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Abstract

Single-pixel imaging allows to obtain images without the use of photosensors with spatial resolution.
In this method, an image is calculated by measuring the image conformity to a given set of light
patterns by a single-pixel detector. However, when implementing single-pixel imaging in practice,
one has to deal with various imperfections, which lead to the difference between the experiment and
the idealized theoretical model. In this work, we analyze the effect of detector noise on the ability
to compute an image using a compressed sampling algorithm. By conducting computer simulations
of single-pixel imaging, we investigate methods for suppressing the effects of detector noise and find
optimum parameters of the measurement process. As a result, we demonstrate the ability to obtain
images with a realistic model of the detector noise.
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1. Introduction

To obtain an image, standard imaging methods use light-sensitive matrices consisting of a large

number of pixels. Single-pixel imaging provides an alternative to the standard imaging methods. The

light-sensitive element in single-pixel imaging is just one pixel, that is, an element that does not have

spatial resolution. In this method, the spatial structure of objects is obtained, using various intensity

distributions (patterns) in the spatial modulation of light, illuminating the object, or light emitted by

the object, and measuring its integral amount for a given set of patterns [1,2]. How to obtain an image,

using a similar method, was initially shown in the quantum case, where random patterns arose due to

spontaneous parametric scattering of light [3]. To create an arbitrary set of patterns, one can use both

quantum light control methods [4] and classical ones; for example, a digital micro-mirror spatial light

modulator, similar to those used in consumer digital video projectors [5, 6].

An important advantage of single-pixel imaging is a much larger choice of single-pixel photosensitive

elements; in this case, the choice of multi-pixel matrices significantly exceeds and provides new opportu-

nities for obtaining images [7–10]. For example, it is possible to obtain images in single-photon regime in

the near-infrared region at a wavelength of 1.5 μm [11], that opens new imaging possibilities for quantum

information technologies. Also, a significant difference between the single-pixel imaging method and the

standard multi-pixel imaging method is the use of computational resources and algorithms. Single-pixel

imaging relies on a system of equations connecting the image, the patterns, and the measured signal from a

single-pixel detector. One of the modern methods of image reconstruction is compressed sampling [12,13].

In this method, one calculates the most sparse solution of a system of equations corresponding to the

process of sampling an image, using an arbitrary (either incomplete or over-complete) set of patterns.
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When implementing single-pixel imaging in practice, one has to deal with various imperfections, which

lead to differences between the real experiment and the idealized theoretical model. In particular, the

measured signal in reality is always noisy. Noise in the detector adds uncertainty to the solution of the

system of equations and leads to deviation of the calculated image from the original one. Therefore, to

implement single-pixel imaging in practice, it is necessary to study the effect of detector noise on the

ability to reconstruct an image.

In this work, we investigate how the detector noise affects the quality of compressed sampling image

reconstruction in single-pixel imaging. For this, we conduct computer simulations of the single-pixel

imaging process, taking into account the detector noise. We consider various parameters for generating

patterns, which are used to sample an image, and find conditions, under which the influence of noise can

be significantly suppressed. In particular, we propose methods for image noise reduction by optimizing

image sampling and reconstruction algorithms.

2. Concept of Single-Pixel Imaging

As a test image, we consider a 16×16 pixel 8 bit gray-scale “smile” icon; see Fig. 1. Although, we

show results, using this test image as an example; the qualitative conclusions are also valid for other

types of images, as we show below.

For a better understanding of the single-pixel imaging method, we illustrate the idea in Fig. 1. We

consider object illumination by nonuniform light with a certain spatial structure (pattern), which we can

control and change by our choice. An example of patterns is shown in Fig. 1 (the top row). We consider

binary patterns, i.e., patterns consisting of 0 and 1, represented by black and white colors, respectively.

When an object is illuminated by a pattern (image sampling), the pixels of the pattern and the pixels

Fig. 1. Conception of single-pixel imaging. The origi-
nal image (“smile”) is overlapped with patterns, which
have a random distribution of transparent and opaque
parts (the first row). Depending on the correspondence
of the pattern to the object, a certain part of the image
is blocked by a given pattern (the second row). For each
pattern, the total amount of light transmitted from the
image of the object through this pattern is measured by
a detector (signal from a single-pixel detector). Based
on information about the set of patterns and the cor-
responding signal, the original image is calculated: the
larger the data set, the closer the calculated image is to
the original (the bottom row).
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of the image are multiplied; see Fig. 1 (the middle row). Then, the single-pixel detector measures the

total amount of light after pixel-by-pixel multiplication of the object and the pattern. The detector’s

signal for each pattern is proportional to the sum of the pattern pixels taken with the weight of the

corresponding image pixel or, which gives the same thing, the sum of the image pixels taken with the

weight of the corresponding pattern pixel; see the plot in Fig. 1. Thus, a value of 0 for a given pixel in a

pattern means that the corresponding pixel in the image is not sampled, and 1 means, on the contrary,

that it is sampled. After collecting data (measuring signals with a single-pixel detector), the main task

is to calculate the image, which corresponds to the measured sequence of signals for a known sequence

of patterns.

To assess the correspondence of the calculated image to the original (the accuracy of reconstruction),

we use the metrics L1 = 〈|A − X|〉 and L2 =
√〈|A−X|2〉, that is, the average module of the pixel,

the differences between the original image A and the calculated image X, and their standard deviation,

respectively. Strictly speaking, the metric L2 means the average squared deviation but, for ease of

comparison, we take the square root of this number and further denote it by L2.

3. Influence of Noise on Image Reconstruction

Under ideal conditions, in the absence of any noise and technical limitations, the sequence of detector

signals S corresponding to a set of patterns P is expressed by the equation PA = S, where P is a

matrix of M×N , where each row of length N consists of a one-dimensional representation of one spatial

pattern (one-dimensional row-by-row numbering of all pixels in the pattern), A is also a one-dimensional

representation of the image of the object (column of N elements), and S is a set of signals from the

detector (column of M elements).

However, in reality, the signal always has a noisy component. The physical source of noise in the

signal can be, for example, noise from the detector, noise from the amplifier and other electronics, ambient

light, radio interference on the electric wires, etc. Therefore, image calculation, in fact, is a problem of

solving a system of equations with a noisy component δS in the signal S, namely,

PA = S + δS. (1)

As a realistic model of noise, we consider additive Gaussian noise δS having the Gaussian probability

density distribution with the variance proportional to the average signal value. Within the framework of

this model, further we express noise as a percentage of the average signal. This model of noise is adequate

for both dark and light images, since it is normalized to the average signal from the detector.

4. Image Reconstruction Method

The standard way to solve a system of linear equations (1) in matrix form can be represented as

X = P−1S = A. To perform it, one has to use sampling with a full set of patterns, that is, the number of

patterns must be equal to the number of pixels in each pattern (or image). The noise in the signal from

the detector leads to the noisy reconstructed image, X = P−1S + P−1δS = A + P−1δS. This indicates

that the noisy component, even in only one signal, can immediately affect the entire image, unless the

matrix P is a unit matrix; in this case, noise in one signal affects only one corresponding pixel, and the

problem of the complex influence of noise is greatly simplified [5, 6, 11].
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Nevertheless, it is possible to obtain an exact solution with a smaller set of patterns, using the

compressed sampling method. The essence of the method is to search for the most sparse solution X

according to the norm L1, which is ε-close to the original system of equations, according to the metric

L2; that is, satisfying the condition ||PX −S||L2 < ε. By decreasing ε, one can obtain the exact solution

X = A, under the condition that the solution A is sparse. To understand the efficiency of this method

in practice, we use it for noisy signals S + δS.

A B C

D E F

Fig. 2. The accuracy of image calculation expressed in its proximity to the original image, according to the metric
L1 (the top row: A, B, C) and L2 (the bottom row: D, E, F), vs the number of image samples M . The signal
noise level is 0% (the first column: A, D), 1% (the second column: B, E), and 3% (the third column: C, F) of the
average signal value. Here, a value for one random set of patterns (dots) and statistical deviations (one standard
deviation) for 100 random sets (error bars).

In Fig. 2, we show the dependence of the accuracy of image reconstruction for various noise level

parameters. It is clear that the accuracy of reconstruction depends on the specific sampling of noise;

thus, we collect statistics for different random sets of patterns, where we vary the percentage of units

in each pattern. To understand the qualitative dependence, we consider 5% of filling each pattern with

units, and the noise level equal to 0%, 1%, and 3%. The values of L1 and L2 for a specific realization of

a set of patterns are shown by points, and one standard deviation of L1 and L2 from the corresponding

average value is shown by error bars.

In the absence of noise; see Fig. 2A,D, a specific feature of the compressed sampling method is shown,

namely, the ability to accurately reconstruct an image with an incomplete set of patterns. As one can see,

in some cases, the exact reconstruction can be realized with as few as 96 samples, that is, approximately

one third of the full set. The sets of 112 patterns are divided into two groups: sets from the first group

provide exact or almost exact image reconstruction, while the use of sets from the second group gives a

significant inaccuracy of the reconstructed image. This effect leads to increase (while compared with the

other number of patterns in the sample set) in the standard deviation of L1 and L2 from their average

value around 96 – 112 patterns. With a further increase in the set of patterns, the image is accurately

reconstructed almost always. When the number of samples in the set is reduced to 96, the image is
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reconstructed with some deviations, and with a significantly incomplete set of pattern (smaller than 80);

we see some plateau in both L1 and L2. This dependence of image reconstruction quality on the number

of patterns used for sampling can be described as having a threshold. The plateau, in the case, where the

metric L1 is used, is more pronounced than, in the case, where the metric L2 is used; however, a detailed

study of the applicability of a particular metric for assessing the proximity of a reconstructed image to

the original image is beyond the scope of this work.

The threshold-like feature of image reconstruction remains even in the presence of noise but, when

the threshold number of samples is reached, the values of L1 and L2 do not fall strictly to zero, but to

some non-zero value, and then gradually decrease; see Fig. 2B,C, E, F.

When the percentage of units in each pattern increases above 5%, the qualitative behavior of obtained

dependences remains approximately the same, but the image calculation time increases. As the percentage

of units significantly decreases, below 5%, the quality of image reconstruction decreases, since some image

pixels are rarely sampled and, accordingly, the influence of detector noise for them increases. Therefore,

for practical reasons, it makes sense to form patterns with approximately 5% units.

For clarity, we show in Fig. 1 (the last row) specific examples of calculated images for the case of 5%

noise and 5% units in each pattern, where the number of samples increases from 32 to 256 in increments

of 32 (from left to the right).

As mentioned above, the results are obtained for a test image. which is a 16×16 pixel 8 bit gray-scale

“smile” icon. The picture is pretty representative in several aspects. First, this is a gray-scale picture,

i.e., it contains not only black or white pixels, but also intermediate shades around black lines, with the

average pixel value around 0.74. This serves as an example of “something on a white background” which

quite often occurs. Second, it is not very artificial in a sense that it lacks a clear pattern or extreme

sparsity, in comparison to e.g. hand-written digits from the MNIST data set. Third, the results obtained

for this image are not the best and not the worst compared to the results for other images that we tested.

In Fig. 3, we show 10 other test images representing different types of pictures: mostly dark and mostly

white, having more shades and less shades, sparse and not sparse (the initial “smile,” “two cherries,”

“cup of tee,” “duck,” “ghost,” “heart,” “dancing man,” “musical note,” “smile with a tongue,” and “yin

and yang”).

As one can see in Fig. 3, the qualitative dependence of the calculated image on the detector noise

remains the same. For a fair comparison, we take a single random set of patterns without any optimization

for a given image and run the same algorithm for all images, varying only the noise level (0%, 1%, and

3% of the maximum mean signal), similarly to the one shown in Fig. 2 for the “smile” icon. Comparing

the visual pictures in Fig. 3A, we can conclude that more sparse images allow for smaller number of

samples to reconstruct (e.g., “musical note” is perfectly reconstructed with only a quarter of the full set

of patterns), while images with an intense shades level (“heart” or “cup of tee”) require more than a

half of the full set of patterns. Thus, the initial “smile” is somewhere in between, and varying the set

of patterns; see Fig. 2, is quite representative. After adding detector noise; see Fig. 3B,C, the overall

behavior of all calculated images reminds the results presented in Fig. 2, taking into account the fact that,

in Fig. 3, we have a fixed set of patterns. Again, there are images that allow for better reconstruction (i.e.,

“dancing man,” “duck,” “musical note”), and there are images, which are more difficult to reconstruct.

We explicitly note, that both the test images and the calculated images are gray-scale, while the

patterns are binary black-and-white. Our choice of binary patterns is due to their physical implementation

with DMD spatial light modulator, where micro-mirrors can be set in either of two fixed positions.

However, it is also possible to use gray-scale patterns and implement them with LCD spatial light
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A B C

Fig. 3. Examples of calculated images; here, 10 ground truth 16×16 pixel images (the bottom row). Groups A, B,
C are obtained for the noise level 0%, 1%, 3%, respectively. Each row in each group corresponds to the number of
samples increasing from 32 to 256 in increments of 32 (from left to the right). The results are obtained for a random
set of patterns with approximately 5% units, the same for all images and noise levels, without any optimization or
post-selection.

modulators.

The other possible variation of the above-considered scenario is to reduce the calculated images to

black-and-white instead of gray scale. For example, if we impose the target image to be a valid QR code,

then we can add additional constrains on the space of possible calculated images. The standard way

to get information out of the QR code is, first, to obtain a two-dimensional image of the QR code and,

second, computationally process the obtained image (find the area of the QR code, rotate and reshape it,

normalize the data). The QR code itself contains redundancy due to the error correction, which allows

to extract information even if some part of the image is damaged or the read-out signal is noisy. In the

above-considered computations, we do not set such constrains on the reconstructed images. Although it

is possible to use a valid QR code as a test image for single-pixel imaging, the reconstruction algorithm

has to be properly modified to deal with such scenario; otherwise, the reconstructed image can be an

unreadable QR code.

5. Over-Complete Set of Patterns

One standard option to reduce the influence of noise is to average the signal over several samples.

For this, we should measure the signal from the detector by repeating each pattern several times. With

i.i.d Gaussian noise, the noise variance decreases after the averaging. When implementing this method,

we increase the image sampling time and, thus, actually increase the number of elements in the set of

patterns (proportionally to the number of repetition of each pattern). The system of equations in its
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original form (before averaging the signal over several samples) becomes over-complete, i.e., the image is

over-sampled.

We consider the other way to reduce the influence of noise, also associated with over-sampling. The

idea is to add new random patterns to the system of equations (1) instead of repeating each pattern

several times. To compare the efficiency of this method with simple averaging, we fix the total number

of image samples, i.e., the total number of equations in the system of equations (1). In the first case, we

have 256 different equations, each of which is repeated several times, and the corresponding signals S are

averaged. In the second case, we have an over-complete system, where all the equations are different.

A B C

Fig. 4. The accuracy of image calculation, expressed in its proximity to the original image according to the metrics
L1 (A) and L2 (B), as well as the time T for calculating one image (C) vs the number of image samples M . The
signal noise level is equal to 3% of the average signal value. Number of units in one pattern is equal to 5%. Here,
the results for averaging over several identical patterns (�) and the results for an over-complete set of patterns
without repetition (�). A confidence interval of one standard deviation is calculated from 100 random sets of
patterns.

To compare the accuracy of image reconstruction performed by both methods, we reconstruct the

image by 100 random sets of patterns, and calculate the accuracy of the image reconstruction, using

the metrics L1 and L2. As an example, we consider a realistic noise level of 3% from the average signal

value and consider patterns with 5% units. The result of the calculations is expressed in the form of the

average value of the metrics L1 and L2 and their standard deviation when over-sampling the image by

2, 3, and 4 times (the number of patterns in one set is 512, 768, and 1024, respectively); see Fig. 4.

The expected result is that the accuracy of the image calculation increases as the sample size increases.

An unexpected result is the fact that, for a fixed number of patterns, the usage of over-sampling with

different patterns leads to smaller noise in the calculated image in comparison to averaging the signal

over each pattern. Considering the same result, from a different point of view, we can say that to obtain a

given accuracy of the calculated image, the second method requires fewer patterns, i.e., the sampling time

is reduced compared to simple signal averaging. This statement is true both on average for randomly

selected patterns and in the case of choosing the best (that is, minimizing L1 or L2) random set of

patterns; in the latter case, the difference in efficiency is even greater than the average for all sets.

A possible explanation for this effect can be the following.

The signal averaging apparently leads to the smaller noisy right hand side of the system of equa-

tions (1); however, a noise peak in a given signal component is distributed among few pixels, and con-

strained optimization algorithm forces them to be at the extreme values, i.e., to appear as more black or

more white compared to the ground truth. When we increase the number of patterns and over-sample

the image, the noise is higher (compared to the averaging), but it is distributed more evenly among more
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pixels. Thus, the constrained optimization is less likely to assign an extreme noisy value to a particular

pixel.

To implement this method in an experiment, it is worth to mention two aspects.

First, the overall experimental arrangement remains the same. The only difference is an increased set

of patterns. Usually the set of patterns is programmed in advance, e.g., by programming an electronic

circuit driving a spatial light modulator. Increasing the set of patterns by a small factor does not make

much difference in real implementation. Second, the practical difficulty is data processing and the required

computational resources. The computation time for one image, when we use signal averaging for each

pattern, obviously does not change with increasing over-sampling, since after averaging the number of

equations in system of equations (1) remains the same. When we use the second method (over-sampling

with different patterns), the computation time for one image increases, as the number of equations in

the over-complete system of equations (1) increases. In our case shown in Fig. 4, the calculation time

for the case of 4 times over-sampled system increases by an order of magnitude, and is equal to several

seconds, when a standard laptop is used. Though, in real implementation, the computational time can

be reduced by technical means (refining the algorithm, choosing faster programming language, using a

more powerful computer, etc.), having in mind such scaling of computational time, a practical trade-off

must be made between the desired image computation accuracy, the image sampling time, and the image

computation time.

6. Conclusions

We showed that the single-pixel imaging method could reconstruct the original image in the presence

of realistic detector noise level. As a natural noise model, we considered additive Gaussian noise equal to

several percent of the average detector signal. Optimization of a set of patterns showed that, under such

conditions, highly sparse random patterns were the best choice. As the number of patterns in the set

increased, the accuracy of the reconstructed image nonlinearly increased in a threshold-like manner. After

reaching a threshold number of patterns, the reconstructed image quite accurately matched the original

image. A further increase in reconstruction accuracy could be achieved by sampling the image with an

over-complete set of patterns. We found that this method provided higher quality of the reconstructed

image compared to the standard averaging of the signal over several samples. However, the cost of this

method consists in substantially increased computational time, provided otherwise the same experimental

conditions. Our results showed the capabilities of different image noise reduction strategies in the single-

pixel imaging method and gave an idea of their optimum practical implementation in an experiment.
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