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Abstract Stability functions are an important analytical/nu-
merical tool for appropriate design of conductor geometry
and dimensions to prevent conductor losses under a trans-
port current. While standard stability calculations follow-
ing the Stekly, adiabatic, or dynamic stability models ap-
ply purely solid thermal conduction mechanism and derive
results under (quasi) stationary conditions, the present pa-
per investigates if, and to which extent, also radiation heat
transfer, in addition to solid conduction, can exert impacts
on conductor stability. Further, the full transient conductor
temperature evolution after a disturbance is calculated. The
analysis applies an interplay between Monte Carlo radiative
transfer calculations, to describe absorption of heat pulses
and their distribution in the conductor, and a rigorous finite
element method to calculate the resulting temperature field
and stability functions. The results show that radiative heat
transfer cannot be neglected in particular if periodic distur-
bances have to be considered that can arise, e.g., in a flux
flow fault current limiter.

Keywords Superconductor · Disturbance · Stability ·
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1 Survey

A superconductor is stable if it does not quench, i.e., per-
form an undesirable phase transition from superconducting
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to normal conducting state. A quench results from distur-
bances like conductor movement and corresponding trans-
formation of mechanical into thermal energy, from absorp-
tion of radiation, fault currents or from momentary cooling
failure. Disturbances frequently are transient, but there are
also permanent disturbances like hysteretic losses. Stability
has been investigated in the literature by stability models,
like the simple Stekly or the more advanced adiabatic, dy-
namic, and intrinsic stability criteria; for a survey on these
analytical stability models see, e.g., Wilson [1] or Dresner
[2]. Numerical investigations of the stability problem were
presented, e.g., by Flik and Tien [3] and Reiss [4].

Stability models predict under which conditions a trans-
port current will propagate without losses through the
conductor. For this purpose, all stability models correlate
disturbances with corresponding temperature evolution of
the superconductor, which in turn determines evolution of
critical current density. Temperature and critical current thus
depend on (a) magnitude and duration of a disturbance, (b)
heat capacity of the solid, (c) heat transfer within the con-
ductor, (d) conductor geometry, and (e) heat transfer to a
coolant or to another conductor environment like electrical
insulations or matrix materials in multifilament conductors.
If conditions (a) to (c) and (e) are fixed, and the conduc-
tor, e.g., is of cylindrical cross section, the stability models
allow prediction of the maximum conductor radius up to
which zero loss transport current can be expected.

All traditional stability models rely on solely conductive
heat transfer in the solids. The impact of radiation has not
been included so far into stability calculations. This is the
aim of the present paper: An investigation to which extent
also internal radiative transfer, in addition to classical con-
ductive heat transfer, could modify predictions of conductor
stability. As will be shown, impacts from radiation can be
substantial.
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2 Overall Description of the Stability Calculation

The following numerical procedure relies on a recent in-
vestigation (Reiss and Troitsky [5]) how to obtain ther-
mal diffusivity of transparent or semitransparent thin films
when they are exposed to a short laser pulse impinging on
their surface. This approach is quite different from the tra-
ditional method to obtain thermal diffusivity by the laser
flash method (Parker and Jenkins [6], and a large variety
of its modifications). Results reported in [5] for thin films
show that radiation heat transfer may require significant cor-
rections to standard methods for determination of thin film
thermal diffusivity, in particular if periodic disturbances are
considered (similar impacts must be expected form radia-
tion when investigating stability of superconductors, simply
because both rely on internal heat transfer and temperature
evolution). Details of the numerical method will not be re-
peated here, just a short description is presented in the fol-
lowing, as far as it is applicable to the present stability prob-
lem.

3 Step 1: Monte Carlo Method

A Monte Carlo model is applied to determine spacial dis-
tribution and magnitude of a large number of internal heat
sources, Qint(x, y, t), that in the sample arise from absorp-
tion of radiation bundles. The bundles initially are emit-
ted from part of the sample surface (the original distur-
bance) and later from interior positions. Distribution of the
Qint(x, y, t) depends on extinction properties of the sam-
ple material and the angle of emission. Magnitude of the
Qint(x, y, t) depends on the albedo of the material, which
determines remission of residual heat pulses after each ab-
sorption event, and from the phase function of scattering.
All items to determine the Qint(x, y, t) are treated as ran-
dom variables.

The Monte Carlo calculation solves the radiative transfer
problem that constitutes the integral part of combined con-
duction plus radiation heat transfer.

4 Step 2: Finite Element Model

In the investigation of thin film diffusivity [5], total length,
�tP , of the disturbance (a laser pulse) was 8 × 10−9 s.
During �tP , all absorption, remission, and scattering events
proceed by velocity of light. But propagation of a thermal
wave, by conduction only, is much slower, by many orders
of magnitude. The Qint(x, y, t) accordingly can be consid-
ered as initial conditions to the subsequent thermal conduc-
tion problem. Thermalization of all heat sources, i.e., the
original disturbance at target surface and the Qint(x, y, t),

was calculated in [5] by a rigorous finite element model us-
ing a standard finite element (FE) program, with solid ther-
mal conductivity and specific heat taken as temperature de-
pendent quantities, under quasiadiabatic conditions or under
heat exchange with environment (escape of radiation from
the sample volume prevents the problem to be strictly adia-
batic). A radiative conductivity was added to the solid con-
ductivity if optical thickness (total or spectral) permits this
approximation, or the Rosseland mean is applied, to account
for spectral variations of the extinction coefficient.

The finite element calculation step solves the differential
part of the combined conduction plus radiation heat trans-
fer problem (Fourier’s differential equation that contains no
integral, i.e., radiative contributions).

5 Application to the Stability Problem

Basically, the same numerical procedures are applied to the
present stability problem. Figure 1 schematically shows a
section of a cylindrical conductor sample, a superconductor
wire of 200 µm radius and of arbitrary length. A target spot
(thick horizontal line at y = 0) indicates location of an orig-
inal disturbance. Radius of the target spot is rTarget = 40 µm.
Without loss of generality, the disturbance is modeled as a
surface source (a disturbance of finite volume could be de-
signed as well). Because of symmetry, only the region y ≥ 0
(shaded) is modeled. Bundles (thick solid lines) are emitted
from the target spot and from volume elements that are gen-
erated by rotating area elements k(i, j) around the vertical
symmetry axis (x = 0, dashed-dotted line).

It is sufficient to concentrate the investigations to a con-
ductor length L = 4 mm (the shaded region in Fig. 1); the
optical thickness then is large enough to treat the radiation
problem as a diffusion process, see below. Bundles may es-
cape from the shaded region (index Escape) after a series
of absorption/remission or scattering interactions. In case
some bundles escape into positions x ≤ rWire, y < 0, they
contribute to temperature evolution at lower positions (sym-
metric to the shaded region) of the wire, and vice versa.

6 Data Input to Steps 1 and 2

The analysis is applied to YBaCuO, a high temperature su-
perconductor with critical temperature TCrit = 92 K; it is as-
sumed in the following the sample is a polycrystalline ma-
terial.

At the axial position (plane) y = 0, a single heat pulse
of in total 0.2 mJ shall be distributed over the target radius,
as a thermal disturbance again of �tP = 8 ns duration; be-
cause of symmetry with respect to y = 0, the shaded region
experiences a heat pulse of half this value. The length �tP ,
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Fig. 1 Section (shaded) of a superconductor wire schematically show-
ing area elements k(i, j), cylindrical co-ordinate systems, (x, y) and
(i, j), and radiation bundles (thick solid lines). The wire extends in y-
direction; length of the wire is arbitrary. Because of symmetry around
the target spot (the disturbance; thick horizontal line at y = 0), only the
region y ≥ 0 (shaded) is modeled. Bundles are emitted from the target
spot and from volume elements 1 ≤ k ≤ 1000 that are generated by
rotating the area elements k(i, j) around the symmetry axis (dashed–
dotted vertical line). Because of their finite mean free path, bundles
after emission are multiply absorbed/remitted and/or scattered in the

volume elements. With radii rTarget and rWire of target spot (40 µm)
and sample (200 µm), respectively, dimensions of the shaded area are
large in comparison to the radiative mean free path; see text. Full and
open circles denote final absorption or scattering of the bundle, respec-
tively. Scattering angle is denoted by θ . Bundles may escape from the
sample (index Escape) after a series of absorption/remission or scatter-
ing interactions. In case bundles escape from the shaded section into
positions x ≤ rWire, y < 0, they contribute to temperature evolution at
the lower positions of the wire (symmetric to the shaded region), and
vice versa

the same as applied in [5], was chosen first to strictly avoid
any superposition of the initial heat pulse with propagation
of bundles and with solid conduction heat transfer, second to
make results (temperature evolution, radiation heat transfer)
of both analyses (thin film, stability of a superconductor)
comparable.

We will for the moment assume temperature independent
values of solid thermal conductivity, λS , and specific heat,
cp , of the superconductor YBaCuO. With the density, ρ, of
this solid, we calculate energy balance and temperature evo-
lution starting with an initial temperature, T (t = 0) = 77 K.
This procedure simply serves to check whether meshing and
time steps appropriately are chosen for the strongly non-
linear FE calculation. As a result, the stagnation tempera-
ture, T (∞) = 77.199 K, is exactly (within a difference of
the order 10−7 K) reproduced by the FE-model, at a time
t = 104 s after start of the disturbance, at all internal posi-
tions of the conductor volume. Isotropic conductivity and
specific heat, mapped meshing and time steps of at least
10−12 s were used in this initial calculation. No radiative
heat transfer is included in this preliminary step (here, the
problem is strictly adiabatic).

But in all following calculations, λS and cp are treated as
temperature dependent quantities; these data are the same as
used in [7] (see references cited therein) where time depen-

dence of levitation under the Meissner–Ochsenfeld–Effekt
was modeled. This data set will in the following be referred
to as a standard input (or “standard model”), as it reflects
present, standard procedures to consider stability of super-
conductors, under solely solid conduction heat transfer. The
solid thermal conductivity, λS , in the following calculations
also takes into account anisotropy of conductive heat trans-
fer in YBaCuO, in directions parallel or perpendicular to
the crystallographic ab-plane of this material (like in [7], an
anisotropy factor of 10 has been applied in the calculations).

Extinction coefficients, E [m−1], needed for the Monte
Carlo and FE calculations, define the mean free path, lm =
1/E, of infrared photons (bundles) that are emitted from
the target surface and from all positions within the sample.
The lm determines location of the radiative volume sources,
Qint(x, y, t). After each absorption event along the path of
the bundle, the magnitude of the Qint(x, y, t) decreases un-
til the bundle energy is completely extinguished. The total
number of bundles is 5 × 104 which in Figs. 3 and 4b in [5]
proved to be sufficiently large to justify a diffusion model
approach to the radiative transfer problem.

Extinction coefficients, E, depend on temperature and on
wavelength, Λ, in particular with respect to location of the
energy gap of a superconductor. While this in principle re-
quires spectral values of E to be used in the Monte Carlo



342 J Supercond Nov Magn (2012) 25:339–350

Fig. 2 (a) Maximum and
minimum wavelengths,
Λmax(T ) and Λmin(T ), of the
black body spectrum (solid
diamonds) that is emitted from
the target spot after absorption
of a heat pulse, Q = 0.2 mJ
within 8 × 10−9 s, in
dependence of temperature, T .
The thick horizontal line
denotes wavelength,
Λ(2�E) = 155 µm,
corresponding to an energy gap,
�E = 4 meV, of the
superconductor. Radiation from
the tail of the black body
spectrum is sufficient for pair
breaking only if T > 350 K.
Solid circles, plotted for
orientation only, denote the
wavelength Λi,max(T ) at which
black body radiation intensity,
i(Λ), has its maximum (Wien’s
displacement law). (b) Fraction
(per cent) of total black body
intensity emitted at wavelengths
greater than Λ(2�E) = 155 µm,
in dependence of temperature

calculations, we will instead apply mean values of E taken
in an interval between Λmax(T ) and Λmin(T ), respectively.
This approach is justified as follows:

Figure 2a shows Λmax(T ) and Λmin(T ) of the black
body thermal wavelength spectrum in dependence of sam-
ple temperature, T . Maximum nodal temperature at central
front position (x = 0, y = 0) does not exceed 550 K; see
later (Fig. 3). Accordingly, wavelengths Λ < Λmax(T ) are
located almost entirely below the wavelength, Λ(2�E) =
155 µm, that corresponds to the energy gap, �E, of the su-
perconductor. A value �E = 4 meV has been assumed for
YBaCuO. Radiation from the tail of the black body spec-
trum is sufficient for pair breaking only if T > 350 K. At
lower temperatures, for all Λ > Λmax(T ), the fraction that
does not contribute to pair breaking, in relation to the total
emissive power of the black body spectrum, is below 6%
(Fig. 2b). The corresponding extinction coefficients accord-
ingly can be neglected from the Monte Carlo calculations,
in a good approximation.

In terms of wave numbers, v, it is then sufficient to find
a mean value of the extinction coefficient in the interval be-
tween v(2�E) and v(Λmin), i.e., 65 < v ≤ 3666 [cm−1],
respectively, in the superconducting state for investigation
whether a quench can be avoided, in the normal conduct-
ing state to find out how quickly sample temperature returns

to values below T Crit. In both temperature regimes, the ex-
tinction coefficient enters the Monte Carlo calculations (the
integral aspect) by stepwise reducing the total bundle en-
ergy (absorption) and by redirection of the bundles (scat-
tering) while in the finite element calculations (the gradi-
ent aspect of the combined radiation and conduction prob-
lem), the extinction coefficient enters the calculations via a
radiative conductivity λRad (compare standard volumes on
radiative transfer or Eq. 25a,b in [5]). The optical thick-
ness, τ = EL, of the sample must be large, otherwise the
approach λTotal = λS +λRad is not valid. With sample thick-
ness L = 4 mm, this is safely fulfilled with all E ≥ 104 m−1.

Estimate of the extinction coefficients is described in the
Appendix. Fortunately, mean values of E, and thus the nu-
merical analysis is little sensitive to spectral values of E at
wavelengths near Λmax (Fig. 2a) because spectral intensity
of the black body radiation at wavelengths close to this value
is already very small.

Accordingly, extinction coefficient and also albedo, Ω ,
are assumed as independent of wave length (gray materials),
with Ω = 0.5 to account for scattering contributions to ra-
diation extinction in a polycrystalline YBaCuO material. To
account for anisotropic (forward) scattering, an anisotropy
factor, mS = 6, has been applied; this factor (compare [5],



J Supercond Nov Magn (2012) 25:339–350 343

Fig. 3 (Color online) Nodal temperature at central front position
(x = 0, y = 0) when the wire (its shaded region, Fig. 1) is exposed to a
thermal disturbance (a single heat pulse) of Q = 0.1 mJ deposited dur-
ing 8 ns in the target plane (0 ≤ x ≤ rTarget, y = 0). Temperature evolu-
tion is calculated by the finite element model following a Monte Carlo

simulation of absorption/emission and scattering events in the wire.
Data are given either for solely solid thermal conduction (solid black
circles) or for conduction plus radiation heat transfer under different
values of the extinction coefficient, E (solid diamonds), respectively

Fig. 4 (Color online) Element
temperature, TEl(x, y, t) at the
time t = 0.1 ms after start of the
disturbance (Q = 0.1 mJ
deposited in the target plane of
the shaded region in Fig. 1
during 8 ns). Results are given
for different axial and radial
distances from the coordinate
origin (x = 0, y = 0 in Fig. 1).
Black solid circles refer to solely
conduction, solid diamonds to
conduction plus radiation heat
transfer using E = 104 m−1

Eq. 22) defines the scattering phase function (a value mS = 2
would indicate almost isotropic scattering).

7 Temperature Evolution After the Disturbance

As a result, Fig. 3 shows calculated nodal temperature evo-
lution, T (x, y, t), at the central position of the target spot
(x = 0, y = 0) for the thermal disturbance Q = 0.1 mJ re-
leased from the target spot to the shaded region in Fig. 1.
Results are presented for extinction coefficients 5 × 103 ≤
E ≤ 106 m−1 (the reason for practical limitation of the se-
ries to finally E = 106 m−1 is explained below).

First, the higher the extinction coefficient, the higher the
temperature at this position. This finding is in analogy to
the results obtained in [5] for materials like Graphite, SiC,
or ZrO2. The absorption coefficient, A = (1 − Ω)E, fo-
cuses distribution of remitted radiation (bundles) the more

closely to the sample surface (x = 0) the larger the extinc-
tion coefficient, E, and the larger the anisotropy factor, mS ,
for constant albedo. Spatial distribution of the heat sources
Qint(x, y, t) obtained for increasing E is described in Figs. 3
and 4a–c in [5]. For the focusing effect exerted by the factor
mS compare the distribution of the Qint(x, y, t) in Fig. 25 in
[5]. Scattered radiation does not contribute to the tempera-
ture evolution. That T (x = 0, y = 0, t) for E ≥ 104 m−1 is
larger than obtained with the “standard model” (solely solid
thermal conduction) thus can be explained by forward scat-
tering.

Second, all curves shown in Fig. 3 (and also temperatures
at other positions) converge

(a) to the same stagnation temperature: Contrary to the stan-
dard method (solely solid conduction), some radiation
is lost simply because of the finite values of E and by
multiple scattering that allows some bundles to leave
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the sample volume, e.g. to positions outside its radius or
in forward or backward axial directions. The T (∞) for
small E accordingly must be below the value T (∞)St

achieved with the standard method (77.199 K) but in-
crease with E (the larger E, the smaller the losses if
albedo, Ω , is constant). This is confirmed by the present
results: T (∞) increases from 77.143 to T (∞)St if E is
increased from 5 × 103 to 106 m−1, which in turn indi-
cates the losses are small,

(b) to the same T (x, y, t) at the position (x = 0, y = 0) for
t ≥ 10−8 s, i.e., after end of the heat pulse. This means
it is sufficient to stop the series of calculations with in-
creasing extinction at E = 106 m−1.

Element temperature, TEl(x, y, t), the average taken
over element nodal temperatures, T (x, y, t), is shown in
Fig. 4, at the time t = 0.1 ms after start of the disturbance
(Q = 0.1 mJ deposited in the target plane during 8 ns). Re-
sults are given for different axial and radial distances from
the coordinate origin (x = 0, y = 0 in Fig. 1). For solely
conduction, we observe almost constant TEl(x, y, t) within
radial distances from origin of 0 ≤ x ≤ 20 µm because the
disturbance is uniformly distributed over the target spot. In-
stead, from the strongly anisotropic forward scattering phase
function, the results obtained from conduction plus radiation
heat transfer are the more focused to small radial distances
the smaller the axial distance from the disturbance.

Different temperature profiles must lead to different pre-
dictions of superconductor stability. This follows immedi-
ately from the temperature dependence of critical current
density, JCrit. This dependence provides a single-valued
mapping of the temperature field, TEl(x, y, t) to the field
JCrit(x, y, t), if there is no magnetic field.

The temperature dependence of JCrit(T ) can be modeled
as

JCrit(T ) = JCrit(T = 0)

[
1 − T

TCrit

]n

(1)

The theoretical Ginzburg–Landau value of the exponent n

in (1) is 3/2. From experimental investigations of high tem-
perature superconductors, however, the exponent neither is
independent on the method of preparation (thin films, sub-
strate and its microstructure, 1G and 2G wires) nor is it
identical for all temperature regions below TCrit (quantum
creep, flux line core pinning or thermally activated depin-
ning regimes; see the results reported by Djupmyr [8]). Val-
ues of the exponent n for thin films are between 1 ≤ n ≤ 3
(Djupmyr [8] or Janus and Kus [9]), a value n = 2 was
found for intergranular critical current in ceramic Bi-2223
samples prepared in a solid-state reaction (Garcia-Fornaris
et al. [10]) as well as in Bi-2223 single crystals (Chu and
McHenry [11]), and n = 2 was also obtained in a 2G
YBaCuO-wire (Youssef et al. [12]).

Accordingly, the value n = 2 should be applicable for the
present purpose. Assuming JCrit(x, y, t = 0) = JCrit(T =
77) = 105 A/cm2 of YBaCuO in zero magnetic field, this
fixes JCrit(T = 0).

At positions close to the origin, JCrit will be zero in both
cases (T > TCrit at these positions), but the larger the dis-
tance from the origin (and the larger time, t), the larger JCrit,
in strict correspondence to the transient temperature field
T (x, y, t) This is reflected in the stability function, Φ(t).

8 Results of the Stability Function

The stability function applies the ratio JCrit(x, y, t)/JCrit(x,
y, t = 0) of transient critical current densities to critical cur-
rent density at t = 0,

0 ≤ Φ(t) = 1 −
(

1

A

)∫
JCrit(x, y, t)

JCrit(x, y, t = 0)
dA ≤ 1 (2)

with the integral taken over the conductor cross section, A,
at an axial position, y. The ratio JCrit(x, y, t)/

JCrit(x, y, t = 0) gets Φ(t) close to zero if JCrit(x, y, t) is
close to JCrit(x, y, t = 0), in other words, if the tempera-
ture field is not seriously disturbed from its initial values. In
this case, almost the whole conductor cross section remains
open, with high critical current density, to zero loss trans-
port current flow. However, if TEl(x, y, t) becomes close
to TCrit, JCrit(x, y, t) is very small at these positions, and
Φ(t) → 1; zero loss current transport current flow then is
hardly possible (in a sufficiently strong magnetic field, flux
flow resistance will come up).

In order to determine whether a particular conductor
cross section meets the stability criterion expressed by (2),
the stability function Φ(t) has to be determined for all axial
positions (planes) y, or as suggested in [3], as a worst case
assumption, the maximum of Φ(t) has to be considered, to
safely design the conductor cross section for zero loss cur-
rent transport (its radius or, for a rectangular conductor cross
section, its aspect ratio).

Figure 5a shows Φ(t) for pure solid conduction (black
solid circles) or conduction plus radiation heat flow (solid
diamonds), at axial distance (plane) y = 100 µm from the
origin, in dependence of time, for solely solid conduction
or conduction plus radiation using different extinction co-
efficients. Because it is a rather small thermal disturbance,
magnitude of the Φ(t) curves is below 0.3.

Zero loss DC transport current, ITransp, is given by

ITransp(t) = JCrit(x, y,77 K)
[
1 − Φ(t)

]
(3)

for all times, t ≥ 0. Deviations from the undisturbed zero
loss transport current (Fig. 5b) in the plane y = 0 observed at
t = 5 ms yet become significant: For the standard input, the
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Fig. 5 (Color online)
(a) Stability function, Φ(t),
calculated from element
temperature evolutions,
T (x, y, t), when the wire
(shaded region in Fig. 1) is
exposed to a thermal
disturbance of Q = 0.1 mJ
deposited in the target plane
(y = 0) during 8 ns. Results are
given at the plane y = 100 µm
(or distance from the
disturbance, a target of 40 µm
radius positioned in the plane
y = 0). The stability function is
calculated using (2). A critical
current density,
JCrit = 105 A/cm2 at T = 77 K
is applied. (b) Zero loss DC
transport current, at the
corresponding critical current
density, JCrit(x, y, t), through
the plane (distance to the
disturbance) y = 100 µm. Data
are calculated from the stability
functions given in Fig. 5a

reduction of zero loss ITransp at this position is from (undis-
turbed, t = 0) 126 to 88 A (black solid circles) while the dip
is from 126 to 97 A if also radiation and E = 106 m−1 is
taken into account (yellow solid diamonds), a difference by
about 10%. This is larger than fluctuations in JCrit that can
be tolerated for safe superconductor performance (fluctua-
tions of this order have been observed in 1G wires and are
assigned to conductor inhomogeneity).

But the results shown in Fig. 5a, b constitute the worst
case to be expected from the single pulse: At deeper ax-
ial conductor positions, on the planes y = 300 and 500 µm
where the disturbance almost has decayed, deviations of
zero loss transport current (Fig. 6a, b) from the undisturbed
value are significantly smaller (from 126 to 106 or to 103 A,
for solely conduction and conduction plus radiation, under
E = 106 m−1, respectively).

From the small stability functions shown in Figs. 5a and
6a, a first impression is that hot spots hardly will arise in
the conductor as long as transport current will be limited
to the above reported values. However, the stability func-
tion, an integral view taken over the whole conductor cross
section, does not reflect local high temperatures observed
near conductor central front position (Figs. 3 and 4): Nodal

T (x = 0, y = 0, t) and element temperature quickly exceeds
critical temperature if after a disturbance radiation signifi-
cantly contributes to internal heat transfer. It will be shown
in the following that radiation may have even more seri-
ous impacts on conductor stability in case of periodic dis-
turbances.

9 Results Obtained for a Periodic Disturbance

The target spot of the cylindrical sample (Fig. 1) now is ex-
posed to an intensity-modulated energy pulse Q(t) under a
frequency of ω = 105 1/s. For the source, we assume

Q(t) = Q0 sin(2πωt) + Q0 [J] (4)

with a very small Q0 = 2 × 10−9 J; half of this value is ex-
perienced by the shaded region in Fig. 1. The small Q0 was
taken in order to keep temperature evolution during a simu-
lated time interval of 0.1 ms small, to continue calculations
with the same temperature dependent values of conductivity
and specific heat of YBaCuO as before (the impact of radi-
ation on internal heat transfer and stability can be demon-
strated also with such a small source, as will be seen in the
following figures).
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Fig. 6 (Color online)
(a) Stability function, Φ(t), as
before calculated from element
temperature evolutions,
T (x, y, t), using (2). Same input
data and calculation as in
Fig. 5a but at the planes y = 300
(solid symbols) and 500 µm
(open symbols). (b) Zero loss
DC transport current, at the
corresponding critical current
density, JCrit(x, y, t). Same
input data and calculation as in
Fig. 5b but through the planes
y = 300 (solid symbols) and
500 µm (open symbols)

The large frequency was chosen to clearly separate be-
tween penetration depth of the thermal wave, δ(ω), and the
mean free path of the incoming radiation, lm = 1/E. The
diffusivity, DT , of YBaCuO at T = 80 K amounts to about
4 × 10−6 m2/s. Using for the moment an extinction coef-
ficient E = 5 × 103 m−1 constant (the comparatively small
value is taken just to explain the principle), we have from
δ(ω) = C(2DT /ω)1/2, with C a constant (C = 4.6 for a flat,
semiinfinite sample)

δ(ω) ≈ 40 µm � lm = 200 µm

Penetration depth of the thermal wave, and thus variations
of the stability function in relation to its undisturbed value
(Φ = 0 at t = 0) thus would be restricted to a thin layer
of only about 40 µm below the periodically heated surface
if there is only solid conduction. But generation of volume
power sources, by absorption of radiation emitted from the
target spot, is expected, on a statistical average, at least up
to a depth of 200 µm. Accordingly, periodic variations of Φ

should be observed, at least within this depth.
Penetration of a periodic thermal disturbance applied to

the surface of a semiinfinite, solely solid conducting sample
(y = 0) shows two characteristic items:

(i) exponential damping of the temperature amplitude,
T (x, y, t) by a factor exp [−y(ω/2DT )1/2],

(ii) a phase shift, χ = y(ω/2DT )1/2 that increases with
depth, y.

Assuming the same predictions approximately apply also to
a sample of finite thickness, we will check it by means of
the nodal temperature evolution for the center of the target
spot (x = 0, y = 0), again for standard (purely conductive)
and conductive plus radiative conditions, respectively. To
reduce computer time, we have in the following restricted
the calculated periods of time to in total 10 full oscilla-
tions (thus total simulated time t = 10−4 s). A stationary
state cannot be reached neither within this nor within any
other period because we have neglected all possible surface
heat sinks (radiative or convective losses to the conductor
environment, with the exception that few bundles may es-
cape from the conductor volume). But the simulated period
of time of 10−4 s is long enough to demonstrate the enor-
mous differences that arise between the standard assumption
(solely conduction) and the conductive plus radiative case.

Figure 7 (nodal temperature evolution at central front po-
sitions) demonstrates that items (i) and (ii) of the above al-
low to clearly distinguish between the pure conductive and
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Fig. 7 (Color online) Nodal
temperature, T (x, y, t), at
central front position (x = 0,
y = 0), under periodic thermal
load, compare (4). Data are
given for solely solid thermal
conduction (black solid circles)
and conduction plus radiation
(solid diamonds), respectively

the conductive plus radiative case also with large extinction
coefficients:

(i) While a temperature oscillation at central front position
(x = 0, y = 0), under solely conduction (solid black cir-
cles) still can be identified, it will heavily be damped to
a tiny temperature amplitude at the depth y = 500 µm
(see later, Fig. 10). Any significant variation of the tem-
perature field would be made obvious by the behavior of
the corresponding stability function and of the zero loss
DC transport current. The phase shift, under solely con-
duction, at this deep position is so large that it exceeds
the simulated time interval.

(ii) Under conduction plus radiation, the temperature am-
plitude (solid diamonds in Fig. 7) can become much
stronger if E increases, and the oscillation of the tem-
perature field and, correspondingly, of the phase func-
tion (see below), is clearly maintained, as is to be
expected from the distribution of the volume power
sources, Qint(x, y, t), that almost instantaneously re-
flect the periodic variation of the radiative energy source
located at the plane y = 0.

Figures 8a, b and 9a, b show stability functions and
zero loss DC transport currents at different axial distances
(planes) from the origin. Both quantities are much smaller
than those that were obtained with the single pulse, because
of two reasons: (a) the very small amplitudes of the periodic
disturbance, in relation to the amount of the single pulse, (b)
the short simulated time interval. At y = 100 µm (Fig. 8a),
pure solid conduction dominates among the different stabil-
ity functions, and the reduction of zero loss transport cur-
rent (Fig. 8b) through this plane remains small, from 126 to
120 A for solely solid conduction, or from 126 to 122 A for
conduction plus radiation, at the end of the simulated period
of time. At y = 300 and 500 µm (Fig. 9a, b), the deviations
between the two cases become almost negligible.

Does this imply propagation of a transport current will
not be disturbed seriously by a single or a periodic ther-

mal disturbance? By no means, by two reasons: First, it is
clear from Figs. 3 and 7 that superconductor temperature
very quickly exceeds critical temperature, and the tempera-
ture rise will continue if the period of time of the periodic
disturbance would be extended. Second, the stability func-
tions do not reflect run-off of local conductor temperature
under conductive plus radiation heat transfer. They cannot
exclude conductor damage if strongly forward scattered ra-
diation would significantly contribute to thermalization of a
disturbance.

Such a situation can arise in a superconducting, flux flow
fault current limiter that protects electrical installations in an
AC grid. Here, of course, the frequency of any period dis-
turbance is much smaller so that the penetration depth of the
thermal waves, if a period disturbance would exist, is much
larger. But the essential point is not coupled to the thermal
wave propagating under solid conduction only. It is the ra-
diative aspect that has to be considered: In such a current
limiter, flux flow resistance will periodically rise to a maxi-
mum, during the period where fault current, JFault, exceeds
critical current density, JCrit, and decrease to zero when this
condition is no longer fulfilled; then the conductor line again
is open to the fault current if it still exists. In the usual de-
sign of a fault current limiter, the superconductor volume is
large enough to compensate conductor flux flow resistance
losses by its increased thermal capacity so that the conductor
shall not enter the Ohmic resistance region. But there may
be resistances other than by flux flow, e.g., contact resis-
tances between conductor length sections that would initial-
ize periodic losses during those periods where JFault < JCrit.
Generation of hot spots and corresponding losses then can
arise not only at the exact location of the contact resistance.
A means to avoid this situation is by installation of a con-
ventional switch that positioned in line to the fault current
limiter interrupts the conductor line before hot spots would
be generated. But the question is how safely a conventional
switch that like the stability function takes an integral view
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Fig. 8 (Color online)
(a) Stability function, Φ(t),
calculated from element
temperature evolutions,
T (x, y, t), under periodic
thermal load. Results are given
at the plane y = 100 µm using
(2). A critical current density,
JCrit = 105 A/cm2 at T = 77 K
is assumed in the calculation of
Φ(t). (b) Zero loss DC transport
current, at the corresponding
critical current density,
JCrit(x, y, t), under periodic
thermal load, through the plane
y = 100 µm

of the temperature field can resolve periodically fluctuating
local disturbances.

10 Summary and Conclusions

We have studied the impact of radiation heat transfer on
temperature evolution and predictions of the stability func-
tion for zero loss DC transport current in a high tempera-
ture superconductor. The numerical analysis is based on a
complicated interplay of Monte Carlo simulations of radia-
tion bundles emitted from a target surface (the disturbance)
and absorbed within the conductor volume and a rigorous
finite element analysis to calculate the resulting temperature
profiles in a thin superconductor wire. The calculations are
performed either for the standard, purely conductive case,
or for conduction plus radiation heat transfer under dif-
ferent constant extinction coefficients, in an absorbing and
anisotropically scattering, poly-crystalline material. It fol-
lows from the analysis that small stability functions cannot
safely exclude local conductor damage if radiation would
significantly contribute to thermalization of a disturbance in
a conductor. This becomes even more serious if periodic dis-
turbances are considered. Long-living, periodic disturbances

like in a flux flow current limiter, under conduction plus ra-
diation heat transfer, not only could lead to local conductor
damage but they also might quickly close all open channels
for zero loss current transport.

Appendix

If not available from transmission measurements, extinction
coefficients for the superconducting and normal conduct-
ing states can be estimated from literature values of spec-
troscopic measurements of reflectivity and corresponding
Kramers–Kronig analysis. From the large variety of reflec-
tivity measurements with high temperature superconductors
reported in the literature, we in the following apply results
from Kamarás et al. [13] and Chen for YBaCuO [14]. First,
Kamarás et al. [13] showed that the mid-infrared absorption
is a direct electronic absorption, with an onset at 140 cm−1

in YBa2Cu3O7−δ . The authors find that absorption across
the gap is weak because the investigated high-Tc materials
was in the clean limit, and this weak absorption is masked
by the mid-infrared absorption. Chen [14] then applied a two
component mode for the dielectric function. Figures 3.13
and 3.17 in this reference exactly cover the region of wave
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Fig. 9 (Color online)
(a) Stability function, Φ(t),
calculated from element
temperature evolutions,
T (x, y, t), using (2), under
periodic thermal load. Same
input data and calculation as in
Fig. 8a but at the planes y = 300
(solid symbols) and 500 µm
(open symbols) that are large in
comparison to the penetration
depth of the periodic thermal
wave (about 40 µm at a
frequency of 1051/s). (b) Zero
loss DC transport current, at the
corresponding critical current
density, JCrit(x, y, t), under
periodic thermal load. Same
input data and calculation as in
Fig. 8b but at the planes y = 300
(solid symbols) and 500 µm
(open symbols)

Fig. 10 Zero loss DC transport current through the plane y = 500 µm,
which is of at least one order of magnitude larger than the penetration
depth of the thermal wave, at the frequency 105 1/s. The figure serves
to confirm that variations of the transport current with time are neg-
ligible, which means variations of stability function and temperature
field must be negligible as well, if considering solely solid thermal
conduction (black open circles). Also, a phase difference also can no

longer be identified from the black open circles, on this time scale. The
opposite result (periodically fluctuating, finite amplitude, even at this
distance from the disturbance) is observed for the case conduction plus
radiation heat transfer (open diamonds), because of the comparatively
large radiation mean free path of the bundles, lm = 100 µm resulting
from E = 104 m−1



350 J Supercond Nov Magn (2012) 25:339–350

numbers to be considered in the present paper. From the
complex optical conductivity for optimally doped YBaCuO,
σ = σ1 + iσ2, a mean value of the extinction coefficient,
E = 4πk/Λ, in the order of 107 m−1 in the superconducting
state at a mean Λ = 50 µm has been estimated on basis of
the usual relations n2 − k2 = ε1 and 2nk = ε2 = 2σ/ω, with
k the imaginary part of the index of refraction, ε1,2 the real
and imaginary part of the dielectric constant, and ω the fre-
quency. In the normal conducting state, the spectral response
of the optical conductivity, in particular at small wave num-
bers, is clearly different. Both real and imaginary parts of
the optical conductivity are definitely smaller than in the su-
perconducting state (the imaginary part by at least an order
of magnitude). This means also the extinction coefficient is
reduced, to a mean value of about E = 5 × 106 m−1 taken
over the same interval of wave numbers. Also, note that the
analysis in [14] was applied to thin film samples prepared
by pulsed laser ablation from a stoichiometric YBaCuO-
target onto SrTiO3 substrates. For the wire modeled in the
present paper, we instead expect a polycrystalline material
with smaller extinction coefficient than the values obtained
from the optical conductivity reported in [14] (the absorp-
tion coefficient, A, is definitely smaller, but there will be
some scattering contributions, S = ΩE, to the total extinc-
tion coefficient).

Accordingly, Monte Carlo calculations were performed
for the series 5 × 103 ≤ E ≤ 106 m−1. If the series would
be continued up to E = 107 m−1, the mean free path, lm, of
the bundles between two interactions becomes very small,
lm = 0.1 µm, and the optical thickness, τ , of the sample in
y-direction accordingly very large, τ = 4×104. Such a large
number of absorption/remission and scattering events would
very strongly increase computation time in the Monte Carlo
analysis to unacceptably long periods of time (this extends
to the order of days on a PC under Windows XP using a
3.8 GHz processor and 4GB work space).
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