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ON DYNAMICS OF QUANTUM STATES GENERATED BY
THE CAUCHY PROBLEM FOR THE SCHRÖDINGER EQUATION
WITH DEGENERATION ON THE HALF-LINE

V. Zh. Sakbaev UDC 517.946

Abstract. The paper considers the Cauchy problem for the Schrödinger equation with operator degenerate
on the semiaxis and the family of regularized Cauchy problems with uniformly elliptic operators whose
solutions approximate the solution of the degenerate problem. The author studies the strong and weak
convergences of the regularized problems and the convergence of values of quadratic forms of bounded
operators on solutions of the regularized problems when the regularization parameter tends to zero.

Introduction

In this paper, we study the Cauchy problem for the Schrödinger equation on the line with variable-
type operator that is a second-order differential operator on the semiaxis that degenerates to a first-order
operator on the complement to the semiaxis.

The conditions for the well-posedness of the statement of initial-value problems for second-order
mixed-type equations were studied in [3]; in particular, the domains of boundary conditions depending
on the form of the differential operator were indicated there. In [8], the well-posedness of the initial-value
problem with second-order operator having a nonnegative characteristic form was studied by using the
vanishing-viscosity method. This method was effectively applied in studying degenerate variable-type
equations and first-order partial differential equations (see [1]). For example, to study the well-posedness
of the boundary-value problem with degenerate second-order operator in divergence form, Zhikov [12]
considers a family of regularized problems with uniformly elliptic operators approximating the initial
problem with degenerate operator when the regularization parameter ε tends to 0. The existence was
proved and a description of the set of partial limits of solutions of the regularized problems as ε→ 0 was
given; moreover, for every partial limit, the variational formulation of the limit degenerate problem for
which this partial limit is its unique solution was found.

In this work, we consider the model problem

i
∂u(t, x)
∂t

= Lu(t, x), t > 0, x ∈ R, (1)

u(+0, x) = u0(x), x ∈ R, (2)

Lv =
∂

∂x

[
g(x)

∂v

∂x

]
+
i

2

(
a(x)

∂v

∂x
+
∂a(x)v
∂x

)
, (3)

where u0(x) is a given function, v(x) is a test function, the functions g(x) and a(x) are real-valued, and
g(x) ≥ 0. In the work, we consider the model problem for the function g(x) = θ(−x) and the function
a(x) = aθ(x), a ∈ R; here, θ(x) is the Heaviside function. The operator L is a second-order operator on
the set R−, and it is a first-order operator on the set R+.

A direct study of the Cauchy problem (1), (2) meets certain difficulties (see, e.g., [3,10]). To find the
solution of the problem (1), (2), we use the ideas of the vanishing-viscosity method. Let us consider the
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family of operators Lε depending on the regularization parameter ε ∈ (0, 1) and given by the expressions

Lεv =
∂

∂x

[
gε(x)

∂v

∂x

]
+
i

2

(
a(x)

∂v

∂x
+
∂a(x)v
∂x

)

in which the function a(x) = aθ(x), a ∈ R, and the functions gε(x) = 1 − (1 − ε)θ(x) depend on the real
parameter ε ∈ (0, 1).

For every ε ∈ (0, 1), the operator Lε is a second-order elliptic-type operator on the axis R. The
characteristic forms of the regularized operators Lε uniformly converge to the characteristic form of the
degenerate operator L on each compact set. Along with the problem (1), (2) in which the operator L
is a variable-type operator degenerating on the semiaxis, we consider the family of regularized Cauchy
problems with initial condition (2) for the family of equations

i
∂u(t, x)
∂t

= Lεu(t, x), t > 0, x ∈ R, ε ∈ (0, 1). (4)

The regularized Cauchy problems (2), (4) have been well studied (see [9, Chap. 8]), and it is known
that for any initial condition u0(x) ∈ L2(R), there exists a unique solution uε(t, x) of the regularized
problem, and, moreover, the correspondence ULε(t) : u0(x) → uε(t, x), t ∈ R, is a unitary group.

In [11], the convergence of the family of solutions of the regularized problems (2), (4) as ε → 0 was
studied. It was proved that the weak convergence of the family as ε→ 0 holds for any choice of the initial
conditions u0 ∈ L2(R) and the parameter of the operator a ∈ R. The conditions on the parameters of the
problem that are necessary and sufficient for the norm-convergence of the family as ε→ 0 were found.

In quantum-mechanics problems, it is required to find the dynamics of values of observables that are
bounded operators in H. Denote by B(H) the Banach space of bounded operators on a Hilbert space H
with the operator norm. The Cauchy problem for the Schrödinger equation having a unique solution
determines the dynamics of values of bounded operators, i.e., the mapping R+ × B(H) → C acting
according to the rule (t,A) → (

u(t),Au(t)
)
. One asks if the solution of the Cauchy problem (1), (2) is

approximated by solutions of the regularized problems (2), (4) whether or not the sequence of regularized
dynamics of values of bounded operators determines the dynamics of values of bounded operators for the
limit problem (1), (2) when the regularization parameter tends to zero?

Undoubtedly, the strong convergence of the sequence of regularized solutions uε(t) → u(t) as ε → 0
implies the convergence of the regularized dynamics

(
uε(t),Auε(t)

)
to the limit dynamics

(
u(t),Au(t)

)
.

However, the weak convergence of the sequence of regularized solutions guarantees only the convergence
of values of all linear continuous functionals on the space L2(R) = H on solutions, but it cannot guarantee
the convergence of values on the sequence of solutions of quadratic forms of bounded operators.

In the present work, we show that in the case of only weak convergence of the family of regularized
problems, the convergence of quadratic forms of all bounded operators is impossible. However, for a cer-
tain narrower class of bounded operators B1 ⊂ B(H), it is possible to find an infinitely small sequence
of regularization parameters such that the sequence of dynamics

(
uεn(t),Auεn(t)

)
corresponding to it

converges for any operator A from the class B1.
In [4], Gerard studied the convergence of probability measures on the coordinate space R whose den-

sity is defined by a weakly convergent sequence {un(x)} of elements of the space L2(R). The convergence
of values on this sequence of elements of quadratic forms for a certain class of pseudodifferential operators
was considered. In the present paper, we study the dynamics of values of quadratic forms of all operators
from the algebra of multiplication operators by a continuous function and unitary equivalent Abelian
operator algebras (see [5]). For this purpose, we consider the convergence as ε → 0 of a family of prob-
ability measures Pε(t) with distribution functions Fε(t, x) defined by solutions uε(t) and the orthogonal
decomposition E(λ) of the identity operator on L2(R) according to the rule

Fε(t, λ) =

λ∫
−∞

(
uε(t), dE(µ)uε(t)

)
.
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In terms of the behavior of the family of indicated probability measures, we found necessary and sufficient
conditions for the convergence of values of quadratic forms of all multiplication operators by a function
on the family of solutions of the regularized problems (2), (4) as ε→ 0.

The Cauchy problem (1), (2) with degenerate variable-type operator studied in the paper can arise
in studying the linearization of the Cauchy problem for a nonlinear equation. The problems considered
in the paper arise in describing the motion of mechanical systems with variable effective mass whose
examples occur in rigid-body physics. The example of a family of quantum systems whose dynamics is
described by the family of problems (2), (4) is presented in [10].

Definition of a Solution of the Cauchy Problem

The maximal domain of the operator L generated by the differential expression (3) is the linear variety
D(L) consisting of those elements u(x) ∈ L2(R) for which the application of the differential expression (3)
to u(x) has the meaning as an element Lu(x) ∈ L2(R):

D(L) = {u(x) ∈ L2(R) : Lu(x) ∈ L2(R)}. (5)

The maximal domain of the operator L is uniquely defined by this condition for any a �= 0 (see [10]).
The domain of the operator D(L) is dense in the space L2(R), and the operator L is symmetric and

closed. It is easy to prove that the adjoint operator L∗ acts according to the same formula (3) and its
domain is wider. Then one can directly verify that if a �= 0, then Ker(L∗ − iaI) = {0}, and Ker(L∗ + iaI)
is a nontrivial, one-dimensional linear subspace and the deficiency indices of the operator L are different.
Hence the spectrum of the operator L fills in the whole real axis.

Transform the domain D(L) into a Hilbert space by equipping it with the norm of the graph of the
operator L. Furthermore, denote by Cm

(
(a, b), X

)
the space of m-times continuously differentiable (with

respect to the norm of the space X) mappings x(t) of the interval (a, b) into a linear normed space X
with the norm

‖x(t)‖Cm((a,b),X) = max
j=0,1,...,m

{
sup

t∈(a,b)
‖x(j)(t)‖X

}
.

Denote by X ∩ Y the intersection of the spaces X and Y equipped with the norm ‖f‖X∩Y =
max{‖f‖X , ‖f‖Y }.

Let us consider the family of regularized problems (2), (4) for ε ∈ (0, 1) approximating the problem
(1), (2) as ε→ 0.

The maximal domain D(Lε) of the operator Lε was described in [8], where it was proved that for any
ε > 0, the differential operator Lε is a self-adjoint operator on the space L2(R). Therefore (see [9]), for
any ε > 0, the Cauchy problem (2), (4) defines a group of unitary transformations ULε(t) = exp(iLεt),
t ∈ R, on the space L2(R).

Definition 1. A function u(t, x) ∈ C
(
R+, L2(R)

)
is called a strong approximate solution of the problem

(1), (2) if there exists a sequence {εk}, lim
k→∞

εk = 0, such that the following condition holds for any T > 0:

lim
ε→0

‖ULε(t)u0(x) − u(t, x)‖C([0,T ],L2(R)) = 0.

Definition 2. A weakly continuous mapping u(t, x) of the semiaxis R+ into the space L2(R) is called
a weak approximate solution of the problem (1), (2) if there exists a sequence {εk}, lim

k→∞
εk = 0, such

that the following condition holds for any function v(x) ∈ L2(R) and any T > 0:

lim
k→∞

sup
t∈[0,T ]

∣∣(ULεk
(t)u0(x) − u(t, x), v(x)

)∣∣ = 0,

where (·, ·) denotes the inner product of the space L2(R).

The strong and weak approximate solutions satisfy Eq. (1) in the sense of the integral identity (see [11])
and condition (2) in the sense of the strong and weak convergences in L2, respectively.
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On the Convergence of Solutions

The following result on the convergence of the family of regularized problems was proved in [10].

Theorem 1. Let a ≤ 0. Then for any u0 ∈ L2(R), there exists a unique strong approximative solution
u(t, x), and, moreover, the following relation holds for any T > 0:

lim
ε→+0

‖uε(t, x) − u(t, x)‖C([0,T ],L2(R)) = 0.

The following theorem is an insignificant reformulation and generalization of the assertions of Theo-
rem 5 in [11].

Theorem 2. For any a > 0, there exist subspaces H0 and H1 of the space H = L2(R) such that
(1) for any u0(x) ∈ H0, there exists a unique strong approximate solution u(t, x) of the Cauchy

problem (1), (2), and, moreover, for any t > 0, the conditions u(t, x) ∈ H0 and ‖u(t, x)‖L2(R) =
‖u0(x)‖L2(R) hold ;

(2) for any u0(x) ∈ H1, there exists a unique weak approximate solution u∗(t, x) of the Cauchy problem
(1), (2), and, moreover, for any t > 0, the conditions u∗(t, x) ∈ H1 and lim

t→+∞ ‖u∗(t, x)‖L2(R) = 0

hold ;
(3) the Cauchy problem (1), (2) has a strong approximate solution if and only if u0(x) ∈ H0.

The proof of the theorem is published in [11]; also, the representation of the subspaces H0 and H1

through the parameters of the operators of the problem (1), (2) is found there.

On the Convergence of Probability Measures

In [11], the author performed a study of the convergence of probability measures on the coordinate
space that are defined by the sequence of solutions of regularized problems and the orthogonal partition
of unity of the multiplication operator by the coordinate when the regularization parameter tends to
zero. The goal of this paper is to generalize the result of [11] to the case of an arbitrary partition of
unity E(λ). However, in this case, we cannot prove the differentiability of densities of the measures in
the parameter λ and cannot use the Nikol’skii embedding theorems as in [11]. In the present paper, we
overcome this gap using the Helly choice principle, which allows us to prove Theorem 3. In the case
of smooth initial conditions, we prove the equicontinuity in t of the family of distribution functions of
probability measures on the interval (0,+∞), which allows us to prove Theorem 4. Theorem 5 is proved by
using the continuous dependence of the distribution function on the initial conditions proved in Lemma 2;
it allows us to continuously extend the result of Theorem 6 to the whole space L2(R) of initial conditions.

Everywhere in what follows, let E(λ), λ ∈ R, be an orthogonal partition of unity in the Hilbert space
L2(R) ≡ H. Then the following assertion holds.

Theorem 3. Let u0(x) ∈ L2(R) and let {εn} be a certain infinitely small sequence. Then for any t > 0,
there exist a subsequence εnk

of the sequence {εn} and a function G(t, ξ) ∈ L1,loc(R) defined on the whole
axis R such that it monotonically increases and satisfies the inequalities 0 ≤ G(t, ξ) ≤ 1 for which the
sequence {Gnk

(t, ξ)}, where

Gnk
(t, ξ) =

ξ∫
−∞

(
uεnk

(t), dE(λ)uenk
(t)

)
,

converges to the function G(t, ξ) in the space L1,loc(R).

Proof. Let εn be an arbitrary infinitely small sequence. For a fixed t > 0, consider the sequence of
functions

Gn(t, λ) =

λ∫
−∞

(
uεn(t), dE(µ)uεn(t)

)
, λ ∈ R, n ∈ N.
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Then for each n ∈ N, the function Gn(t, λ) monotonically increases, 0 ≤ Gn(t, λ) ≤ 1, and Gn(0, λ) =
G0(λ), n ∈ N.

For a fixed t > 0, consider the sequence of functions Gn(t, λ), n ∈ N. Since all elements of the above
sequence are uniformly bounded in the uniform norm and are monotone functions with respect to the
variation, it follows that by the Helly theorem (see [6]), we can extract a subsequence Gnk

(t, λ) from the
sequence Gn(t, λ) that pointwise converges to the function G(t, λ), which is monotone (and hence is of
finite variation) and such that 0 ≤ G(t, λ) ≤ 1 on the axis R.

Fix a certain l > 0. Then according to the Egorov theorem (see [9]), for any δ > 0, on the closed
interval [−l, l], there exists a set Ω, mes Ω ≤ δ, such that the sequence Gn(t, x) uniformly converges on the
set [−l, l]\Ω. Then it is easy to see that by the uniform boundedness of the functions Gn(t, x) and G(t, x)
and the arbitrariness of δ > 0, the sequence Gn(t, x) converges in the space L1([−l, l]), which implies the
assertion of Theorem 3.

Denote by KT,l, T > 0, l > 0, the set [0, T ]× (−l, l] and by C
(
R+, L1,loc(R)

) ≡ Cloc (see [7]) the linear
topological space of functions u(t, x) such that u(t, x)|K(T,l) ∈ C

(
[0, T ], L1([−l, l])

)
for any T > 0 and l > 0

in which the convergence is defined by the family of seminorms pT,l(u) = ‖u(t, x)|K(T,l)‖C([0,T ],L1(−l,l)).

Lemma 1. If the sequence fn(t, x) is a Cauchy sequence in the space Cloc (i.e., for any T, l > 0, the
sequence fn(t, x)|K(T,l) is a Cauchy sequence in C

(
[0, T ], L1(−l, l)

)
), then it has a limit in the space Cloc.

Proof. The space C
(
[0, T ], L1(−l, l)

)
is complete; therefore, for any T, l > 0, the sequence fn(t, x)|K(T,l)

has the limit fT,l(t, x) ∈ C
(
[0, T ], (−l, l)). Moreover, if T1 > T and l1 > l, then by the uniqueness of

the limit, we have F T1,l1(t, x)|K(T,l) = fT,l(t, x). Therefore, the function f(t, x) ∈ C
(
R+, L1,loc(R)

)
such

that f(t, x)|K(T,l) = fT,l(t, x) for any K(T, l) is uniquely defined. Then f(t, x) is the limit of the sequence
fn(t, x) in the space Cloc. Lemma 1 is proved.

Theorem 4. For any function u0 ∈ ⋂
ε∈[0,1]

D(Lε) and any infinitely small sequence {εn}, there exist

its subsequence εk and a function F (t, λ) ∈ C
(
R+, L1,loc(R)

)
such that the sequence Fεk

(t, λ) converges
to F (t, λ) in C

(
R+, L1,loc(R)

)
. Moreover, 0 ≤ F (t, λ) ≤ 1, and for each t > 0, the function F (t, λ) is

monotone on R.

Proof. Let tj , j ∈ N, be a certain sequence defining the enumeration of all rational numbers from the half-
open interval [0,+∞). Then from the sequence εn, we can extract a subsequence ε1nk

and find a function
F (t1, λ) ∈ L1,loc(R) for which F

e
(1)
nk

(t1, λ) converges to F (t1, λ) in L1,loc(R) as k → ∞; moreover, according

to Theorem 3, 0 ≤ F (t1, λ) ≤ 1 and the function F (t1, λ) monotonically increases on the axis R.
Analogously, from the sequence ε(1)nk , we can extract a subsequence ε(2)nk and find a function F (t2, λ) ∈

L1,loc(R) for which F
e
(2)
nk

(t1, λ) converges to F (t1, λ) in L1,loc(R) as k → ∞, and the function F (t2, λ)

satisfies the same boundedness and monotonicity conditions.
Therefore, for any p ∈ N, there exists a subsequence ε(p)

nk that is a subsequence of the sequence ε(p−1)
nk

and there exists a function F (tp, λ) ∈ L1,loc(R) for which Fep
nk

(tp, λ) converges to F (tp, λ) in L1,loc(R) as
k → ∞, and the function F (tp, λ) satisfies the boundedness and monotonicity conditions.

Then the sequence ε(p)
np that is a subsequence of the sequence εn is such that for any q ∈ N, the

sequence F
ε
(p)
np

(tq, λ) converges to F (tq, λ) in the space L1,loc(R).

Hence for any tq ∈ Q+, any l > 0, and any σ > 0, there exists a number p0 ∈ N such that for any
p ≥ p0, ∥∥F

ε
(p)
np

(tq, λ) − F (tq, λ)
∥∥

L1([−l,l])
≤ σ. (6)

Let us show that there exists a function F (t, λ) ∈ C
(
R+, L1,loc(R)

)
such that the sequence F

ε
(p)
np

(t, λ)

converges to F (t, λ) in the space C
(
R+, L1,loc(R)

)
as p→ ∞, i.e., for any T > 0, l > 0, and σ > 0, there
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exists p0 such that the following inequality holds for all p > p0:∥∥F
ε
(p)
np

(t, λ)|K(T,l) − F (t, λ)|K(T,l)

∥∥
C([0,T ],L1([−l,l]))

< σ.

According to Eq. (1), the following relation holds for any n ∈ N:

∂

∂t
Fεn(t, λ) = jn(t, λ),

where

jn(t, λ) = i

λ∫
−∞

[(
Lεnuεn(t), dE(µ)uεn(t)

) − (
uεn(t), dE(µ)Lεnuεn(t)

)]
.

Hence, for any n ∈ N, the following estimate holds in accordance with the Cauchy–Bunyakovskii inequality:

sup
t>0, λ∈R

|jn(t, λ)| ≤ 2 sup
t>0, ε∈(0,1)

[ λ∫
−∞

(
Lεnuεn(t), dE(µ)Lεnuεn(t)

)]1/2[ λ∫
−∞

(
uεn(t), dE(µ)uεn(t)

)]1/2

≤ ‖Lεuε(t)‖L2‖uε(t)‖L2 = 2‖L1u0‖L2 ,

since the transformations ULε(t) are unitary and the relations ‖Lεu0‖ ≤ ‖L1u0‖, ε ∈ (0, 1), hold for any
u0 ∈ ⋂

ε∈[0,1]

D(Lε) .

Therefore, for any l > 0, there exists a constant c(l) > 0 such that for all n ∈ N,

sup
t≥0

∥∥∥∥ ∂∂tFεn(t, λ)|R+×[−l,l]

∥∥∥∥
L1([−l,l])

≤ c(l).

Hence, for any t1, t2 ∈ R+ such that |t2 − t1| ≤ σ, the following inequality holds for any n ∈ N:

‖Fen(t2, λ) − Fεn(t1, λ)‖L1([−l,l]) ≤ c(l)σ. (7)

For each m ∈ N, on the half-open interval [0,+∞), let us choose points t(m)
j = 2−mj, j,m ∈ N; then

t
(m)
j ∈ Q and t(m)

j − t
(m)
j−1 = 2−m, j ∈ N.

Let p(m)(t, λ) ∈ C(R+, L1,loc) be a mapping of the semiaxis R+ into the linear topological space
L1,loc(R) that is piecewise-linear on R+, linear on the intervals

(
t
(m)
j−1, t

(m)
j

)
, j = 1, . . . , N , and such that

p(m)
(
t
(m)
j , λ

)
= F

(
t
(m)
j , λ

)
, j ∈ N. (8)

Proposition 1. The sequence {p(m)(t, λ)} is a Cauchy sequence in the space Cloc.

Proof. Fix certain T, l>0. Then the sequence p(m)(t, λ)|K(T,l) is a Cauchy sequence in C
(
[0, T ], L1([−l, l])

)
,

since the following inequality holds according to (7) and (8):

sup
t∈[0,T ]

‖p(m+q)(t, λ) − p(m)(t, λ)‖L1([−l,l]) ≤ 2−mc(l). (9)

The proposition is proved.

It follows from Lemma 1 and Proposition 1 that there exists F (t, λ) ∈ Cloc such that the sequence
p(m)(t, λ) converges to F (t, λ) in the space Cloc as m→ ∞.

We stress that the sequence of functions p(m)(t, λ) and hence its limit are independent of the param-
eters T and l. Only the constant in the estimate (9) of the Cauchy sequence depends on the parameter l.

Let us show that the sequence F
ε
(p)
np

(t, λ) converges to the function F (t, λ) in the space C
(
R+, L1,loc(R)

)
as p→ ∞.
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Choose certain T, l > 0 and estimate the norm of the difference∥∥p(m)(t, λ) − F
ε
(p)
np

(t, λ)
∥∥

≤ ∥∥p(m)(t, λ) − p(m)
(
t
(m)
j , λ

)∥∥ +
∥∥p(m)

(
t
(m)
j , λ

) − F
ε
(p)
np

(
t
(m)
j , λ

)∥∥ +
∥∥F

ε
(p)
np

(
t
(m)
j , λ

) − F
ε
(p)
np

(t, λ)
∥∥,

where tmj is the nearest number to t among the numbers t(m)
i , i ∈ N. Then by inequality (7), the first and

third summands do not exceed 2−mc(l), and, according to (8) and (6), for the second summand, we have∥∥p(m)
(
t
(m)
j , λ

) − F
ε
(p)
np

(
t
(m)
j , λ

)∥∥ =
∥∥F (

t
(m)
j , λ

) − F
ε
(p)
np

(
t
(m)
j , λ

)∥∥ ≤ σ

for any p ≥ p0.
Therefore, ∥∥p(m)(t, λ) − F

ε
(p)
np

(t, λ)
∥∥ ≤ 2−m+1c(l) + σ

for any p ≥ p0. Therefore,∥∥F (t, λ) − F
ε
(p)
np

(t, λ)
∥∥

C([0,T ],L1([−l,l]))

≤ ‖F (t, λ) − p(m)(t, λ)‖C([0,T ],L1([−l,l])) +
∥∥p(m)(t, λ) − F

ε
(p)
np

(t, λ)
∥∥

C([0,T ],L1([−l,l]))

≤ ‖F (t, λ) − p(m)(t, λ)‖C([0,T ],L1([−l,l])) + 2−m+1c(l) + σ.

Passing to the limit as m → ∞ in the latter estimate, we conclude that for any σ > 0 and any T, l > 0,
there exists p0 ∈ N such that the following inequality holds for any p > p0:∥∥F (t, λ) − F

ε
(p)
np

(t, λ)
∥∥

C([0,T ],L1([−l,l]))
≤ σ.

Theorem 4 is proved.

Lemma 2. Let u, v ∈ H, and let E(λ), λ ∈ R, be an orthogonal partition of unity in the Hilbert space H.
Then the following inequality holds for any λ ∈ R:

3|(u,E(λ)u) − (v,E(λ)v)| ≤ ‖u− v‖H(‖u‖H + ‖v‖H).

Proof. The following chain of estimates follows from direct calculations and the Cauchy–Bunyakovskii
inequality:

|(u,Eu) − (v,Ev)| =
∣∣Re

{(
u− v,E(u+ v)

)}∣∣
≤ ∣∣(u− v,E(u+ v)

)∣∣ ≤ ‖u− v‖H‖E(u+ v)‖H ≤ ‖u− v‖H(‖u‖H + ‖v‖H).

Lemma 2 is proved.

Corollary 1. Let u0, v0 ∈ ⋂
ε∈[0,1]

D(Lε), and let an infinitely small sequence εm be such that there ex-

ist nonnegative functions F (t, λ) and G(t, λ) monotone for each t > 0, bounded from above by unity,
having the properties formulated in Theorem 4, and such that the sequences of functions {Fεk

(t, λ)} and
{Gεk

(t, λ)} converge to the functions F (t, λ) and G(t, λ), respectively, in the space Cloc. Then the following
inequality holds for any T, l > 0:

‖F (t, λ) −G(t, λ)‖C([0,T ],L1(KT,l)) ≤ C‖u0 − v0‖L2(R).

Proof. Fix a certain σ > 0. Then the following condition holds for any T > 0, l > 0 and any k ∈ N:

‖F (t, λ) −G(t, λ)‖C([0,T ],L1([−l,l])) ≤ ‖F (t, λ) − Fεk
(t, λ)‖C([0,T ],L1([−l,l]))

+ ‖G(t, λ) −Gεk
(t, λ)‖C([0,T ],L1([−l,l])) + ‖Fεk

(t, λ) −Gεk
(t, λ)‖C([0,T ],L1([−l,l])),

and according to Theorem 4, there exists k0 = k0(T, l, σ) ∈ N such that

‖F (t, λ) − Fεk
(t, λ)‖C([0,T ],L1([−l,l])) + ‖G(t, λ) −Gεk

(t, λ)‖C([0,T ],L1(−l,l)) ≤ σ
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for all k ≥ k0. According to Lemma 2, the following estimate holds for the third summand:

‖Fεk
(t, λ) −Gεk

(t, λ)‖C([0,T ],L1([−l,l]))

= sup
[0,T ]

(
uεk

(t),
(
E(l) − E(−l))uεk

(t)
) − (

vεk
(t),

(
E(l) − E(−l))vεk

(t)
)

≤ ‖ULεk
(u0 − v0)‖L2‖ULεk

(u0 + v0)‖L2 ≤ 2‖u0 − v0‖L2 .

Hence, by the arbitrariness of σ > 0, the following inequality holds for any compact set KT,l, T, l > 0:

‖F (t, λ) −G(t, λ)‖C([0,T ],L1([−l,l]) ≤ 2‖u0 − v0‖L2(R).

Corollary 1 is proved.

Theorem 5. Let {εn} be a certain infinitely small sequence. Then for any partition of unity E(λ), λ ∈ R,
in the Hilbert space H, there exists a subsequence εnk

such that for any initial function u0 ∈ L2(R), there
exists a nonnegative function G(t, λ) ∈ C

(
R+, L1,loc(R)

)
monotonically increasing for each t > 0 and such

that the sequence Gεn(t, λ) converges to the function G(t, λ) in C
(
R+, L1,loc(R)

)
.

Proof. Let E(λ), λ ∈ R, be a certain orthogonal partition of unity in the Hilbert space H = L2(R), and
let u0l, l ∈ N, be a certain orthonormal basis in the space L2(R). Consider the following countable family
of functions in the space Cloc:

Gji
en

(t, x) =

x∫
−∞

(ULεn
(t)u0j , dE(ξ)ULε(t)u0i), i, j ∈ N.

As in the proof of Theorem 4, using the procedure of extracting a diagonal subsequence, we can show
that there exist a subsequence εnk

of the sequence εn and a family of functions Gji(t, x) ∈ Cloc, i, j ∈ N,
such that for any j, i ∈ N, the sequence of functions Gji

εn(t, x) converges to the function Gji(t, x) in the
space Cloc as n→ ∞.

Therefore, for the partition of unity E(λ) and the orthonormal basis u0l, we choose the above se-
quence εnk

. Then for any element u0(x) ∈ L2(R) and any σ > 0, there exists a tuple of numbers
α1, . . . , αN such that ‖u0 − v0‖L2(R) ≤ σ/4, where

v0(x) =
N∑

l=1

αlu0l;
N∑

l=1

|αj |2 ≤ ‖u0‖.

We set uk(t) = ULenk
(t)u0 and vk(t) = ULenk

(t)v0.
Let

Gw
εm

(t, x) =

x∫
−∞

(ULεm
(t)w, dE(ξ)ULεm

(t)w),

where w = u, v. Then according to Lemma 2, the following estimate holds for any m ∈ N:

‖Gu
εm

(t, x) −Gv
εm

‖C([0,T ],[−l,l]) ≤ ‖uεm(t) − vεm(t)‖L2(R)‖uεm + vεm‖L2(R) ≤
σ

2
. (10)

Therefore, for any T, l > 0 and any σ > 0, there exist a number N and a tuple of numbers α1, . . . , αN

such that inequality (10) holds.
According to the choice of the sequence εn, for the above σ > 0 and N , there exists a number n0 such

that the following inequalities hold for all n ≥ n0 and all i, j ∈ {1, . . . , N}:
‖Gji

εn
(t, x) −Gji(t, x)‖C([0,T ],L1([−l,l])) ≤ σ2−(j+i+2).
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Then

‖Gv
m+q(t, x) −Gv

m(t, x)‖C([0,T ],L1(−l,l))

≤
N∑

i,j=1

|αi| |aj |
∥∥(
Gji

εm+q
(t, x) −Gji

εm
(t, x)

)∣∣
K(T,l)

∥∥
C([0,T ],L1(−l,l))

≤
N∑

i,j=1

αiājσ2−(j+i+1) ≤ σ

4
.

Therefore, the following estimate holds for any m ≥ n0 and q ∈ N:∥∥(
Gu

εm+q
(t, x) −Gu

εm
(t, x)

)∣∣
K(T,l)

∥∥
C([0,T ],L1(−l,l))

≤ ‖(Gu
εm+q

(t, x) −Gv
εm+q

(t, x)‖C([0,T ],L1(−l,l))

+ ‖Gv
εm+q

(t, x) −Gv
εm

(t, x)‖C([0,T ],L1(−l,l)) + ‖(Gv
εm

(t, x) −Gu
εm

(t, x)|K(T,l)‖C([0,T ],L1(−l,l)) ≤
5
4
σ.

Therefore, the sequence Gu
εm

(t, x)|K(T,l) is a Cauchy sequence in C
(
[0, T ], L1(−l, l)

)
for any T, l > 0,

and according to Lemma 1, in the space Cloc, the sequence Gu
εm

(t, x) converges to the limit function
G(t, x) ∈ Cloc, which is a monotonically increasing function for each t > 0 on the axis x ∈ R and assumes
values in the closed interval [0, 1]. Theorem 5 is proved.

Application to the Dynamics of Observables

Let E(λ) be an orthogonal partition of unity in H, and let Bb
E(H) be the subalgebra of the algebra

B(H) of all bounded operators acting on the space H according to the rule

Au =
∫
R

a(λ) dE(λ)u,

where the function a(λ) belongs to the class C(R) and has the limits lim
λ→±∞

a(λ) = a±. Let Bc
E(H) be the

subalgebra of the algebra B(H) of bounded self-adjoint operators commuting with E(λ), λ ∈ R, whose
action on an arbitrary function u ∈ L2(R) is given by the formula

Au =
∫
R

a(λ) dE(λ)u,

where a(λ) ∈ C(R) (see [5]).

Theorem 6. Let u0(x) ∈ L2(R), let E(λ) be an orthogonal partition of unity, and let {εk} be the se-
quence whose existence is asserted by Theorem 7. Then for any A ∈ Bb

E and any T > 0, the sequence(
uεk

(t), Auεk
(t)

)
uniformly converges to

Ā(t) = a+

(
1 − F (t,+∞)

)
+ a−F (t,∞) +

∫
R

a(ξ)dF (t, ξ),

on [0, T ], where
∫
R

a(λ) dF (t, λ) is the Stieltjes integral of the continuous function a(λ) with respect to the

monotone bounded function F (t, λ) (see [6, Chap. 8, Sec. 6]).

For an arbitrary partition of unity E(λ), the proof of Theorem 6 literally repeats the proof of the
corresponding assertion for the partition of unity E(x) in [11].

There arises the following question: does there exist an infinitely small sequence {εn} such that the
sequence of means (uεn , Auεn) converges for any operator A ∈ B(H)? The answer is negative.

Theorem 7. If PH1u0(x) �= 0 and t > t∗ (see Corollary 1), then for any infinitely small sequence εn, we
can find a bounded self-adjoint operator A ∈ B(H) such that the sequence

(
uεn(t),Auεn(t)

)
diverges.

Remark. The assertion of Theorem 7 can be deduced as a consequence of Theorem 1 in [2]. However,
for completeness of the presentation and for obtaining consequences of Theorem 7, in what follows we
present the proof based on an approach different from that in [2].
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Proof. Let PH1u0 �= 0 and let t > t∗. Then according to Corollary 1, for any sequence {εn}, εn → 0 as
n→ ∞, the sequence of solutions {uεn(t, x)} of the corresponding regularized problems weakly converges
to the function u∗(t, x) in L2(R) and diverges in the norm of the space L2(R). Moreover, any subsequence
of the sequence {uεn(t, x)} also diverges in L2(R). Therefore, the sequence {uεn(t, x)} is not compact
in L2(R), and hence there exists σ > 0 such that for any finite tuple of elements x1, . . . , xN , the σ-net
N⋃

j=1
Oσ(xj) does not cover all elements of the sequence {uεn(t, x)}, i.e., there exists m ∈ N such that

uεm(t, x) /∈
N⋃

j=1
Oσ(xj). Here,

Oσ(M) = {x ∈ L2(R) : ρL2(x,M) < σ},
where ρL2 is the metric of the space L2(R) and M is a certain set of the space L2(R).

Then the following assertion holds: there exists σ > 0 such that for any n ∈ N, there exists m > n
such that uεm(t, x) /∈ T (n, σ), where

T (n, σ) =
{
x ∈ L2(R) : x ∈ Oσ

(
lin(u∗, u1, . . . , un)

)
; |‖x‖ − 1| < σ

}
.

Indeed, if for any σ > 0, there exists n ∈ N such that uεm(t, x) /∈ T (n, σ) for any m > n, then the
sequence {un} can be covered by a finite σ-net, which contradicts its noncompactness.

Let us extract a linearly independent systems of vectors fk from the sequence {un} according to the
following rule.

Let f1 = u∗(t); then there exists m1 ≥ 1 such that uεm1
(t, x) /∈ T (1, σ). We set f1 = um1 . Then there

exists m2 > m1 such that uεm2
(t, x) /∈ T (m1, σ). We set f2 = um2 , and so on. Then, by induction, there

exists a sequence fk ∈ L2 that is a subsequence of {un} such that for any k ∈ N,

fk+1 /∈ V (k, σ) ≡ {
x ∈ L2(R) : x ∈ Oσ

(
lin(u∗, f1, . . . , fn)

)
; | ‖x‖ − 1| < σ

}
. (11)

Let us subject the family of elements {fk} to the standard orthogonalization procedure. We set

g1 = f1, g2 = (I − P1)f2, . . . , gk+1 = (I − Pk)fk+1, . . . ,

where Pk is the orthogonal projection on the linear span lin{f1, f2, . . . , fk}. Then by (11), the estimate
‖gk‖L2(R) ≥ σ holds for any k ∈ N.

We set hk = (‖gk‖)−1gk, k ∈ N. Then {hk} is an orthonormal system of vectors. Note that according
to the construction of the orthogonal system {gk},

(fj , hk) = 0 ∀j < k.

The following inequality holds according to estimate (11):

(fk, hk) ≥ σ. (12)

According to Theorem 2, the sequence {fj} weakly converges to u∗ in L2(R); therefore,

lim
j→∞

(fj , hk) = 0 ∀k ∈ N. (13)

Consider the bounded self-adjoint operator Q ∈ L2(R) on the space L2 whose action on any vector
ψ ∈ L2 is given by the relation

Qψ =
∞∑

j=1

aj(hj , ψ)hj ,

where {aj} is a certain bounded sequence of real numbers. Let us show that there exists a sequence of
numbers {aj} assuming values from {−1, 0, 1} such that the sequence (fk,Qfk) and hence the sequence(
uεn(t),Quεn(t)

)
diverge.

For arbitrary natural numbers m and p, let us consider the quantity

‖(fk,Qfk) − (fk+p,Qfk+p)‖ =
∥∥∥∥

∞∑
j=1

aj |(hj , fk)|2 −
∞∑

j=1

aj |(hj , fk+p)|2
∥∥∥∥,
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which is equal to ∥∥∥∥
k∑

j=1

aj |(hj , fk)|2 −
k+p∑
j=1

aj |(hj , fk+p)|2
∥∥∥∥

according to the remarks.
Let a1 = 1; then according to (13), there exists p2 > 1 such that (h1, fp2) ≤ σ/22. We set aj = 0,

j = 2, 3, . . . , p2 − 1; ap2 = −1. Then there exists p3 > p2 such that (hi, fp3) ≤ σ/23, i = 1, 2, . . . , p2. We
set aj = 0, j = p2 + 1, . . . , p3 − 1; ap3 = 1. By induction, there exists a strictly monotone sequence of
natural numbers {pl} such that (hi, fpl

) ≤ σ/2l, i = 1, 2, . . . , pl−1, for any l = 4, 5, . . . . We set aj = 0,
j �= pl, and apl

= (−1)l−1.
Then for any n ∈ N, we can find pn > n such that

(fpn ,Qfpn) =
pn∑

j=1

aj |(hj , fpn)|2 = (−1)n−1|(fpn , hpn)|2 + αn,

where

|αn| ≤
n−1∑
i=1

δ22−n → 0

as n→ ∞. By (12), the sequence {(fnp ,Qfnp)} diverges.
Hence, for any infinitely small sequence {εn}, we can find a bounded self-adjoint operator Q such

that the sequence
(
uεn(t),Quεn(t)

)
diverges. Theorem 7 is proved.

Corollary 2. If the sequence un(t) of regularized solutions weakly converges in H as n → ∞, then there
exists a partition of unity E(λ) such that the inequality lim

λ→∞
(
F (λ)−F (−λ)

)
< 1 holds for the limit F (λ)

of any subsequence Fn(λ) convergent in the space L1,loc(R).

Proof. In the space H, we choose an orthonormal basis {en} including the orthonormal system {hk}
constructed in Theorem 7 as a subsystem. Consider the partition of unity

E(λ) =
[λ]∑
j=1

Pej .

We set Fi(λ) =
(
ui(t),E(λ)ui(t)

)
. Let nk be a sequence of serial numbers such that enk

= hk. Then
according to inequality (11), for any λ0 > 0, there exists a serial number k0 such that Fnk

(λ0) < 1 − σ
holds for all k > k0. Then the following assertion holds for the upper limit F̄ (λ) of the sequence Fnk

(λ):
the inequality F̄ (λ) ≤ 1− σ holds for any λ > 0 (since the assumption that there exists λ0 > 0 such that
F̄ (λ0) > 1 − σ leads to a contradiction). Corollary 2 is proved.

Corollary 3. Let u0(x) ∈ L2(R), let E(λ) be an orthogonal partition of unity, and let {εk} be an infinitely
small sequence such that the sequence of functions Fk(t, λ) converges to a function F (t, λ) in Cloc. Then
the sequence

(
uεk

(t),Auεk
(t)

)
converges for any A ∈ Bc

E if and only if F+(t) − F−(t) = 1.

Proof. Let us prove the sufficiency. Fix a certain ε > 0. It follows from the convergence of the sequence
Fk(t, λ) in the space Cloc and the condition F+(t) − F−(t) = 1 for the limit function that there exists
L ≥ 0 such that the following estimates hold for all k ∈ N:∣∣∣∣

∫
|λ|>L

dFk(T, λ)
∣∣∣∣ < ε,

and also the following estimate holds: ∣∣∣∣
∫

|λ|>L

dF (T, λ)
∣∣∣∣ < ε.
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Then the following inequality holds for any function a(λ) ∈ C(R) with a finite norm A:∣∣∣∣
∫

|λ|>L

a(λ) dF (t, λ)
∣∣∣∣ < Aε.

Hence there exists α(λ) ∈ Cb(R) such that∣∣∣∣
∫
R

(
a(λ) − α(λ)

)
dF (t, λ)

∣∣∣∣ < 2Aε.

Since ε > 0 is arbitrary, the sufficiency follows from Theorem 6.
Let us prove the necessity. Let there exist τ ≥ 0 and δ > 0 such that F+(τ) − F−(τ) = 1 − δ. Then

there exists a closed interval [−L,L] such that

F (τ, L) − F (τ,−L) ≥ 1 − 9
8
δ,

and, moreover, the sequence of restrictions {Fn(τ, λ)|[−L,L]} converges to F (τ, λ)|[−L,L] in the space
L1([−L,L]). Then we can find monotonically increasing sequences of numbers nk ∈ N and Lk ∈ (L,+∞)
such that ∫

|λ|∈[Lk+1,Lk+1]

dFnk
(τ, λ) >

7δ
8

and ∫
|λ|≤L

dFnk
(τ, λ) > 1 − 5δ

4
.

Let a(λ) be a continuous piecewise-linear function monotone on the intervals (Lk, Lk + 1) such that
a(λ) = (−1)k for λ ∈ [Lk + 1, Lk+1]. Then the sequence

{ ∫
R

a(l)dFnk
(λ)

}
is not a Cauchy sequence.

Corollary 3 is proved.

Example. Let {un(x)} be an orthogonal sequence of functions from the space L2(R) whose supports
belong to the closed interval [0, 1] and the restrictions {un(x)|[0,1]} compose a basis in L2([0, 1]). Then
un(x) weakly converges to zero in L2(R). Therefore, there exist a partition of unityE(µ) and a subsequence
{unm} such that the inequality ∆F < 1 holds for any partial limit F (µ) of the sequence {Fnm(µ)}. But

since the supports of all measures with distribution functions Fn(x) =
x∫

−∞
|un(s)|2 ds corresponding to

the orthogonal partition of unity E(x) have a common compact support [0, 1], it follows that the relation
∆F = F (1) − F (0) = 1 holds for any partial limit F (x) of the sequence Fn(x). The example shows that
for a sequence of elements of the space H that is only weakly convergent, there can exist partitions of
unity of the space H of the following two classes: those for which there exist limit measures on the whole
coordinate space R whose variations are less than 1 and those for which any limit measure on R is of
variation 1.

Remark. Since for any bounded operator Q ∈ B(H) and any infinitely small sequence {εn}, the sequence
of mean values

(
uεn(t),Quεn(t)

)
of the operator Q on solutions of the family of solutions uεn(t) of

regularized problems is bounded, the set of its partial limits is bounded, and it follows from Theorem 7
that it consists of more than one point.

There arises the following question: does the Cauchy problem (1), (2) allow us to give the dynamics
of values of the observables A ∈ B(H)? Is this dynamics uniquely defined?

The intention of applying the vanishing viscosity method to finding the dynamics of values of ob-
servables for the Cauchy problem (1), (2) leads to the consideration of multivalued mappings. Define the
mapping such that to each infinitely small sequence {εn}, the initial condition u0(x), a number t > 0, and
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an operator A ∈ B(H), it puts in correspondence the set of all possible partial limits of the sequence of
mean values

(
uεn(t),Quεn(t)

)
as n→ ∞:

T : E ×H × R+ × B(H) → 2C : ({εn}, u0, t,Q) → T ({εn}, u0, t,Q),

where E is the set of all infinitely small sequences of nonnegative numbers, T ({εn}, u0, t,Q) is the set of
all partial limits of the sequence {(ULεn

(t)u0,QULεn
(t)u0)}, and 2C is the metric space of all subsets of

the complex plane C equipped with the Hausdorff metric. In this case, the dynamics of mean values loses
the single-valued property and is given by a multivalued mapping.
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