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Abstract

We consider the 3D coefficient inverse problem for parabolic wave equation. It involves determining
the spatial distribution of refractive and absorption indices by processing phase diffraction patterns
obtained by irradiating an object with a set of Gaussian beams. Unlike tomography and ptychography,
rotation or scanning of the sample is not required. The problem is solved by expanding the wave field
and the complex dielectric constant ε(�r) over the full set of Gaussian beam functions. To determine
ε(�r), we obtain a nonlinear matrix equation. The condition of its solvability allows the selection of
sampling frequencies by coordinates in accordance with the practical task.

Keywords: coherent 3D imaging, coherent diffraction imaging, lens-free 3D imaging, parabolic wave

equation, Gaussian beam expansion, time-dependent Schrödinger equation.

1. Initial Equations. Direct Problem

We consider the problem of 3D imaging of amplitude–phase objects. It consists in finding the spatial

distribution of the complex dielectric constant ε(x, z) from the diffraction patterns, which arise when a

coherent beam penetrates through an object. The equation for the beam field u(x, z) in the parabolic

approximation has the following form [1]:

2ik
∂u(x, z)

∂z
+

∂2u(x, z)

∂x2
+ k2[ε(x, z)− 1]u(x, z) = 0, u(x, 0) = u0(x), (1)

where z is the longitudinal coordinate, k is the wave number, and u0(x) is the transverse distribution of

the incident beam at the input aperture. Equation (1) corresponds to the case of two dimensions. In the

case of real 3D space, the other transverse coordinate is added.

For convenience of calculations, we rewrite (1) in the form of the Schrödinger equation as follows:

ik
∂u

∂z
= −1

2

∂2u

∂x2
− k2

2
(ε− 1)u, u(x, 0) = u0(x) (2)

and introduce the notation commonly used in quantum mechanics [2],

ik
∂u(x, z)

∂z
= [H0(x)+V (x, z)]u(x, z), H0(x) = −1

2

∂2

∂x2
+V0(x), V (x, z) = −k2

2
[ε(x, z)−1], (3)

where, in the general case, H0(x) is the unperturbed Hamiltonian of the system, and V (x, z) is a per-

turbation depending on the transverse x and longitudinal z coordinates (analogue of time t = μz/�k in
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quantum mechanics, with μ being the mass of the particle). If we consider Eqs. (2) and (3) as Schrödinger

equations, then the dimension of the coordinate space in them is obviously smaller than in the parabolic

equation (1).

The solution to Eq. (3) can be found by expanding u(x, z) in terms of eigenfunctions of the un-

perturbed Hamiltonian H0(x) [2, 3] or the perturbed Hamiltonian [H0(x) + V (x, z)] for a fixed z [3, 4].

However, in Eq. (2), the potential part of the unperturbed Hamiltonian is equal to zero, V0(x) = 0, and

Eq. (3) is simplified and reads

ik
∂u(x, z)

∂z
= −1

2

∂2u(x, z)

∂x2
+ V (x, z)u(x, z), V (x, z) = −k2

2
[ε(x, z)− 1]. (4)

In order to use this equation and satisfy the initial condition in (2), an expansion of u(x, z) over the

complete set of solutions ϕm(x, z) of the parabolic wave equation in free space suggests itself; see, for

example, [5], that

u(x, z) =
∑
m

cm(z)ϕm(x, z), (5)

where

ik
∂ϕm(x, z)

∂z
= −1

2

∂2ϕm(x, z)

∂x2
,

∫
ϕ∗
m(x, z)ϕn(x, z)dx = δm,n; m,n = 1, 2, 3 . . . (6)

The Hermite–Gauss function, Laguerre–Gauss function, etc. have the properties (6) [6–8]. At the same

time, it should be noted that, in numerical calculations, we are certainly limited by the number of terms

in the expansion (5), say m ≤ M .

Substituting (5) into (2) and taking into account (6), we obtain a following system of ordinary

differential equations:

ikċm(z) =
∑
n

Vmn(z)cn(z), Vmn(z) =

∫
ϕ∗
m(x, z)V (x, z)ϕn(x, z) dx, (7)

cm(0) =

∫
ϕ∗
m(x, 0)u0(x) dx. (8)

If to manage formally, we arrive at the equations of nonstationary perturbation theory for a quantum

system with degenerate levels. For the purposes of this work, however, the system of equations (7) and

(8) seems more convenient than the usual equations of quantum-mechanical perturbation theory, since

it does not require to find eigenvalues and eigenfunctions of the unperturbed Hamiltonian. Instead, it is

based on well-known special functions, and there are no rapidly oscillating terms, which appear in the

standard perturbation theory in matrix elements corresponding to the transitions with changes in energy.

Thus, returning to the beginning of the section, we can say that, in the language of mathematics,

the problem of 3D imaging of amplitude–phase objects corresponds to two types of coefficient inverse

problems [9]. In one case, we are talking about finding the dielectric constant ε(x, z) (where x is a set of

transverse coordinates) in a three-dimensional parabolic wave equation and, in the others, we are talking

about finding the time-dependent potential V (x, z), where the longitudinal coordinate z plays the role of

time in the two-dimensional Schrödinger equation.
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2. The Inverse Problem and Its Discretization

Equations (7) can serve as a basis for 3D studies of weakly inhomogeneous objects. In this case, we

are talking about determining the spatial distribution of the refractive index n(x, z) =
√
ε(x, z) of the

material. We assume that the object is finite, that is, the optical density [n(x, z)−1] outside the object is

zero, and to determine it, the object is illuminated (probed) by coherent beams with a known transverse

distribution; the wave field of the transmitted beam is recorded by a detector located in the plane z = Z;

see Fig. 1.

Fig. 1. 3D image of an amplitude–phase object
located between the input aperture (−Z) and the
detector (Z); here, u(x, z) is the wave field satis-
fying Eq. (1), and ε(x, z) is the complex dielectric
constant.

As is known, for a flat vertically-located object, for example, in the plane z = 0, the problem is solved

due to the fact that the field distributions on the object surface and the detector surface are connected

by direct and inverse Fourier or Fresnel transforms. This is the basis for experimental 2D “lens-free”

methods. The corresponding theoretical approaches are known as the inverse problem of optics [10, 11],

coherent diffraction imaging (CDI), phase contrast, ptychography,∗ and other quantitative microscopy

techniques. Extending these techniques to 3D objects is essential for many applications [12–15]. Before

doing this, we consider an auxiliary direct scattering problem.

Let a probe beam from the same complete set as in Eqs. (4)–(7) pass through the object under study

and try to relate the detector readings to the potential distribution. Taking into account that the object

is finite, we have

ul(x, z) = ϕl(x, z) at −∞ ≤ z ≤ −Z; l = 1, 2, . . . L, (9)

where (−Z) is the position of the input aperture in front of the left boundary of the object; see Fig. 1,

and L is the number of probing beams. At z ≥ −Z, due to diffraction, the field ul(x, z) differs from the

free space mode ϕl(x, z) and satisfies the equation

ik
∂ul(x, z)

∂z
=

[
−1

2

∂2

∂x2
+ V (x, z)

]
ul(x, z), −Z < z < Z. (10)

For each of the l probing beams, the reasoning that led to Eqs. (5)–(7) is valid. In particular, the field

∗Ptychography is a method to reconstruct the crystal structure (image) of a specimen from the diffraction patterns
obtained from each point (area) scanned over a specimen, using a convergent probe so that a part of the illuminated area
overlaps. “Ptycho” means “fold” in Greek. This method has been used in X-ray crystal structural analysis;
www.jeol.com/words/emterms/20190212.102107.php
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at the receiver ul(x, z), being similarly to (5), reads

ul(x, Z) =
∑
m

clm(z)ϕm(x, z)|z=Z , (11)

where clm(z) are the expansion coefficients of the field ul(x, z) over the complete set ϕm(x, z). In quantum

language, clm(z = Z) are the elements of the scattering matrix, that is, the amplitudes of the probabilities

of transitions occurred under the action of perturbation V (x, z). For each l, we obtain a system of ordinary

differential equations as follows:

ikċlm(z) =
∑
n

Vmn(z)c
l
n(z), (12)

Vmn(z) =

∫
ϕ∗
m(x, z)V (x, z)ϕn(x, z) dx. (13)

From this, one can see that the square matrix Vmn(z) describes the propagation of each of the l beams.

If we use for probing the entire set of beams ϕm(x, z) taken into account in the decomposition (5), that

is, L = M , then the system of equations (11) is equivalent (in the limit M → ∞) to a following linear

differential equation:†

dĈ(z)

dz
= − i

k
V̂ (z)Ĉ(z), Ĉ(z = −Z) = Î . (14)

For square matrices,

Ĉ(z) = cmn(z) and V̂ (z) = Vmn(z), (15)

where Î is the unit matrix. If we limit ourselves to a finite number of terms M in Eqs. (11)–(15), the

matrices in (14) and (15) also become of the order of M . Then Eq. (14) has a unique solution; see [16].

In the case of a piecewise continuous potential matrix V̂ (z), Eq. (14) provides an explicit solution

relating the elements of the matrix V̂ (z) at the nodes zs; s = 1, 2, . . . , S, to the output field ul(x, z) for

all l from 1 to M . However, this solution is not sufficient to solve the coefficient inverse problem we are

interested in.

To verify this, we assume that the origin of the coordinate system is located at the center of the

object; see Fig. 1; this means that

V (x, z) = 0 at |z| ≥ Z. (16)

Next, a piecewise continuous potential in Eq. (14) can be written as

V̂ (z) = V̂ (zs); zs−1 < z < zs, s = 1, 2, . . . , S = 2Z/h, (17)

zs = −Z + s · h; z0 = −Z, . . . , zS = Z, (18)

where S is the number of nodes, and h is the sampling step. Then, the solution to Eq. (14) can be written

as a product of matrices [16]; it reads

Ĉ(Z) = exp

{
− ih

k
V̂ (Z)

}
· exp

{
− ih

k
V̂ (Z − h)

}
· . . . · exp

{
− ih

k
V̂ (−Z + h)

}
Ĉ(−Z) (19)

†This is easy to understand by dropping the index l in (11) down to the right.
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or, in short, taking into account that Ĉ(−Z) = Î, we arrive at

Ĉ(Z) =
∏

1≤s≤S

exp

{
− ih

k
V̂ (zs)

}
. (20)

If the matrix Ĉ(Z) is known, it provides M×M equations connecting the elements of the perturbation

matrices V̂ (zs) with the input and output fields. It is important to note that, in (19) and (20), the order

of the multipliers must be observed, as the matrices V̂ (zs) do not commute for different s. In the next

section, we explore the possibility of using these equations to solve the coefficient inverse problem, which

was formulated in Sec. 1.

3. The Coherent Direct 3D Imaging Equation and Solvability

Condition

Thus, following Sec. 2, we assume that an object, represented by a piecewise continuous perturbation,

V̂ (Z), is probed by Gaussian beams. Then the matrix Ĉ(Z), which, according to Eqs. (15) and (13),

defines the field at the detector located behind the object, has the following form:

Ĉ(Z) =
∏

1≤s≤S

exp

{
− ih

k
V̂ (zs)

}
. (21)

The field at the detector arising at the incidence of a Gaussian beam is a superposition of Gaussian

beams; it reads

ul(x, Z) =
∑
m

cml(Z)ϕm(x, Z). (22)

By entering the pixel coordinates xp of the detector, p = 1, 2 . . . P , we obtain a system of nonlinear

equations to determine the elements of the perturbation matrices Vmn(zs), namely,

ul(xp, Z) =
∑
m

cml(Z)ϕm(xp, Z), (23)

where ul(xp, Z) is the set of detector readings, and ϕm(xp, Z) are the values of the Gaussian functions in

the detector plane.

Here, it should be emphasized that the detector, in this work, is assumed to be a phase detector;

more precisely, it allows to measure both the amplitude and phase of the electromagnetic field. This

is possible in the terahertz and longer wavelength ranges. At shorter wavelengths, the detectors are

quadratic, i.e., they record the intensity or energy density of the field. Therefore, since the 1970s, special

numerical methods (phase retrieval) for processing images and diffractograms of non-crystalline objects

have been developed to restore the phase. They are widely used, especially in the case of coherent

radiation sources [12].

To determine cml(Z), in view of (23), a full number of pixels, P = M , is required. Once cml(Z)

are found, the desired elements of the perturbation matrices, Vmn(zs), must be determined, using the

relations

cml(Z) =

⎧⎨
⎩

∏
1≤s≤S

exp

[
− ih

k
V̂ (zs)

]⎫⎬
⎭

ml

, (24)
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which follow from (21). Thus, Eqs. (23) and (24) seem to basically solve the problem of volumetric

visualization of amplitude–phase objects.

However, let us take a closer look at Eqs. (24); these are M2 equations with SM2 unknown variables,

and they can only be solved for S = 1, i.e., only for one plane. This is of a little practical interest. You

can change this situation by expanding the perturbation (dielectric constant) into a series, for example,

using Gaussian functions,

V (x, z) =
∑
j

Wj(z)ϕj(x, z); j = 1, . . . , J where Wj(z) =

∫
ϕ∗
j (x, z)V (x, z) dx. (25)

Substituting V (x, z) from (25) into (7), one obtains

Vm,n(z) =
∑
j

Wj(z) ·Bj
mn(z), Bj

mn(z) =

∫
ϕ∗
m(x, z)ϕj(x, z)ϕn(x, z) dx. (26)

Thus, in view of (25), it is possible to describe the perturbation V (x, z) in the layer, using J parameters

instead of M2; see (24). This provides flexibility, allowing us to increase the number of layers under

study and complete the task. Taking into account (25) and (26), we can derive from (23) and (24) the

basic equation for coherent direct 3D imaging; they read

ul(xp, Z) =

M∑
m

⎡
⎣ ∏
1≤s≤S

exp

⎧⎨
⎩− ih

k

J∑
j=1

Wj(zs)B̂
j(zs)

⎫⎬
⎭
⎤
⎦
ml

ϕm(xp, Z); l = 1, . . . ,M. (27)

Here, ul(xp, Z) is the reading of the pth pixel of the detector, and Wj(zs) are the coefficients of the

potential expansion in Gaussian functions; see (26). Also, B̂j(zs) is a matrix composed of products of

three Gaussian functions integrated over transverse coordinate x; see (26).

For the purposes of this work, the detector readings ul(xp, Z) in Eq. (26) are the input data. The

desired values to be found are the expansion coefficients Wj(zs). The potential V (x, z) (and hence the

dielectric constant ε(x, z) too) can be expressed through these coefficients, in view of formula (25), which,

in principle, solves the coefficient inverse problem posed in Sec. 1. The solvability condition for Eqs. (27)

is given by

P = M =
√
SJ ; (28)

it expresses the equality between the number of unknown variables and the number of equations.

4. Discussion and Conclusions

The practical implementation of the proposed approach, which includes the development of computa-

tional algorithms and methods for recovering the phase of images, expands the capabilities for studying

the internal structure of objects compared to standard computed tomography. First, the material of an

object is characterized not only by its absorption index but also by its refractive index. This means that

we can obtain more detailed information on the composition and structure of the object. Second, the

diffraction problem of electromagnetic radiation passing through an object is solved, using the parabolic

equation, rather than the beam approach used in traditional tomography. This allows for a more accurate

description of the material properties and morphology.
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It should be noted that, in this method, coherent radiation is necessary for probing, but there is no

need for rotating the object, detector, or radiation source, as is the case in conventional tomography.

Obvious examples of the application of the proposed method are laser physics and coherent microscopy

in the visible range, where Gaussian beams are often used as a research tool. Additionally, the technique

can be useful in quantum chemistry and nuclear physics, while studying interatomic and internuclear

interactions. To solve the inverse problem, in this case, it seems necessary to rely on experimental data

on elastic scattering.

In conclusion, we write the equation of the coherent 3D imaging (27) in compact matrix form. To do

this, we introduce column vectors describing the wave field in the presence of an object and in a vacuum

as follows:

U(x, z) = {ul(x, z)}, l = 1 . . . L = M and ϕ(x, z) = {ϕm(x, z)}, m = 1 . . .M = L. (29)

Then Eq. (27) looks like the following one:

u(xp, Z) =
∏

1≤s≤S

exp

⎧⎨
⎩− ih

k

J∑
j=1

Wj(zs)B̂(zs)

⎫⎬
⎭ϕ(xp, Z). (30)

Recall that B̂(zs) is the square M×M matrix (26) composed of the integrals from products of three

Gaussian functions, u(xp, Z) is the set of readings of detector, ϕ(xp, Z) are M sets of values of Gaussian

functions at points corresponding to the position of the detector pixels. From these equations, it is nec-

essary to find the coefficients Wj(zs) that describe according to (26) the 3D-potential (complex dielectric

constant).

For the solvability of Eqs. (30), it is necessary to satisfy the following relations:

P = M and PM = SJ. (31)

They follow from the derivation of the equations for the scattering matrix and its discretization carried

out in Secs. 2 and 3. The solvability condition can also be written in a single formula

P = M ≈
√
SJ, (32)

where we use approximate equality since fractional numbering can appear here.
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