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Pancake Vortices
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I describe the magnetic-field and current-density distributions generated by two-dimensional
(2D) pancake vortices in infinite, semi-infinite, and finite-thickness stacks of Josephson-
decoupled superconducting layers. Arrays of such vortices have been used to model the
magnetic structure in highly anisotropic layered cuprate high-temperature superconductors.
I show how the electromagnetic forces between pancake vortices can be calculatated, and I
briefly discuss the effects of interlayer Josephson coupling.
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1. INTRODUCTION

Since this paper is intended for publication in a
special Festschrift issue honoring Mike Tinkham, I
have been invited to include some personal reflec-
tions in the introduction. I believe I first heard his
name when I was a graduate student in the early
1960s at the University of Illinois-Urbana, work-
ing on extensions of the BCS theory [1] to include
anisotropy of the superconducting energy gap [2,3].
A paper by Ginsberg, Richards, and Tinkham [4]
had reported results on the far-infrared absorption
in superconducting lead, which showed a precursor
hump in the real part of the complex conductivity,
σ1(ω)/σN. I tried to explain this feature in terms of
gap anisotropy but was unsuccessful.

Throughout subsequent years, I have followed
Mike Tinkham’s career with considerable interest. I
have admired his research style, which consistently
has resulted in new and interesting experimental re-
sults and theoretical interpretations that advance the
theory. I also admire anyone who can write carefully
prepared books, and I have found his books on su-
perconductivity (in both editions [5,6]) to be particu-
larly useful. I have asked students beginning research
with me to work diligently through these books to
learn the fundamentals of superconductivity.
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One of the topics that Mike Tinkham finds inter-
esting is vortex physics, and since this has been one
of my main research interests, I would like to focus
here on one aspect: two-dimensional (2D) pancake
vortices. This is a favorite subtopic of mine, partly be-
cause I coined the name and partly because my 1991
paper on this subject [7] has been so well received by
the superconductivity community (over 600 citations
to date). Incidentally, although I wanted to put “2D
pancake vortex” in the title of this paper, the editors
of Physical Review B forbid this but did allow me to
use these words in the abstract and the rest of the
paper. I first reported on my work on 2D pancake
vortices at a Gordon Research Conference chaired
by Mike Tinkham in June 1989, but (as has too often
been the case with me) I was slow to publish, and
some of the key results were published in 1990 by
Artemenko and Kruglov [8] and by Buzdin and Fein-
berg [9]. I later discovered that the basic solution had
even been published in 1979 by Efetov [10], but his
work unfortunately had gone largely unnoticed.

This paper is organized as follows. In Sec. 2, I
calculate the properties of 2D pancake vortices in an
infinite stack of Josephson-decoupled superconduct-
ing layers, first by considering all the layers as being
very thin and then by considering the layers above
and below the pancake layer as a continuum [11]. In
Sec. 3, I use the continuum approach to calculate the
properties of 2D pancake vortices in a semi-infinite
stack of Josephson-decoupled superconducting
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layers. In Sec. 4, I again use the continuum approach
to calculate the properties of 2D pancake vortices in
a finite stack of Josephson-decoupled superconduct-
ing layers [12], first for arbitrary thickness and then
for a thickness much less than the in-plane penetra-
tion depth, where the results bear some similarities
to those of Pearl [13–15] for vortices in thin films. In
Sec. 5, I show how to calculate the electromagnetic
forces between pancake vortices, and in Sec. 6, I
discuss some consequences of Josephson coupling. I
conclude with a brief summary in Sec. 7.

2. PANCAKE VORTEX IN AN INFINITE
STACK OF SUPERCONDUCTING LAYERS

The chief motivation for my work that led to
the idea of the 2D pancake vortex was the ques-
tion of how to describe the vortex structure of highly
anisotropic layered cuprate high-temperature super-
conductors, with Bi-2212 (Bi2Sr2CaCu2O8−δ) being
the best-known example. Applying the anisotropic
Ginzburg-Landau equations [16–29] to this material,
it could easily be seen that the calculated value of
the coherence length ξc (the length scale describing
spatial variation of the order parameter in the c di-
rection perpendicular to the layers) was less than the
center-to-center distance s between the CuO2 bilay-
ers. Since the Ginzburg-Landau theory assumes that
all the characteristic lengths of superconductivity are
large by comparison with atomic length scales, this
fact indicated that some other theory was needed to
describe details of the vortex structure in the most
anisotropic high-Tc superconductors.

The natural way to incorporate the existence of
discrete layers was to make use of the Lawrence-
Doniach theory [30], which treats the intralayer be-
havior using Ginzburg-Landau theory but interlayer
coupling via the Josephson effect [31]. In this the-
ory the coherence length ξc plays no role when its
value is less than s, and the penetration depth λc de-
scribing the length scale of the spatial variation of
supercurrents parallel to the c direction can be re-
lated to the maximum Josephson supercurrent J0 via
[32] λc = (cφ0/8π2sJ0)1/2 in Gaussian units. The pa-
rameter usually used to characterize the degree of
anisotropy is γ = λc/λab, where λab is the penetration
depth describing the length scale of the spatial varia-
tion of supercurrents parallel to the layers (neglect-
ing the anisotropy between the a and b directions,
i.e., assuming for simplicity that λa ≈ λb ≈ λab). For
Bi-2212, the value of γ is so large that it is difficult

to measure [33]; γ was found in Ref. [34] to be larger
than 150, but a more recent quantitative determina-
tion [35] has yielded γ = 640 ± 25.

For such highly anisotropic materials, it seemed
sensible to me to take the limit γ → ∞ (λc = ∞
or J0 = 0) as the starting point to describe vortex
structure. The essential idea was that in a model of
identical superconducting layers separated by insu-
lating layers, one could solve for the magnetic field
and current density generated by a 2D pancake vor-
tex in one of the superconducting layers when the
other layers contained no vortices but served only
to screen the magnetic field generated by the pan-
cake vortex. With this solution as a building block,
one could then find the magnetic field produced by
a stack of such pancake vortices, even if misaligned,
by the process of linear superposition. This was basi-
cally the approach I had used in developing the the-
ory that quantitatively explains the coupling forces
between misaligned vortices in just two layers [36,37],
the primary and secondary superconducting layers
of the dc transformer studied experimentally first by
Giaever [38,39], and later by Solomon [40], Sherrill
[41], Deltour and Tinkham [42], and Cladis et al.
[43,44], but in greatest detail by Ekin et al. [45,46].

2.1. Model of Very Thin Discrete
Superconducting Layers

To calculate the magnetic-field and current-
density distributions generated by a pancake vor-
tex in an infinite stack of Josephson-decoupled su-
perconducting layers, in Ref. [7] I used the model
in which the superconducting layers, all of thick-
ness d, are centered on the planes z = zn = ns (n =
0,±1,±2, . . .), as sketched in Fig. 1. The London
penetration depth within each layer is λs such that
the average penetration depth for currents parallel to
the layers is [32] λ‖ = λs(s/d)1/2, which corresponds
to the penetration depth λab in the high-temperature
superconductors. When the central layer (z = 0) con-
tains a vortex at the origin but all other layers are
vortex-free, the London fluxoid quantization condi-
tion [47] in layer n can be expressed as

2πρ[aφ(ρ, zn) + (2π
s/c)Kφ(ρ, zn)] = φ0δn0, (1)

where in cylindrical coordinates a(ρ, z) = φ̂aφ(ρ, z)
is the vector potential, K(ρ, zn) = φ̂Kφ(ρ, zn) =
φ̂j̄ φ(ρ, zn)s is the sheet-current density in layer n av-
eraged over the periodicity length s, 
s = 2λ2

‖/s =
2λ2

s /d is the 2D screening length, and φ0 = hc/2e
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Fig. 1. Infinite stack of thin superconducting layers with a pancake
vortex at the origin (bold arrow).

is the superconducting flux quantum. Equation (1)
inevitably leads to a description of vortices in the
London model [48], which is characterized by un-
physical current-density and magnetic-field singular-
ities on the vortex axis. The pioneering work on vor-
tices by Abrikosov [49] showed that such singulari-
ties are cut off at a distance of the order of the in-
plane coherence length ξab. A simple model for the
vortex core, employing a variational core-radius pa-
rameter ξv ∼ ξab, has been used to describe straight
vortices in isotropic [50] and anisotropic [51] super-
conductors, as well as in films of arbitrary thickness,
whether isolated [52] or in superconducting dc trans-
formers [37]. This model also could be used to cure
the vortex-core singularities that are present in all the
following results of this paper.

If one takes the thickness d of each layer to be
very small, as in Ref. [7], the vector potential can be
expressed in the form

aφ(ρ, z) =
∫ ∞

0
dqA(q)J1(qρ)Z(q, z), (2)

where J1(qρ) is a Bessel function and Z(q, z) has
scallops as a function of z that are necessary to de-
scribe the discontinuities of bρ(ρ, z) arising from the
induced sheet currents Kφ(ρ, zn) for n �= 0. Note that
b(ρ, z) = ∇ × a(ρ, z), such that

bρ(ρ, z) = −∂aφ(ρ, z)
∂z

(3)

and

bz(ρ, z) = 1
ρ

∂[ρaφ(ρ, z)]
∂ρ

. (4)

Inserting the exact expression for A(q) into Eq. (2)
yields a complicated integral that cannot be inte-
grated analytically. However, a close approxima-
tion to the exact result can be obtained by writing
Z(q, z) = exp(−Q|z|), where Q = (q2 + λ−2

‖ )1/2 and
A(q) = φ0/2π
sQ; this approximation, which is valid
for s 	 λ‖, corresponds to retaining information on
the scale of λ‖ but giving up detailed information on
the finer scale of s. The resulting vector potential and
magnetic field components are

aφ(ρ, z) = φ0λ‖
2π
sρ

(e−|z|/λ‖ − e−r/λ‖), (5)

bz(ρ, z) = φ0

2π
sr
e−r/λ‖ , (6)

bρ(ρ, z) = φ0

2π
sρ

[
z
|z| e−|z|/λ‖ − z

r
e−r/λ‖

]
, (7)

where r = (ρ2 + z2)1/2. Since in the high-temperature
superconductors s/2λ‖ = λ‖/
s ≈ 10−2, the vector
potential term in Eq. (1) of order λ‖/
s can be ne-
glected in the central layer (n = 0) and we obtain to
good approximation

Kφ(ρ, z0) = cφ0

4π2
sρ
. (8)

However, for all the other layers (n �= 0) we obtain

Kφ(ρ, zn) = − cφ0λ‖
4π2
2

s ρ
(e−|zn|/λ‖ − e−rn/λ‖), (9)

where zn = ns and rn = (ρ2 + z2
n)1/2. Note that the

magnitude of the sheet-current density in the n = 0
central layer is much larger, by a factor of order 102,
than the sheet-current density in one of the n �= 0 lay-
ers. It is for this reason that I gave the name pancake
vortex to this field and current distribution.

An interesting property of the above solutions
is that the pancake-vortex-generated magnetic flux
�z(ρ, z) = 2πρaφ(ρ, z) up through a circle of radius
ρ at height z is (using 
s = 2λ2

‖/s)

�z(ρ, z) = φ0(s/2λ‖)(e−|z|/λ‖ − e−r/λ‖), (10)

such that the magnetic flux up through a layer at
height z is

�z(∞, z) = φ0(s/2λ‖)e−|z|/λ‖ , (11)

and the magnetic flux up through the central layer at
z = 0 is

�z(∞, 0) = φ0(s/2λ‖). (12)

When s 	 λ‖, as in the high-temperature supercon-
ductors, we see that �z(∞, 0) 	 φ0. This is at first
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surprising until one realizes that fluxoids are quan-
tized in superconductors but flux is not [47]. In the
present problem, the fluxoid is the quantity on the
left-hand side of Eq. (1), and since (2π
s/c)Kφ(ρ, z0)
is proportional to 1/ρ and aφ(ρ, z0) is very small, the
fluxoid is due almost entirely to the current term.
Note also that �z(∞,∞) = 0; this occurs because all
the magnetic flux up through the central layer z = 0
is directed radially outward by the screening currents
in the layers with z > 0.

On the other hand, an infinite stack of pancake
vortices, whether straight or not, has quite different
magnetic-flux properties. If there is one pancake vor-
tex in every layer at z = zn = ns (n = 0,±1,±2, . . .),
then the magnetic flux up through the central layer
(and by symmetry any other layer) is

�z(∞, 0) = φ0(s/2λ‖)
∞∑

n=−∞
e−|zn|/λ‖ = φ0, (13)

where the last equality is obtained by evaluating the
sum and making use of the property that s 	 λ‖. Sim-
ilarly, the radial magnetic field at ρ = ∞ and z = 0
is now zero, since the positive contributions from all
the pancake vortices below the central layer are can-
celed by the negative contributions from the pancake
vortices above this layer.

2.2. Continuum Model

The solutions given in Eqs. (5)–(9) can be ob-
tained more easily by regarding the n �= 0 layers as
a continuum, characterized by the penetration depth
λ‖ for currents parallel to the layers [11]. Moreover,
for a realistic treatment of stacks of just a few super-
conducting layers, a model accounting for finite layer
thickness s is needed. We therefore use the model
sketched in Fig. 2 and write the London equation [47]
in cylindrical coordinates in the form

2πρ[aφ(ρ, z) + (4πλ2
‖/c)j φ(ρ, z)] = φ0δn0, (14)

where the delta function on the right-hand side ac-
counts for the presence of a vortex aligned along the
z axis in the n = 0 layer (|z| < s/2). Combining this
equation with Ampere’s law, j φ = (c/4π)(∂bρ/∂z −
∂bz/∂ρ), and making use of Eqs. (3) and (4), we ob-
tain the partial differential equation

∂2aφ

∂z2
+ ∂2aφ

∂ρ2
+ 1

ρ

∂aφ

∂ρ
−

(
1
ρ2

+ 1

λ2
‖

)
aφ = − φ0

2πλ2
‖ρ

δn0,

(15)

Fig. 2. Continuum model of an infinite stack of superconducting
layers with a pancake vortex (bold arrow at the origin) in the layer
at z = z0 = 0.

which can be solved by writing aφ(ρ, z) in the
three regions z > s/2,−s/2 < z < s/2, and z < −s/2
in terms of Hankel components [53] as follows:

aφ(ρ, z) =
∫ ∞

0
dqAa(q)J1(qρ)e−Qz, z ≥ s/2,

(16)

aφ(ρ, z) =
∫ ∞

0
dq

[
φ0

2πλ2
‖Q2

+ A0−(q)e−Qz

+A0+(q)eQz] J1(qρ), −s/2 ≤ z ≤ s/2,

(17)

aφ(ρ, z) =
∫ ∞

0
dqAb(q)J1(qρ)e−z, z ≤ −s/2,

(18)

where Q = (q2 + 1/λ2
‖)1/2. The four unknown func-

tions Aa(q), A0−(q), A0+(q), and Ab(q) can be ob-
tained by applying the boundary conditions of con-
tinuity of aφ(ρ, z) and bρ(ρ, z) [Eq. (3)] at the two
interfaces z = ±s/2, carrying out the Hankel trans-
forms using [54]∫ ∞

0
dρρJ1(qρ)J1(q′ρ) = (1/q)δ(q − q′), (19)

and solving the four resulting linear equations. The
results are

A0−(q) = A0+(q) = − φ0

4πλ2
‖Q2

e−Qs/2, (20)
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Aa(q) = Ab(q) = φ0 sinh (Qs/2)

2πλ2
‖Q2

. (21)

Note that s 	 λ‖, such that if we confine our atten-
tion to values of ρ  s, the integrals in Eqs. (16)–(18)
are dominated by values of q 	 1/s. We then may
make the replacement sinh(Qs/2) → Qs/2, which
makes Aa = Ab = φ0/2π
sQ, the same as A(q) in
Ref. [7] and Sec. 2.1.

The magnetic flux up through a circle of ra-
dius ρ in the plane with coordinate z is �z(ρ, z) =
2πρaφ(ρ, z). Evaluating the integrals for aφ(ρ, z) [Eqs.
(16)–(18)] in the limit ρ → ∞, we can show with-
out making the approximation that s 	 λ‖ that the
pancake-vortex-generated magnetic flux through a
layer at height z, where |z| > s/2, is

�z(∞, z) = φ0 sinh (s/2λ‖)e−|z|/λ‖ , (22)

and the total magnetic flux up through the central
layer at z = 0 is

�z(∞, 0) = φ0(1 − e−s/2λ‖) ≈ φ0(s/2λ‖). (23)

If there is one pancake vortex in every layer
at z = zn = ns (n = 0,±1,±, 2, . . .), even if they are
misaligned, then by summing the contributions given
in Eqs. (22) and (23) we find that the magnetic
flux up through the central layer (and by symme-
try any other layer) is exactly φ0. If all the vortices
are aligned along the z axis, the magnetic-field and
current-density distributions reduce to those of the
London model [48], for which

aφ(ρ) = �z(ρ)
2πρ

= φ0

2πρ

[
1 − ρ

λ‖
K1

(
ρ

λ‖

)]
, (24)

bz(ρ) = φ0

2πλ2
‖

K0

(
ρ

λ‖

)
, (25)

j φ(ρ) = cφ0

8πλ3
‖

K1

(
ρ

λ‖

)
, (26)

and bρ(ρ) = 0, where Kn(x) is a modified Bessel
function.

3. PANCAKE VORTEX IN A SEMI-INFINITE
STACK OF SUPERCONDUCTING LAYERS

In Sec. 2, I reviewed the results found in Ref. [7]
for a pancake vortex in an infinite stack of supercon-
ducting layers, where it is seen that the fields and cur-
rents decay exponentially on the scale of λ‖ above
and below the layer containing the pancake vortex.

For a sample of thickness D  λ‖ it is therefore clear
that the fields and currents generated by pancake
vortices that are many λ‖ from either surface are es-
sentially the same as in Sec. 2. However, the fields
and currents are significantly altered when a pancake
vortex is less than λ‖ from the surface of a sample
of thickness D  λ‖ or when the sample thickness
D is comparable with or smaller than λ‖. In this sec-
tion I use the continuum approximation described in
Sec. 2.2 to obtain solutions describing the field and
currents generated by a vortex in an arbitrary layer
of a semi-infinite stack of superconducting layers. In
the next section (Sec. 4) I present solutions for a pan-
cake vortex in a finite stack of arbitrary thickness D.

Consider a semi-infinite stack of superconduct-
ing layers, with the top surface on the xy plane, such
that all the layers are in the region z < 0, as sketched
in Fig 3. We number the superconducting layers such
that the layer n = 0 in the region z0− < z < z0+, cen-
tered at z = z0 < 0, is the one containing the pan-
cake vortex. The other layers are centered at z =
zn = z0 + ns, where positive (negative) n labels lay-
ers above (below) the pancake vortex. If there are
N+ layers above the pancake vortex, then the top
layer is centered at z = z0 + N+s = D/2 − s/2. By so
numbering the layers, we still can use Eq. (14) as the
London fluxoid quantization condition.

As in Sec. 2, we may write the vector potential in
cylindrical coordinates as a(ρ, z) = φ̂aφ(ρ, z). How-
ever, we now have different expressions for aφ(ρ, z)

Fig. 3. Continuum model of a semi-infinite stack of superconduct-
ing layers in the space z < 0 with a pancake vortex (bold arrow) in
the layer at z = z0.
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in four regions:

aφ(ρ, z) =
∫ ∞

0
dqA>(q)J1(qρ)e−qz, z ≥ 0, (27)

aφ(ρ, z) =
∫ ∞

0
dq

[
Aa−(q)e−Q(z−z0) + Aa+(q)eQ(z−zo)

]
× J1(qρ), z0+ ≤ z ≤ 0, (28)

aφ(ρ, z) =
∫ ∞

0
dq

[
�0

2πλ2
‖Q2

+ A0−(q)e−Q(z−zo)

+ A0+(q)eQ(z−z0)
]

J1(qρ), z0− ≤ z ≤ z0+,

(29)

aφ(ρ, z) =
∫ ∞

0
dqAb(q)J1(qρ)eQ(z−z0), z ≤ z0−, (30)

where Q = (q2 + λ−2
‖ )1/2 and z0± = z0 ± s/2. The six

functions A>(q), Aa−(q), Aa+(q), A0−(q), A0+(q), and
Ab(q), obtained by applying the six boundary condi-
tions of continuity of aφ(ρ, z) and bρ(ρ, z) [calculated
from Eq. (3)] at z = 0, z0+, and z0−, are

A>(q) = φ0 sinh(Qs/2)

πλ2
‖Q2(1 + q/Q)

eQz0 , (31)

Aa−(q) = φ0 sinh(Qs/2)

2πλ2
‖Q2

, (32)

Aa+(q) = φ0 sinh(Qs/2)

2πλ2
‖Q2

(
1 − q/Q
1 + q/Q

)
e2Qz0 , (33)

A0−(q) = − φ0

4πλ2
‖Q2

e−Qs/2, (34)

A0+(q) = − φ0

4πλ2
‖Q2

[
e−Qs/2 − 2 sinh(Qs/2)

×
(

1 − q/Q
1 + q/Q

)
e2Qz0

]
, (35)

Ab(q) = φ0 sinh(Qs/2)

2πλ2
‖Q2

[
1 +

(
1 − q/Q
1 + q/Q

)
e2Qz0

]
.

(36)

Although the resulting integrals for aφ(ρ, z) and
those [via Eqs. (3) and (4)] for bρ(ρ, z) and bz(ρ, z)
can easily be calculated numerically, they are too
complicated to evaluate analytically for arbitrary ρ

and z. On the other hand, we can evaluate them ap-
proximately for large ρ. When ρ  λ‖, the values of q
that dominate the integrals in Eqs. (27)–(30) via the
Bessel function J1(qρ) are those of order 1/ρ 	 1/λ‖,

such that we may replace all quantities under the in-
tegral except J1(qρ) by their values at q = 0. Sim-
ilarly, because of the factor exp(−qz) in Eq. (16)
we may replace A>(q) by A>(0) to evaluate aφ(ρ, z)
when ρ is small but z  λ‖.

The magnetic flux up through a circle of ra-
dius ρ in the plane with coordinate z is �z(ρ, z) =
2πρaφ(ρ, z). Evaluating the integrals as indicated
above for aφ(ρ, z) in the limit as ρ → ∞, we obtain
for the total magnetic flux up through the plane with
coordinate z:

�z(∞, z) = 2φ0 sinh(s/2λ‖)ez0/λ‖ , z ≥ 0, (37)

�z(∞, z) = 2φ0 sinh(s/2λ‖) cosh(z/λ‖)ez0/λ‖ ,

z0+ ≤ z ≤ 0, (38)

�z(∞, z) = φ0{1 − cosh[(z − z0)/λ‖]e−s/2λ‖

+ sinh(s/2λ‖)e(z+z0)/λ‖ },
z0− ≤ z ≤ z0+, (39)

�z(∞, z) = 2φ0 sinh(s/2λ‖)

× cosh(z0/λ‖)ez/λ‖ ,

z ≤ z0−. (40)

When the pancake vortex is in the top layer (i.e.,
when z0 = −s/2), the magnetic flux �z(∞, 0) up
through the top surface is approximately φ0(s/λ‖),
since s/λ‖ ∼ 10−2 	 1. When the pancake vortex is
in a layer much farther than λ‖ from the top sur-
face, the amount of magnetic flux up through the top
surface �z(∞, 0) [Eq. (37)] becomes exponentially
small (recall that z0 < 0). The precise magnetic field
distribution generated in the space above the super-
conductor within λ‖ of the origin can be calculated
numerically for a given pancake-vortex position z0

from Eqs. (3), (4), and (27). However, at distances
r =

√
ρ2 + z2 somewhat larger than λ‖ from the ori-

gin, we have to good approximation for z ≥ 0.

aφ(ρ, z) = �z(∞, 0)
2πρ

(
1 − z

r

)
, (41)

bρ(ρ, z) = �z(∞, 0)
2π

ρ

r3
, (42)

bz(ρ, z) = �z(∞, 0)
2π

z
r3

. (43)

In other words, the magnetic field generated by the
pancake vortex appears as if generated by a magnetic
monopole, with the flux �z(∞, 0) [Eq. (37)] spread-
ing out evenly into the hemisphere above the surface.
It is important to note that only pancake vortices
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within about λ‖ (or λab in the high-temperature su-
perconductors) are visible using Bitter decoration,
scanning Hall-probe microscopy, scanning SQUID
microscopy, or magneto-optical techniques; pancake
vortices deeper than this make an exponentially
small contribution to the magnetic field above the
surface.

From Eq. (39) we see that the magnetic flux up
through the plane z = z0 in the layer containing the
pancake vortex is

�z(∞, z0) = φ0[1 − e−s/2λ‖ + sinh(s/2λ‖)e2z0/λ‖]

≈ φ0(s/2λ‖)(1 + e2z0/λ‖). (44)

When the pancake vortex is in the top layer (i.e., if
z0 = −s/2), the magnetic flux up through this layer is
approximately φ0(s/λ‖), and when the pancake vor-
tex is deep inside the superconductor (i.e., if −z0 
λ‖), the magnetic flux up through the pancake layer
is approximately φ0(s/2λ‖), as found in Sec. 2 for the
infinite superconductor [Eqs. (12) and (23)].

If there is a pancake vortex in every layer, even
if they are misaligned, the total magnetic flux up
through any plane with coordinate z is exactly equal
to φ0. This can be shown by replacing z0 by zn =
z0 + ns, noting that the top layer is centered at −s/2,
and summing over all n, using Eq. (37) if z > 0. On
the other hand, if z < 0, one must use Eq. (40) for
the top layers for which zn − s/2 ≥ z, Eq. (39) for
the layer containing z for which zn − s/2 ≤ z ≤ zn +
s/2, and Eq. (38) for the remaining layers for which
zn + s/2 ≤ z. If all the pancake vortices are aligned
along the z axis, the magnetic-field and current-
density distributions reduce to those calculated by
Pearl [11,53,55] for a vortex in a semi-infinite super-
conductor.

Scanning Hall-probe experiments visualizing
vortices in underdoped, highly anisotropic YBa2

Cu3O6+x (YBCO) single crystals, where x = 0.35 −
0.375, recently have been carried out by Guikema
[56]. In the most underdoped crystals, the ob-
servations revealed what at first appeared to be
“partial vortices” carrying magnetic flux less than
φ0. Guikema concluded, however, that such images
are caused by a full vortex that is partially displaced
horizontally, i.e., a “split pancake-vortex stack.” The
magnetic flux generated above the surface by the
two parts of the vortex stack can be calculated as
follows. Suppose the bottom portion, consisting of
pancake vortices below the plane z = −d, is aligned
along the z axis, and the top portion, consisting of
pancake vortices above the plane z = −d, is aligned

parallel to the z axis but at (x, y) = (x0, 0). Using
Eq. (37) to sum the contributions from the pan-
cake vortices in the two portions, one finds that
the magnetic flux �bot = φ0 exp(−d/λ‖) generated
by the bottom portion emerges from the vicinity of
the origin (x, y, z) = (0, 0, 0), and the magnetic flux
�top = φ0[1 − exp(−d/λ‖)] generated by the top por-
tion emerges from the vicinity of the point (x, y, z) =
(x0, 0, 0). The two flux contributions should be re-
solvable when the displacement x0 exceeds the Hall-
probe size and the probe’s field sensitivity allows de-
tection of both contributions.

4. PANCAKE VORTEX IN A FINITE STACK
OF SUPERCONDUCTING LAYERS

Since all laboratory samples of the high-
temperature superconductors are of finite thickness,
it is important to examine how the properties of pan-
cake vortices discussed in Sec. 2 are modified when
we take the finite thickness into account, including
the possibility that the thickness D may be less than
the penetration λ‖. Let us begin by considering a pan-
cake vortex centered on the z axis in a stack of su-
perconducting layers, each of thickness s, in the re-
gion −D/2 < z < D/2, as sketched in Fig. 4. As in
the previous section, we number the layers such that
the layer n = 0 at z = z0, where |z0| ≤ (D/2 − s/2), is
the one containing the pancake vortex. The other
layers are centered at z = zn = z0 + ns, where pos-
itive (negative) n labels layers above (below) the
pancake vortex. If there are N+ layers above the

Fig. 4. Continuum model of a stack of superconducting layers in
the space |z| < D/2 with a pancake vortex (bold arrow) in the layer
at z = z0.
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pancake vortex, then the top layer is centered at
z = z0 + N+s = D/2 − s/2, and if there are N− layers
below the pancake vortex, then the bottom layer is
centered at z = z0 − N−s = −D/2 + s/2. As in Sec.
2.2, I treat all the layers using the continuum ap-
proximation and use Eq. (14) as the London flux-
oid quantization condition. In Sec. 4.1, I show how
to calculate the fields generated by a pancake vortex
in a finite stack of Josephson-decoupled supercon-
ducting layers, each of thickness s, with an arbitrary
total stack thickness D relative to λ‖. In Sec. 4.2, I
consider the simplifications that arise when D 	 λ‖,
which corresponds to the case of high-temperature
superconducting samples consisting of roughly 10 or
fewer unit cells along the c direction.

4.1. Finite Stack of Arbitrary Thickness

As in Secs. 2.2 and 3, we write the vector poten-
tial in cylindrical coordinates as a(ρ, z) = φ̂aφ(ρ, z).
However, we now have different expressions for
aφ(ρ, z) in five regions:

aφ(ρ, z) =
∫ ∞

0
dqA>(q)J1(qρ)e−q(z−D/2), z ≥ D/2,

(45)

aφ(ρ, z) =
∫ ∞

0
dq[Aa−(q)e−Q(z−D/2)

+ Aa+(q)eQ(z−D/2)]J1(qρ), z0+ ≤ z ≤ D/2,

(46)

aφ(ρ, z) =
∫ ∞

0
dq

[
φ0

2πλ2
‖Q2

+ A0−(q)e−Q(z−z0)

+ A0+(q)eQ(z−z0)
]

J1(qρ), z0− ≤ z ≤ z0+,

(47)

aφ(ρ, z) =
∫ ∞

0
dq[Ab−(q)e−Q(z+D/2)

+ Ab+(q)eQ(z+D/2)]J1(qρ),

− D/2 ≤ z ≤ z0−, (48)

aφ(ρ, z) =
∫ ∞

0
dqA<(q)J1(qρ)eq(z+D/2), z ≤ −D/2,

(49)

where Q = (q2 + λ−2
‖ )1/2, the subscript a and (b) de-

notes the layered region above (below) the pan-

cake vortex, and z0± = z0 ± s/2. The eight func-
tions A>(q), Aa−(q), Aa+(q), A0−(q), A0+(q), Ab−(q),
Ab+(q), and A<(q), obtained by applying the eight
boundary conditions of continuity of aφ(ρ, z) and
bρ(ρ, z) [calculated from Eq. (3)] at z = D/2, z0−, z0+,
and −D/2, are

A>(q) = φ0

πλ2
‖Q2

sinh(Qs/2)G(q, z0), (50)

Aa−(q) = φ0

2πλ2
‖Q2

sinh(Qs/2)(1 + q/Q)G(q, z0),

(51)

Aa+(q) = φ0

2πλ2
‖Q2

sinh(Qs/2)(1 − q/Q)G(q, z0),

(52)

A0−(q) = − φ0

4πλ2
‖Q2

[eQs/2−2 sinh(Qs/2)(1 + q/Q)

×G(q, z0)eQD/2e−Qz0 ]

= − φ0

4πλ2
‖Q2

[e−Qs/2−2 sinh(Qs/2)(1 − q/Q)

×G(q,−z0)e−QD/2e−Qz0 ], (53)

A0+(q) = − φ0

4πλ2
‖Q2

[e−Qs/2−2 sinh(Qs/2)(1 − q/Q)

×G(q, z0)e−QD/2eQz0 ]

= − φ0

4πλ2
‖Q2

[eQs/2 −2 sinh(Qs/2)(1 + q/Q)

×G(q,−z0)eQD/2eQz0 ], (54)

Ab−(q) = φ0

2πλ2
‖Q2

sinh(Qs/2)(1 − q/Q)G(q,−z0),

(55)

Ab+(q) = φ0

2πλ2
‖Q2

sinh(Qs/2)(1 + q/Q)G(q,−z0),

(56)

A<(q) = φ0

πλ2
‖Q2

sinh(Qs/2)G(q,−z0), (57)

where

G(q, z) = (1 + q/Q) + (1 − q/Q)e−QDe−2Qz

(1 + q/Q)2 − (1 − q/Q)2e−2QD

×e−QD/2eQz. (58)
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Although the resulting integrals for aφ(ρ, z) and
those [via Eqs. (3) and (4)] for bρ(ρ, z) and bz(ρ, z)
can easily be calculated numerically, they are too
complicated to evaluate analytically for arbitrary ρ

and z. On the other hand, we can evaluate them ap-
proximately for large ρ. When ρ  λ‖, the values of
q that dominate the integrals in Eqs. (45)–(49) via the
Bessel function J1(qρ) are those of order 1/ρ 	 1/λ‖,
such that we may replace all quantities under the in-
tegral except J1(qρ) by their values at q = 0. Simi-
larly, because of the factors exp(−qz) and exp(qz) in
Eqs. (45) and (49) we may replace A>(q) by A>(0)
and A<(q) by A<(0) to evaluate aφ(ρ, z) when ρ is
small but |z| − D/2  λ‖.

The magnetic flux up through a circle of ra-
dius ρ in the plane with coordinate z is �z(ρ, z) =
2πρaφ(ρ, z). Evaluating the integrals as indicated
above for aφ(ρ, z) in the limit as ρ → ∞, we obtain
for the total magnetic flux up through the plane with
coordinate z [12]:

�z(∞, z) = 2φ0 sinh
(

s
2λ‖

)
cosh

(
D/2 + z0

λ‖

)
/

sinh
(

D
λ‖

)
, z ≥ D/2, (59)

�z(∞, z) = 2φ0 sinh
(

s
2λ‖

)
cosh

(
D/2 + z0

λ‖

)

× cosh
(

D/2 − z
λ‖

)
/sinh

(
D
λ‖

)
,

z0+ ≤ z ≤ D/2, (60)

�z(∞, z) = φ0

{
1 −

[
e(D−s)/2λ‖cosh

(
D/2 − z0

λ‖

)

− e−(D−s)/2λ‖cosh
(

D/2 + z0

λ‖

)]

× ez/λ‖/2sinh
(

D
λ‖

)

−
[

e(D−s)/2λ‖cosh
(

D/2 + z0

λ‖

)

− e−(D−s)/2λ‖cosh
(

D/2 − z0

λ‖

)]

× e−z/λ‖/2sinh
(

D
λ‖

) }
, z0− ≤ z ≤ z0+,

(61)

�z(∞, z) = 2φ0 sinh
(

s
2λ‖

)
cosh

(
D/2 − z0

λ‖

)

× cosh
(

D/2 + z
λ‖

)
/sinh

(
D
λ‖

)
,

−D/2 ≤ z ≤ z0−, (62)

�z(∞, z) = 2φ0sinh
(

s
2λ‖

)
cosh

(
D/2 − z0

λ‖

)
/

sinh
(

D
λ‖

)
, z ≤ −D/2. (63)

The magnetic flux �z(∞, D/2) up through the
top surface is given by Eq. (59). When D  λ‖ and
a pancake vortex is in the top layer (i.e., when z0 =
D/2 − s/2), we obtain �z(∞, D/2) ≈ φ0(s/λ‖), which
is a tiny fraction of φ0, since s/λ‖ ∼ 10−2 	 1. As a
function of the distance D/2 − z0 of the pancake vor-
tex from the top surface, we see that �z(∞, D/2) ≈
φ0(s/λ‖)exp[−(D/2 − z0)/λ‖]. When D 	 λ‖, we find
that �z(∞, D/2) ≈ φ0(s/D) = φ0/N, independent of
the position z0 of the pancake vortex within the stack,
where N = D/s is the number of layers in the sam-
ple. When N = D/s = 1,�z(∞, D/2) = φ0, because
our results then reduce to those of Pearl [13–15], who
calculated the field and current distribution gener-
ated by a vortex in a film of thickness much less than
the London penetration depth. The precise magnetic
field distribution generated in the space above the
superconductor can be calculated numerically for a
given z0 from Eqs. (3), (4), and (45). However, at
distances r+ =

√
ρ2 + (z − D/2)2 from the point on

the surface directly above the pancake vortex that
are larger than λ‖ when D > 2λ‖ or larger than the
two-dimensional screening length 
D = 2λ2

‖/D when
D < 2λ‖, we have to good approximation for z ≥ D/2

aφ(ρ, z) = �z(∞, D/2)
2πρ

[
1 − (z − D/2)

r+

]
, (64)

bρ(ρ, z) = �z(∞, D/2)
2π

ρ

r3+
, (65)

bz(ρ, z) = �z(∞, D/2)
2π

(z − D/2)

r3+
. (66)

In other words, the magnetic field generated by the
pancake vortex appears as if generated by a posi-
tive magnetic monopole, with the flux �z(∞, D/2)
[Eq. (59)] spreading out into the hemisphere above
the surface.

Similar statements can be made about the
magnetic flux �z(∞,−D/2) up through the bot-
tom surface [Eq. (63)]. At large distances r− =√

ρ2 + (z + D/2)2 from the point on the surface di-
rectly below the pancake vortex, the magnetic field
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appears as if generated by a negative magnetic
monopole.

From Eq. (61), we see that the magnetic flux up
through the plane z = z0 in the layer containing the
pancake vortex is

�z(∞, z0) = φ0

{
1 −

[
sinh

(
D − s/2

λ‖

)
− sinh

(
s

2λ‖

)

× cosh
(

2z0

λ‖

)]
/sinh

(
D
λ‖

)}
. (67)

When D  λ‖, the dependence of this magnetic flux
upon the distance (D/2 − |z0|) from the top or bot-
tom surface is given by �z(∞, z0) ≈ φ0(s/2λ‖){1 +
exp [−2(D/2 − |z0|)/λ‖]}. When the pancake vortex
is in the top or bottom layer (i.e., if |z0| = D/2 − s/2),
the magnetic flux up through this layer is approxi-
mately φ0(s/λ‖), and when the pancake vortex is deep
inside the superconductor (i.e., if D/2 − |z0|  λ‖),
the magnetic flux up through the pancake layer is
approximately φ0(s/2λ‖) as found in Sec. 2 for the
infinite superconductor [Eqs. (12) and (23)]. When
D 	 λ‖, we see that �z(∞, z0) ≈ φ0(s/D) = φ0/N,

independent of the position z0 of the pancake vor-
tex within the stack, where N = D/s is the number of
layers in the sample.

If there is a pancake vortex in every layer, even
if they are misaligned, the total magnetic flux up
through any plane with coordinate z is exactly equal
to φ0. This can be shown by replacing z0 by zn =
z0 + ns and summing over all n, using Eq. (59) if
z > D/2 or Eq. (63) if z < −D/2. On the other hand,
if |z| < D/2, one must use Eq. (62) for the top lay-
ers for which zn − s/2 ≥ z, Eq. (61) for the layer
containing z for which zn − s/2 ≤ z ≤ zn + s/2, and
Eq. (60) for the remaining layers for which zn + s/2 ≤
z. If all the vortices are aligned along the z axis,
the magnetic-field and current-density distributions
reduce to those given in Ref. [52] when ξv = 0.

It is possible that scanning Hall-probe or
magneto-optical experiments may be able to detect
partial vortices or split pancake-vortex stacks [56]
carrying magnetic flux less than φ0 in samples of
highly anisotropic layered superconductors of thick-
ness D < λ‖. The magnetic flux generated above the
surface z = D/2 by the two parts of the vortex stack
can be calculated as follows. Suppose the bottom
portion, consisting of pancake vortices below the
plane z = D/2 − d, is aligned along the z axis, and
the top portion, consisting of pancake vortices above
the plane z = D/2 − d, is aligned parallel to the z
axis but at (x, y) = (x0, 0). Using Eq. (59) to sum

the contributions from the pancake vortices in the
two portions, one finds that the magnetic flux �bot =
φ0 sinh [(D − d)/λ‖]/ sinh(D/λ‖) generated by the
bottom portion emerges from the vicinity of the point
(x, y, z) = (0, 0, D/2), and the magnetic flux �top =
φ0{1 − sinh [(D − d)/λ‖]/ sinh (D/λ‖)} generated by
the top portion emerges from the vicinity of the
point (x, y, z) = (x0, 0, D/2), The two flux contribu-
tions should be resolvable when the displacement x0

exceeds the Hall-probe size and the probe’s field sen-
sitivity allows detection of both contributions. Note
that �bot = �top = φ0/2 when d = D/2 	 λ‖.

4.2. Finite Stack of Thickness D � λ‖

Considerable simplifications occur when the
thickness D = Ns of the stack is much less than
the in-plane penetration depth λ‖ [11]. It is well
known from the work of Refs. [13] and [14] that
when D 	 λ‖ the characteristic screening length in
isolated films is not λ‖ but rather the 2D screen-
ing length 
D = 2λ2

‖/D. This is also true for the
case of Josephson-decoupled stacks of total thick-
ness D considered here. We may derive equations
for aφ(ρ, z), bρ(ρ, z), and bz(ρ, z) valid for D 	 λ‖
and ρ  λ‖ by starting with Eqs. (45)–(49), apply-
ing Eqs. (3) and (4), and making the replacement
e±Qz = cosh(Qz) ± sinh(Qz). Since we are most in-
terested in values of ρ of the order of 
D or larger,
because of the presence of J1(qρ) the dominant val-
ues of q in the resulting integrals are of the order
of q ∼ 1/
D 	 1/λ‖, such that Q can be replaced by
1/
‖, and small quantities of the order of D/λ‖ and
qλ‖ are of the same order of magnitude. Expanding
in powers of the small quantities (D/λ‖ and qλ‖), we
find that both aφ(ρ, z) and bz(ρ, z) are to lowest order
independent of z, with small correction terms of the
order of D/λ‖, such that to good approximation we
may write these quantities as

aφ(ρ, z) = φ0

2πN

∫ ∞

0
dq

J1(qρ)
1 + q
D

e−q(z−D/2), z ≥ D/2,

(68)

aφ(ρ, z) = φ0

2πN

∫ ∞

0
dq

J1(qρ)
1 + q
D

, −D/2 ≤ z ≤ D/2,

(69)

aφ(ρ, z) = φ0

2πN

∫ ∞

0
dq

J1(qρ)
1 + q
D

eq(z+D/2), z ≤ −D/2,

(70)
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bz(ρ, z) = φ0

2πN

∫ ∞

0
dq

qJ0(qρ)
1 + q
D

e−q(z−D/2), z ≥ D/2,

(71)

bz(ρ, z) = φ0

2πN

∫ ∞

0
dq

qJ0(qρ)
1 + q
D

, −D/2 ≤ z ≤ D/2,

(72)

bz(ρ, z) = φ0

2πN

∫ ∞

0
dq

qJ0(qρ)
1 + q
D

eq(z+D/2), z ≤ −D/2.

(73)

On the other hand, the radial component of the
magnetic field varies strongly with z :

bρ(ρ, z) = φ0

2πN

∫ ∞

0
dq

qJ1(qρ)
1 + q
D

e−q(z−D/2), z ≥ D/2,

(74)

bρ(ρ, z) = φ0

2πN

∫ ∞

0
dq

qJ1(qρ)
1 + q
D

, z = D/2, (75)

bρ(ρ, z) = bρ(ρ, D/2) + (D/2 − z)
(D/2)

aφ(ρ)

D

,

z0+ ≤ z ≤ D/2, (76)

bρ(ρ, z) = bρ(ρ, D/2) + (D/2 − z)
(D/2)

aφ(ρ)

D

− (z0+ − z)
(D/2)

φ0

2π
Dρ
, z0− ≤ z ≤ z0+, (77)

bρ(ρ, z) = bρ(ρ, D/2) + (D/2 − z)
(D/2)

aφ(ρ)

D

− s
(D/2)

φ0

2π
Dρ
, −D/2 ≤ z ≤ z0−, (78)

bρ(ρ, z) = bρ(ρ, D/2) − 2

D

[
φ0

2πNρ
− aφ(ρ)

]

= bρ(ρ,−D/2), z = −D/2, (79)

bρ(ρ, z) = − φ0

2πN

∫ ∞

0
dq

qJ1(qρ)
1 + q
D

eq(z+D/2),

× z ≤ −D/2, (80)

where we use aφ(ρ) to denote the vector poten-
tial in the region |z| ≤ D/2, since aφ(ρ, z) is very
nearly independent of z. The sheet current Kn(ρ) =
Kφ(ρ, zn) = s j φ(ρ, zn) in layer n can be obtained
from either j φ(ρ, z) = (c/4π)∂bρ(ρ, z)/∂z or the flux-
oid quantization condition [Eq. (14)]:

Kn(ρ) = c
2π
s

[
φ0

2πρ
δn0 − aφ(ρ)

]
, (81)

Table I. Results for One Pancake Vortex in a Stack of N Super-
conducting Layers of Total Thickness D = Ns 	 λ‖ in the Lim-
its D 	 ρ 	 
D = 2λ2

‖/D and ρ  
D [Since D is very small,

r = (ρ2 + z2)1/2 may be regarded as the distance from the pan-
cake vortex, and |z| may be regarded as the distance from the top

or bottom surface]

Physical quantity ρ 	 
D ρ  
D

aφ(ρ, z) φ0(r − |z|)/ φ0(r − |z|)/2πNρr
2πN
Dρ

aφ(ρ, 0) φ0/2πN
D φ0/2πNρ

�z(ρ, z) = φ0(r − |z|)/N
D �0(r − |z|)/Nr
2πρaφ(ρ, z)

�z(ρ, z) = φ0ρ/N
D φ0/N
2πρaφ(ρ, 0)

bρ(ρ, z), z = ±|z| ±φ0(r − |z|)/ ±φ0ρ/2πNr3

2πN
Dρr
bρ(ρ, ±D/2) ±φ0/2πN
Dρ ±φ0/2πNρ2

bz(ρ, z) φ0/2πN
Dr φ0z/2πNr3

bz(ρ, 0) φ0/2πN
Dρ φ0λD/2πNρ3

K0(ρ) = Kφ(ρ, z0) cφ0/4π2N
Dρ cφ0(N − 1)/4π2N2
Dρ

Kn(ρ) = Kφ(ρ, zn), −cφ0/4π2N2
2
D −cφ0/4π2N2
Dρ

n �= 0
KD(ρ) cφ0/4π2N
Dρ cφ0/4π2Nρ2

where 
s = 2λ2
‖/s = N
D. The net sheet current

through the thickness D is the sum of the Kn:

KD(ρ) =
N+∑

n=−N−

Kn(ρ) = c
2π
D

[
φ0

2πNρ
− aφ(ρ)

]
.

(82)

The integrals appearing in Eqs. (68)–(82), which
are evaluated in the Appendix, have simple forms
in the limits D 	 ρ 	 
D and ρ  
D. The corre-
sponding expressions for the physical quantities we
have calculated in this section are given in Table
I. The magnetic-field and current-density distribu-
tions reduce to the thin-film results of Pearl [13,14]
when N = 1 and D = s or when each of the N layers
contains a pancake vortex on the z axis.

5. FORCES

The force on a second pancake vortex at the po-
sition (ρ, zn) due to a pancake vortex centered on the
z axis at (0, z0) can be calculated from the Lorentz
force [57]. Since pancake vortices cannot move out
of their planes, the force is directed parallel to the
planes in the radial ρ̂ direction:

Fρ(ρ) = Kφ(ρ, zn)φ0/c, (83)

where

Kφ(ρ, zn) = c
2π
s

[
φ0

2πρ
δn0 − aφ(ρ, zn)

]
(84)
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is the sheet-current density and aφ(ρ, zn) is the vector
potential at (ρ, zn) generated by the pancake vortex
at (0, z0), and 
s = 2λ2

‖/s = N
D.
If both pancake vortices are in the same plane,

the interaction force is always repulsive and in an
infinite or semi-infinite stack of superconducting
layers is given to excellent approximation by

Fρ(ρ) = φ2
0

4π2
sρ
(85)

for all ρ. The reason for this is that the vector poten-
tial in Eq. (84) obeys aφ(ρ, z0) ≤ (s/λ‖)(φ0/2πρ) 	
φ0/2πρ, as shown in Secs. 2 and 3. However, for a
finite stack of thickness D 	 λ‖ consisting of N lay-
ers, Eq. (85) holds only for small ρ (ρ 	 
D), where
the vector potential in Eq. (84) is much smaller than
φ0/2πρ. As discussed in Sec. 4.1, the magnetic flux
at infinite radius �z(∞, z0) up through the pancake-
vortex layer is approximately φ0/N, which means that
aφ(ρ, z0) ≈ φ0/2πNρ for large ρ, and

Fρ(ρ) = (N − 1)
N

φ2
0

4π2
sρ
, ρ  
D. (86)

In the special case when N = 2, the repulsive force
given in Eq. (86) is half that in Eq. (85).

If the two pancake vortices are in different
planes, the φ0/2πρ term in Eq. (84) is absent, and the
interaction force is given by

Fρ(ρ) = −φ0aφ(ρ, zn)
2π
s

. (87)

Because aφ(ρ, zn) is always positive, the interaction
force is always negative, i.e., in a direction so as to
cause the two pancake vortices to become aligned
along the same vertical axis. For the general case,
it is not a simple matter to calculate the spatial de-
pendence of the attractive force between pancake
vortices in different layers, as can be seen from the
expressions for aφ(ρ, z) given in previous sections.
However, we can say that for an infinite or semi-
infinite stack of superconducting layers, the magni-
tude of this attractive force is orders of magnitude
smaller than the repulsive force between pancake
vortices in the same layer. The attractive force be-
tween vortices in different layers in an infinite stack
(or deep inside a semi-infinite stack) has a range λ‖
in the z direction. Equation (5) shows that the at-
tractive force in the infinite stack vanishes exponen-
tially when the interplanar separation of the pan-
cakes along the z direction exceeds λ‖. For a finite
stack of thickness D = Ns 	 λ‖, we find that the at-
tractive force between pancake vortices in different

layers is

Fρ(ρ) = − φ2
0

4π2
2
s

= − φ2
0

4π2N2
2
D

, D 	 ρ 	 
D,

(88)

which agrees with the force in the infinite stack
calculated from Eq. (9) when |zn| 	 ρ 	 λ‖,
and

Fρ(ρ) = − φ2
0

4π2N2
Dρ
, ρ  
D. (89)

For the special case of two layers (N = 2) and a sepa-
ration ρ  
D, the magnitude of the attractive force
exerted by a pancake vortex in one layer upon a pan-
cake vortex in the other layer [Eq. (89)] is equal to
the magnitude of the repulsive force between two
pancake vortices in the same layer [Eq. (86) with

s = N
D].

The energy per unit length of a uniformly tilted
infinite stack of pancake vortices in an infinite stack
of superconducting layers was calculated in Ref. [7].
The corresponding line tension T(θ) was calculated
in Ref. [58] as a function of the angle θ relative to
the z axis and found to be positive only for θ < 51.8◦,
indicating an instability beginning at 51.8◦. Further
calculations [58] showed that, because pancake vor-
tices energetically prefer to line up parallel to the z
axis, the energy for an infinite stack of pancake vor-
tices with a large average tilt angle is reduced when
the stack breaks up into shorter stacks parallel to the
z axis with kinks between them. Pe et al. [59] calcu-
lated the equilibrium positions of a stack of pancake
vortices in a finite stack of Josephson-decoupled lay-
ers when equal and opposite transport currents are
applied to the top and bottom layers. They found that
the pancake vortices in the top and bottom layers
have large displacements to the left and right, while
the other vortices all remain close to the z axis. Re-
lated model calculations were carried out in Ref. [60]
for moving two-dimensional pancake vortex lattices
in a finite stack of magnetically coupled supercon-
ducting thin films with transport current only in the
top layer. For small currents, the entire electromag-
netically coupled vortex array moves uniformly in the
direction of the Lorentz force but with a large dis-
placement of the pancake vortices in the top layer
relative to the others, which remain in nearly straight
lines perpendicular to the layers. Above a critical de-
coupling current, the 2D vortex array in the top layer
periodically slips relative to the arrays in the other
layers, and the dc current–voltage characteristics for
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the top and bottom layers resemble those reported in
Refs. [45] and [46] for the dc transformer.

6. JOSEPHSON COUPLING

The equations underlying the solutions pre-
sented in Secs. 2, 3, and 4 assume no interlayer
Josephson coupling. Implicit in these solutions is the
assumption that the component of the magnetic field
parallel to the layers spreads out uniformly in the ra-
dial direction. This is consistent with the idea that
if a magnetic field is applied parallel to a stack of
Josephson-decoupled layers, the field will penetrate
uniformly between the layers.

When the layers are Josephson-coupled, how-
ever, parallel magnetic fields penetrate the structure
in the form of quantized Josephson vortices [61,62].
As discussed in Ref. [62], Josephson vortices in the
high-temperature superconductors have highly ellip-
tical current and field patterns. Since the decay length
for currents perpendicular to the layers is λc and that
for currents parallel to the layers is λab, the ratio of
the width of the pattern parallel to the layers to the
height perpendicular to the layers is γ = λc/λab at
large distances from the nonlinear Josephson core.
For a high-κ Abrikosov vortex [49] in an isotropic su-
perconductor, the decay length at large distances is
the penetration depth λ, and the currents in the non-
linear core vary on the much smaller length scale of
the coherence length ξ. The behavior in a Josephson
vortex is analogous. The small length scale for spa-
tial variation of the Josephson currents in the vortex
core (whose axis is centered in the insulating layer
between two adjacent superconducting layers) is the
Josephson length [62,63] λJ = γ s, while the corre-
sponding length scale for the return of these cur-
rents parallel to the layers is s, such that the ratio
of the width to the height of the Josephson core is
γ = λJ/s = λc/λab.

In the presence of interlayer Josephson cou-
pling, the magnetic-field and current-density distri-
butions generated by a pancake vortex are unaltered
at short distances but are strongly affected at dis-
tances of the order of λJ and λc. To give an example,
imagine an infinite stack of semi-infinite Josephson-
coupled superconducting layers, all parallel to the xy
plane, filling the half-space x > 0, such that the sur-
face coincides with the plane x = 0. Imagine creat-
ing a pancake vortex at the origin in the supercon-
ducting layer n = 0 and moving it in to a distance x0.
The magnetic-field and current-density distributions,

including the effects of a dipole-like stray field that
leaks out into the space x < 0, have been calculated
as a function of x0 in Ref. [64] under the assumption
of very weak Josephson coupling. In the presence
of Josephson coupling, however, the component of
the magnetic field parallel to the layers cannot pene-
trate with a power-law dependence to large distances
but rather must decay exponentially with the decay
length λc, because this component of the field in-
duces Josephson currents to flow perpendicular to
the layers. As the pancake vortex moves deeper into
the stack, the Josephson coupling begins to play a
greater role. When the pancake vortex is a distance
λJ or greater from the surface, a Josephson core
region of width 2λJ appears in the region between
the vortex axis and the surface. Finally, at distances
such that x0  λc, the current and field distribution
can be characterized as a pancake vortex in which
the fields at distances less than λJ from the axis are
nearly the same as in the Josephson-decoupled case,
and the magnetic flux carried up through the pan-
cake layer z = 0 is φ0 (s/2λ‖). However, this magnetic
flux does not flow radially outward to infinity as in
the Josephson-decoupled case but instead is confined
within a highly elliptical field distribution consisting
of an overlapping Josephson vortex–antivortex pair,
which links the pancake vortex to the surface. Recall
that when a straight vortex is at a distance x from the
surface of an isotropic superconductor of penetration
depth λ, the magnetic flux inside the superconductor,
calculated accounting for the image vortex at −x, is
φ0[1 − exp(−x/λ)]. As a pancake vortex moves from
the surface to a position x0 deep within the supercon-
ductor, it drags along a Josephson vortex (carrying
magnetic flux in the +x direction) whose axis is in the
insulating layer at z = −s/2, and it also drags along a
Josephson antivortex (carrying magnetic flux in the
−x direction) whose axis is in the insulating layer at
z = +s/2. Accounting for the overlapping field dis-
tributions, which nearly cancel each other, we find
that the magnetic flux carried in the +x direction
through the space z < 0 is φ0[1 − exp(−s/2λ‖)] ≈
φ0(s/2λ‖); the same amount of magnetic flux is
carried back in the −x direction through the
space z > 0.

To give another example, consider an infinite
stack of pancake vortices initially aligned along the
z axis in an infinite stack of Josephson-decoupled
superconducting layers. As discussed at the end of
Sec. 2, the field and current distributions reduce to
those of a line vortex in an isotropic superconduc-
tor of penetration depth λ‖ [48]. The magnetic field is
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everywhere perpendicular to the layers. Now imag-
ine displacing all of the pancake vortices in the space
z > s/2 by a distance x0 in the x direction, such that
the pancake vortex stack now has a kink at z = s/2.
In the absence of Josephson coupling, the resulting
field and current distributions can be obtained by
superposing those given in Sec. 2. A component of
the field parallel to the layers must arise in order to
displace the magnetic flux φ0 whose distribution is
centered on the z axis for z 	 −λ‖ to a distribution
centered on the line (x, y) = (x0, 0) for z  λ‖. The
component of the field parallel to the layers has a
dipole-like distribution in any plane z = const, with
a power-law dependence at large distances, but it
decreases exponentially for |z| > λ‖ because of the
screening currents that flow parallel to the layers.
In the presence of interlayer Josephson coupling,
the above picture is altered, and it is now useful to
think of kinked vortices as stacks of pancake vor-
tices connected by Josephson strings (short pieces
of Josephson vortices). The axes of the Josephson
strings are confined to the insulating regions be-
tween superconducting layers. As a consequence of
the Josephson coupling, the radial component of the
magnetic field is screened on the length scale of λc by
the induced Josephson currents, which flow perpen-
dicular to the layers. Although there is little pertur-
bation of the original field distribution when x0 < λJ,
the Josephson length, this situation is altered when
x0 > λJ, because in this case a nonlinear Joseph-
son core appears along the string connecting the
two pancake vortices centered at (x, y, z) = (0, 0, 0)
and (x, y, z) = (x0, 0, s). The Josephson-energy cost
of the Josephson string coupling the two semi-infinite
stacks of pancake vortices is approximately (taking
logarithmic terms to be of order unity) [11,63,65–68]

Eshort(x0) ≈ (φ0/4π)2x2
0/sλ2

c, x0 < λJ = (λc/λab)s,

(90)
when the Josephson string is short and its core is
not fully formed. The Josephson-energy cost is of the
order of [11,61–63,65–69]

Elong(x0) ≈ (φ0/4π)2x0/λabλc, x0 > λJ = (λc/λab)s,

(91)
when the Josephson string is long and its core is more
fully formed. However, it is not until x0  λc that a
fully formed Josephson vortex (with width 2λc and
height 2λab) can stretch out between the upper and
lower parts of the split stack of pancake vortices.
In this case the energy cost of the Josephson string

coupling the two semi-infinite stacks of pancake vor-
tices reduces to (φ0Hc1,ab/4π)x0, where φ0Hc1,ab/4π is
the energy per unit length of an isolated Josephson
vortex parallel to the layers [61,67,69,70] and

Hcl,ab = φ0

4πλabλc

[
ln

(
λab

s

)
+ 1.55

]
. (92)

is the lower critical field parallel to the layers.
In anisotropic superconductors consisting of

Josephson-coupled superconducting layers, one may
always regard the vortex structure as consisting of
a superposition of 2D pancake vortices, which carry
magnetic flux up through the layers, and Joseph-
son vortices (or strings), which carry magnetic flux
parallel to the layers but no net flux perpendicu-
lar to the layers. In transport experiments involv-
ing vortex motion, the voltages are given by the
Josephson relations [31]. The dc voltage parallel to
the layers is V‖ = (h/2e)ν‖, where ν‖ is the time-
averaged rate with which 2D pancake vortices cross
a line between the contacts, and the dc voltage per-
pendicular to the layers is proportional to V⊥ =
(h/2e)ν⊥, where ν⊥ is the time-averaged rate with
which the axes of Josephson vortices (or strings)
cross a line between the contacts.

When the Josephson coupling is strong, vortex
lines tilted with respect to the z (or c) axis can be
described as tilted stacks of 2D pancake vortices or
as a tilted lattice, where pancakes in adjacent layers
are connected by Josephson strings. Such vortices,
sometimes called kinked vortex lines [71,72] have
been studied by numerous authors [70,73–76] How-
ever, when the Josephson coupling is very weak, a
magnetic field applied at a small angle relative to the
layers can produce a structure consisting of two per-
pendicular interpenetrating lattices [63,77,78] (called
a combined lattice [63] or crossing lattices [78]): a
lattice of pancake vortices aligned nearly perpendic-
ular to the layers and a lattice of Josephson vor-
tices parallel to the layers. The interaction between
the two kinds of vortices leads to striking chain-like
vortex patterns in highly anisotropic Bi-2212, which
have been observed by Bitter decoration [79,80]
and scanning Hall-probe microscopy [35,81,82]. Both
techniques reveal the positions of 2D pancake vor-
tices within about λab of the surface. As shown by
Koshelev [83], in highly anisotropic layered super-
conductors the interactions between pancake vor-
tices and Josephson vortices lead to deformations of
both the pancake-vortex and Josephson-vortex crys-
tals and to pinning of Josephson vortices by pancake
vortices.
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At high temperatures and applied magnetic
fields, the vortex lattice melts [84–88], and this pro-
cess has even been directly visualized in Bi-2212 by
scanning Hall-probe microscopy [89,90]. The authors
of Ref. [90] used the formalism of Sec. 4.1 A to in-
fer the Lindemann parameter from the rms thermal
fluctuations of pancake vortices versus magnetic field
just below the melting transition. Much experimental
and theoretical research has been devoted to vortex-
lattice melting, and the reader is referred to reviews
by Blatter et al. [91] and Brandt [92] for a more com-
plete discussion of this topic.

The pinning of vortices by point defects is an-
other topic where the interactions between pan-
cake vortices and Josephson vortices play a key
role. This difficult subject is further complicated by
the effects of thermal fluctuations, especially in the
high-temperature superconductors at the elevated
temperatures where potential applications are most
interesting. The reader is referred to the above re-
views [91,92] and the recent paper by Kierfeld [93]
for further details about this subject.

7. SUMMARY

In this paper, I have presented solutions that
permit the calculation of the magnetic-field and
current-density distributions generated by a single
2D pancake vortex in an infinite stack (Sec. 2), semi-
infinite stack (Sec. 3), or a finite-thickness stack (Sec.
4) of Josephson-decoupled superconducting layers. I
have shown in Sec. 5 how to calculate the electro-
magnetic forces between two pancake vortices, and
in Sec. 6, I have discussed some of the ways that in-
terlayer Josephson coupling modifies the results.

The results of this paper should be useful to
those using probes (such as scanning Hall-probe mi-
croscopy, scanning SQUID microscopy, Bitter deco-
ration, and magneto-optics) of the vortex-generated
magnetic-field distributions above anisotropic high-
temperature superconductors. If the sample surface
is parallel to the cuprate planes, these probes mea-
sure chiefly the magnetic fields generated by pan-
cake vortices within about λab of the top surface. Al-
though Josephson vortices (or strings) produce no
net magnetic flux through the top surface, they can
produce dipole-like stray fields if they are within
λab of the surface. On the other hand, if the sam-
ple surface is normal to the cuprate planes, such
probes measure chiefly the magnetic fields generated
by Josephson vortices within about λc of the sample

surface, although pancake vortices within λab of the
surface can produce dipole-like stray fields outside
the sample [64].

The pancake-vortex field and current distribu-
tions given in Secs. 2–4 also could be useful in analyz-
ing experiments such as Lorentz microscopy [94–100]
that probe the magnetic-field distribution throughout
the sample thickness.

Since the London model is at the heart of the
above pancake-vortex calculations, the resulting the-
oretical field and current distributions have unphysi-
cal singularities at the pancake-vortex core, which is
of size ∼ξab. Such singularities should have no exper-
imental consequences for the above probes, which
have insufficient resolution to reveal details at this
length scale. However, for probes of higher resolu-
tion it may be necessary to take into account the
fact that the circulating current density reaches a
maximum at ρ ≈ ξab, and vanishes linearly as ρ → 0,
such that the singularity of the magnetic field at the
pancake-vortex core is removed. The core effects
could be treated approximately by using a vortex-
core model that employs a variational core-radius pa-
rameter ξν ∼ ξab, as in Refs. [37,50–52].

APPENDIX: INTEGRALS
USEFUL FOR D � λ‖

Several integrals appear in Sec. 4.2. All may be
evaluated by starting from [101,102]∫ ∞

0
du

J0(zu)
1 + u

= π

2
[H0(z) − Y0(z)], (A.1)

where Hn(z) is the Struve function and Yn(z) is the
Bessel function of the second kind (Weber’s func-
tion), differentiating with respect to z, making use
of recurrence relations, integrating by parts, and
making use of the properties that [101,102]∫ ∞

0
duJ0(zu) =

∫ ∞

0
duJ1(zu) = 1

z
, (A.2)

∫ ∞

0
du

J1(zu)
u

= 1. (A.3)

The vector potential aφ(ρ, 0) is proportional to∫ ∞

0
du

J1(zu)
1 + u

= 1
z

+ 1 − π

2
[H1(z) − Y1(z)]

(A.4)

≈ 1, z 	 1, (A.5)
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≈ 1
z
, z  1, (A.6)

where the limiting forms for z 	 1 and z  1 are ob-
tained from expansions given in Refs. [101] and [102].
However, Eq. (A.5) may be obtained more simply by
noting that, because of the properties of J1(uz), the
integral when z 	 1 is dominated by values of u  1,
such that 1 + u may be replaced by u; the resulting
integral then takes the form of Eq. (A.3). Similarly,
Eq. (A.6) may be obtained by noting that when z  1
the integral is dominated by values of u 	 1, such
that 1 + u may be replaced by 1; the resulting inte-
gral may be evaluated using Eq. (A.2). The limiting
forms of the following integrals also may be obtained
in a similar fashion.

The magnetic field component bz(ρ, 0) is propor-
tional to∫ ∞

0
du

uJ0(zu)
1 + u

= 1
z

∫ ∞

0
du

uJ1(zu)
(1 + u)2

= 1
z2

∫ ∞

0
du

(1 − u)J0(zu)
(1 + u)3

(A.7)

= 1
z

− π

2
[H0(z) − Y0(z)] (A.8)

≈ 1
z
, z 	 1, (A.9)

≈ 1
z3

, z  1, (A.10)

and the net sheet current KD(ρ) is proportional to∫ ∞

0
du

uJ1(zu)
1 + u

= 1
z

∫ ∞

0
du

J0(zu)
(1 + u)2

(A.11)

= π

2
[H1(z) − Y1(z)] (A.12)

≈ 1
z
, z 	 1, (A.13)

≈ 1
z2

, z  1. (A.14)
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