Such a decrease of the diffu-
sivity is qualitatively to be expected for a high-temperature
superconductor.

The source terms in Eq. (20) arise from the temperature
dependence of cExc(T ) and its coupling to the temperature
field. These terms describe excitations at positions, x, within
the total volume as soon as the thermal wave arrives at these
positions. For simplicity, we use the equilibrium expression
for the temperature dependence of the concentration. In a
time interval dt , we have

(dcExc/dT )(dT /dt)dt = cExc,0 exp
[−�E(T )/(kT )

]
dt

(23)

with binding energy, �E, taken as temperature dependent
using for simplicity the BSC-result

�E(T ) = 1.74�E(T = 0) × (1 − γ )1/2 (24)

indicated in Blatt [14], p. 243. In Eqs. (23), (24), cExc,0 =
6 × 1026 1/m3, �E(T = 0) = 60 meV for high-temperature
superconductors, and γ = T/Tcrit. Equation (24) results
from an exact thermo-dynamical solution at nonzero tem-
perature provided by the theory of Bogoliubov, Zubarev, and
Tserkovnikov (as Blatt [14], p. 227, points out, one of the
very few exact theories in statistical mechanics). The weak
point in the present analysis thus results from by Eq. (22)
and from Eq. (24) because this equation might not appropri-
ately be applicable to an HTSC material.

In case there are single electrons near the Fermi en-
ergy, the Pauli exclusion principle blocks electron states
that otherwise could be populated by decay products from
pairs, which means that the binding energy of electron pairs,
or width of the energy gap, decreases as temperature ap-
proaches TCrit. This aspect is reflected by the temperature
dependence of �E. It also provides an infinite slope of
�E(T ) at T = TCrit, with a second-order transition, which
is consistent with the jump of the electron part of the specific
heat at TCrit.

Because of T = T (x, y, t), all quantities γ,�E, and
dcExc/dt in Eqs. (23), (24) depend on positions x = (x, y)

and time.
As a result, obtained again from a finite element simu-

lation, the contribution of “decay in space” is much smaller
than that obtained for “decay in time”. This is the finding for
a YBaCuO pellet. The reader interested in more details and
numerical results may consult [6].
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Fig. 15 Decay width, Γ (t), of
excited electron states,
calculated for NbTi (right) and
YBaCuO-filaments (left part of
the figure) for the same ratio,
T/TCrit = 0.995, of momentary
temperature, T (t), to critical
temperature of the
superconductors (10.1 and 92 K,
for NbTi and YBaCuO,
respectively)

Appendix B: Comparison with Classical Exponential
Decay Formula

Comparison of decay widths, Γ (t), for NbTi and YBaCuO-
filaments demonstrates the enormous differences in decay
probability, which means YBaCuO will much faster return
to dynamical equilibrium than NbTi. This reflects the cor-
responding higher decay rates of YBaCuO given in Fig. 3b
which in turn are the consequence of the much higher oper-
ating temperature of this superconductor.
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