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Abstract

We investigate the quantification of entanglement between the photonic and excitonic modes in a
semiconductor microcavity injected with squeezed light. By deriving and subsequently establishing
the solutions to the quantum Langevin equations, we quantify the transient entanglement and the
steady-state entanglement between the photonic and excitonic modes in the low-excitation regime.
It turns out that the cavity mode and the exciton mode are entangled in both the weak and strong
coupling regimes, and there is the entanglement between the cavity mode and the exciton mode even in
the absence of direct coupling between them. Furthermore, though the transit entanglement increases
with the squeeze parameter, it decreases with the initial average intensity of the cavity mode. Also, we
demonstrate that, in the strong coupling regime, the steady-state entanglement grows with coupling
strength while, in the weak coupling regime, it decreases.
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1. Introduction

Extensive researches have been carried out to quantify the photon–photon entanglement in the past

few years [1–5]. This is because the entanglement between two field modes has been widely utilized

in basic tests of quantum physics [6] and in quantum information processing [7]. Several models have

been developed for the generation of photon–photon entanglement in the last few years; one of the

most common schemes is the correlated emission laser [8–10]. For instance, the entanglement between

the field modes due to a correlated emission laser and the coherence induced through the coherent

superposition of the top and ground levels of the injected atoms has been investigated in [3], taking into

consideration the environment-induced decoherence. Subsequently, such schemes as three-level and four-

level quantum beat lasers were introduced because of the coherence provided by the external coherent

field [11, 12]. Entanglement occurs not only between the field modes; the matter modes can also be

the source of entangled states [13–15], which are employed to store and locally manipulate quantum

information in continuous-variable quantum networks. In addition, these systems are not susceptible to

the environmental degrees of freedom that cause the phenomenon of decoherence.

Recently, different candidates have been introduced for manipulating and storing quantum informa-

tion. Semiconductor cavity quantum electrodynamics (QED) is one of the most interesting fields of
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research, with both practical applications and fundamental implications [16–19]. In regard to the basic

features, semiconductor cavity QED provides a platform for studying the interaction between the exciton

and confined photon in optical cavities, and, in the realm of practical application, semiconductor cavity

QED offers the potential to create optical devices with unique properties for quantum computing [20,21].

In a semiconductor microcavity, the Coulomb interaction between the hole in the valence band and the

excited electron in the conduction band creates an exciton. This interaction is strongly coupled with the

electromagnetic field in the cavity, forming the cavity polariton.

The squeezing properties of the excitonic mode in a microcavity with a quantum well and injected

with squeezed light were presented in [22, 23]. The squeezing of the excitonic mode grows with increase

in the squeeze parameter. The nonclassical features of the fluorescent light generated by a quantum

well in a microcavity with a nonlinear medium were considered in [24, 25]. The authors showed that

the fluorescent light demonstrated squeezing and bunching, with the degree of squeezing depending on

the amplitude of the pump mode. In addition, the entanglement between the photon and exciton in a

semiconductor microcavity containing a quantum well was considered in [26], applying the Wehrl entropy

and the generalized concurrence. The authors showed that strong coupling between the environment and

the system decreased the amount of entanglement.

In this study, we explore the photon–exciton entanglement in a semiconductor microcavity with a

quantum well and the input squeezed light. The considered scheme has attractive applications in quan-

tum information science, such as quantum teleportation, entanglement swapping, and linear quantum

computation. Our study is limited to the weak excitation regime, where the amount of excitons in the

microcavity is very low to ignore the exciton–exciton interaction. Recently, the squeezing and statisti-

cal features of the exciton mode in a semiconductor microcavity driven by external coherent light and

injected with squeezed light have been investigated in [27], where the authors showed that the exciton-

mode squeezing relied on the exciton–photon detuning. Moreover, the intensity and squeezing spectra of

a hybrid optomechanical system with an optical cavity containing a quantum well were studied in [28] by

applying the solutions to the quantum Langevin equations; the authors showed that the input squeezed

light influenced the intensity spectrum in the hybrid resonance regime.

Unlike the previous studies, where the emphasis was on statistical and squeezing properties, in our

study here, we devote ourselves to investigating the photon–exciton entanglement in a microcavity with

a quantum well coupled to a broadband squeezed vacuum. We demonstrate to what extent the tran-

sient entanglement and steady-state entanglement of the photon–exciton modes depend on the system

variables, using the the Duan–Giedke–Cirac–Zoller (DGCZ) criterion [29] and the logarithmic negati-

vity (LG) [30–32]. We apply the solutions to the quantum Langevin equations for the field and exciton

modes to study the steady-state entanglement as well as transient entanglement between the cavity mode

and excitonic mode.

2. Model and Master Equation

Fig. 1. Scheme of a semiconductor micro-
cavity containing a quantum well and cou-
pled to broadband squeezed light.

We consider a microcavity made of two Brag reflecting mir-

rors with a quantum well coupled to a single-mode squeezed

vacuum reservoir; see Fig. 1. In order to excite an electron in

the conduction band, the input squeezed light interacts with

the quantum well. This results in a hole in the valence band

and the creation of an exciton, when the hole in the valence
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band interacts with the electron in the conduction band.

The Hamiltonian of the system under study is given by

ĤI = Δ′â†2â2 + ig(â†1â2 − â1â
†
2), (1)

where â1 (â†1) and â2 (â†2) are the annihilation (creation) operators for the field mode and the exciton

mode, respectively, g is coupling strength between the field mode and the exciton mode, and Δ′ = ωe−ωp;

also, ωe (ωp) represents the exciton (photon) frequency.

The master equation for the scheme under investigation, with the damping of the microwave mode

by broadband squeezed light and the excitonic mode by a vacuum reservoir, has the form

dρ̂

dt
= −i[Δ′â†2â2, ρ̂] + g[â†1â2 − â1â

†
2, ρ̂] +

1

2
κ[N + 1](2â1ρ̂â

†
1 − â†1â1ρ̂− ρ̂â†1â1)

+
1

2
κN(2â†1ρ̂â1 − â1â

†
1ρ̂− ρ̂â1â

†
1) +

κ

2
M(2â1ρ̂â1 − â21ρ̂− ρ̂â21 + 2â†1ρ̂â

†
1 − â†21 ρ̂− ρ̂â†21 )

+
γ

2
(2â2ρ̂â

†
2 − â†2â2ρ̂− ρ̂â†2â2), (2)

where κ is decay rate of the field mode, γ is the dissipation rate of the exciton by the spontaneous

emission, N = sinh2(r), and M = cosh(r) sinh(r), with r being the parameter defining the squeezed

light.

Taking into account the master equation, we determine the Langevin equations; they read

d

dt
â1 = −κ

2
â1 + gâ2 + f̂1(t), (3)

d

dt
â2 = −

(
iΔ′ +

γ

2

)
â2 − gâ1 + f̂2(t), (4)

where f̂1(t) is the reservoir noise operator for the cavity mode, which has the following non-vanishing

correlation functions:

〈f̂1(t)f̂1(t′)〉 = 〈f̂ †
1(t)f̂

†
1(t

′)〉 = κMδ(t− t′), (5)

〈f̂1(t)f̂ †
1(t

′)〉 = κ(N + 1)δ(t− t′), 〈f̂ †
1(t)f̂1(t

′)〉 = κNδ(t− t′). (6)

The operator f̂2(t) denotes the noise operator characterizing the coupling of the exciton mode with the

vacuum reservoir; it has the following non-vanishing correlation function:

〈f̂2(t)f̂ †
2(t

′)〉 = γδ(t− t′). (7)

In this work, we are interested in the situation, where the cavity decay rate is equal to the exciton

dissipation rate through the spontaneous emission, and the cavity mode frequency coincides with the

exciton mode frequency. Thus, in view of these considerations and the assumption that κ = γ = Γ, we

can combine Eqs. (3) and (4) and arrive at

d

dt
x̂± = −λ±x̂± + f̂±(t), (8)

where

x̂± = â1 ± iâ2, λ± =
Γ

2
± ig, f̂±(t) = f̂1(t)± if̂2(t). (9)
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Thus, the formal solution to Eq. (8) reads

x̂±(t) = x̂±(0)e−λ±t +

∫ t

0
e−λ±(t−t′)f̂±(t′) dt′. (10)

Now applying Eqs. (9) and (10), we can establish the following relations:

â1(t) = F (t)â1(0) +G(t)â2(0) +

∫ t

0
F (t− t′)f̂1(t′) dt′ +

∫ t

0
G(t− t′)f̂2(t′) dt′, (11)

â2(t) = −G(t)â1(0) + F (t)â2(0)−
∫ t

0
G(t− t′)f̂1(t′) dt′ +

∫ t

0
F (t− t′)f̂2(t′) dt′, (12)

where

F (t) = cos(gt)e−Γt/2 and G(t) = sin(gt)e−Γt/2. (13)

3. Solutions of the Cavity Mode Operator and the Exciton Mode

Operator

Here, we seek to determine the average values of different products of the field mode operators and

the exciton mode operators by applying the fundamental equations, which appear in Eqs. (11) and (12).

To this end, making use of these equations and based on the assumption that the field and the exciton

modes are initially in Fock states, along with the information that the field mode operator and the exciton

mode operator are not correlated with their corresponding Langevin noise forces at the initial time, we

can write that

〈â1(t)â2(t)〉 =

−
t∫

0

t∫
0

F (t− t′)G(t− t′′)〈f̂1(t′)f̂2(t′′)〉 dt′ dt′′ +
t∫

0

t∫
0

F (t− t′)F (t− t′′)〈f̂1(t′)f̂2(t′′)〉 dt′ dt′′

−
t∫

0

t∫
0

G(t− t′)G(t− t′′)〈f̂2(t′)f̂1(t′′)〉 dt′ dt′′ +
∫ t

0

∫ t

0
G(t− t′)F (t− t′′)〈f̂2(t′)f̂2(t′′)〉 dt′ dt′′.

(14)

Then, using the correlation functions for the cavity and exciton Langevin noise operators and carrying

out the integration, we readily arrive at

〈â1(t)â2(t)〉 = −ΓM

2(Γ2 + 4g2)

(
2g − 2g cos(2gt)e−Γt − Γ sin(2gt)e−Γt

)
. (15)

One can calculate the following relations by applying the same techniques:

〈â†2(t)â2(t)〉 = sin2(gt)e−Γtnc + cos2(gt)e−Γtne +
N

2(Γ2 + 4g)

× (
4g2(1− e−Γt)− Γ2e−Γt + Γ2 cos(2gt)e−Γt − 2gΓ sin(2gt)e−Γt

)
, (16)
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〈â22(t)〉 =
M

2(4g2 + Γ2)

(
4g2(1− e−Γt)− Γ2e−Γt + Γ2 cos(2gt)e−Γt − 2gΓ sin(2gt)e−Γt

)
, (17)

〈â1â†2〉 = − cos(gt) sin(gt)e−Γt(nc + 1) + sin(gt) cos(gt)e−Γt(ne + 1)− ΓN

2(Γ2 + 4g2)

× (
2g − 2g cos(2gt)e−Γt − Γ sin(2gt)e−Γt

)
, (18)

〈â†1â2〉 = − cos(gt) sin(gt)e−Γtnc + sin(gt) cos(gt)e−Γtne − ΓN

2(Γ2 + 4g2)

× (
2g − 2g cos(2gt)e−Γt − Γ sin(2gt)e−Γt

)
, (19)

〈â†1(t)â1(t)〉 = sin2(gt)e−Γtne + cos2(gt)e−Γtnc +
N

2(Γ2 + 4g2)

× (
4g2(1− e−Γt) + Γ2(2− e−Γt)− Γ2 cos(2gt)e−Γt + 2gΓ sin(2gt)e−Γt

)
, (20)

〈â21(t)〉 =
M

2(4g2 + Γ2)

(
4g2(1− e−Γt) + Γ2(2− e−Γt)− Γ2 cos(2gt)e−Γt + 2gΓ sin(2gt)e−Γt

)
,

(21)

where nc and ne are the initial average intensity of the field mode and the exciton mode.

4. Entanglement between the Cavity Mode and the Exciton Mode

In this section, we investigate the field–exciton entanglement in a microcavity containing a quantum

well. Entanglement is a unique feature of a composite system, where a measurement done in one sub-

system of the composite system influences the quantum state of the other subsystem. The detection of

entanglement between the field modes emitted by correlated emission laser [3, 5, 33] and quantum beat

laser [12, 16] have been intensively investigated by several authors. They showed the existence of the

entanglement between the cavity modes in a correlated emission laser, and the bipartite entanglement

depended on the rate of atomic injection. To quantify the bipartite entanglement between the photon and

the exciton, we employ the Duan–Giedke–Cirac–Zoller (DGCZ) criterion and the logarithmic negativity.

4.1. DGCZ Criterion

Here, we consider the DGCZ entanglement criterion to quantify the field–exciton entanglement in a

semiconductor microcavity. Within the DGCZ criterion, the condition for the field mode and the exciton

mode to be entangled takes place if the variances of any two operators ŝ and t̂ of the field mode and the

exciton mode obey the following relation:

(Δŝ)2 + (Δt̂)2 < 2, (22)

with

ŝ =
x̂a + x̂b√

2
, t̂ =

p̂a − p̂b√
2

, (23)

while the operators

x̂k = k̂ + k̂†, p̂k =
k̂ − k̂†

i
; k = a1, a2 (24)
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are the quadrature fluctuating operators for the field mode and the exciton mode. In view of Eqs. (23)

and (24), we obtain

(Δŝ)2 + (Δt̂)2 = 2
[
1 + 〈â†1â1〉+ 〈â†2â2〉+ 〈â†1â2〉+ 〈â1â†2〉

±1

2
(〈â21〉+ 〈â22〉+ 〈â†21 〉+ 〈â†22 〉+ 2〈â1â2〉+ 2〈â†1â†2〉)

]
. (25)

4.1.1. Transient Entanglement

Thus, using Eqs. (15)–(21), one can easily rewrite Eq. (25) as follows:

(Δŝ)2 + (Δt̂)2 = 2

[
1 +

e−2r − 1

2(Γ2 + 4g2)

(
8g2(1− e−Γt) + 2Γ2(1− e−Γt)

)− Γ(e−2r − 1)

Γ2 + 4g2

× (
2g − 2g cos(2gt)e−Γt − Γ sin(2gt)e−Γt

)
+ e−Γt(nc + ne) + 2 sin(gt) cos(gt)e−Γt(ne − nc)

]
. (26)

From this expression, we see that the field–exciton entanglement is influenced by the injected squeezed

light, the initial average intensity of the field mode, the photon–exciton coupling constant, and other

system parameters. In the following, we present the possible cases for controlling the entanglement

between the photon and the exciton by manipulating the system variables.

Fig. 2. Entanglement measure, Eq. (26), vs Γt for g/Γ =
1.5, nc = 0, ne = 1, and values of the squeeze parameter
r equal to zero (the solid curve), 0.1 (the dashed curve),
0.15 (the dotted curve), and 0.2 (the dash-dotted curve).

As one can see in Figs. 2–4, in spite of the fact

that the cavity mode and exciton mode are not en-

tangled at the initial moment, transient entangle-

ment develops as time passes. The increased entan-

glement between the photon and the exciton in the

microcavity could be seen as the result of their long-

term interaction with one the other. In Figs. 2–4,

we also show that, over time, the amplitude of os-

cillations diminishes and eventually reaches a flat

condition at steady state.

We start by examining the dependence of

the photon–exciton entanglement on the input

squeezed light. In Fig. 2, we present the plots of

Δŝ2 + Δt̂2 as a function of dimensionless time for

various values of the input squeeze parameter; one

can see that the photon–exciton entanglement dis-

appears at the initial moment, irrespective of the

value of the squeeze parameter r, and the entangle-

ment increases with time. However, a considerable degree of entanglement is realized between the photon

and the exciton over a longer period of time in the presence of the input squeezed light. For r = 0,

there is no field–exciton entanglement in the entire time interval; this demonstrates that the injected

squeezed vacuum is the source of quantum correlation between the field mode and the exciton mode.

We also see that the transient bipartite entanglement between the photon and the exciton grows with

the injected squeeze parameter, and the field mode and exciton mode are not entangled for all the time,

when the field mode is coupled to a vacuum reservoir. This is because the input squeezed field, not the

273



Journal of Russian Laser Research Volume 45, Number 3, May, 2024

Fig. 3. Entanglement measure, Eq. (26), vs Γt for g/Γ =
2, r = 0.1, ne = 1, and values of the initial average field
photons nc equal to 0 (the solid curve), 1 (the dashed
curve), and 2 (the dotted curve).

Fig. 4. Entanglement measure Δs2 +Δt2, Eq. (26), vs
Γt for r = 0.4, n = 0, n̄e = 1, and values of g/Γ equal to
1.5 (the solid curve), 1.75 (the dashed curve), and 2 (the
dotted curve).

vacuum reservoir, adds quantum coherence to the system, which leads to the creation of field–exciton

entanglement.

We are also interested in studying the influence of the initial average intensity of the cavity mode on

the entanglement evolution between the cavity mode and the matter mode. In Fig. 3, we present the

entanglement measure as a function of dimensionless time for different values of the initial intensity of

the cavity mode. The field mode and the exciton mode start to entangle first without the initial average

photons, and entanglement formation between the photon and the exciton starts for Γt > 2, when the

initial average photons are present.

In Fig. 3, we also observe that the field–exciton entanglement shows oscillatory behavior for nc = 0

and nc = 2, but the oscillatory nature disappears for nc = 1. This can be understood as the oscillatory

nature of the entanglement measure vanishes for nc = ne = 1. This is because there is no transfer of

energy between the field mode and the exciton mode. Also, for nc = 2, the photon–exciton entanglement

is above the curve nc = 1, while for nc = 0, it is below this curve. The effect of the initial average photons

is significant at the initial moment, and the influence of the initial average photons on the entanglement

decreases as time passes; this is due to the damping of these initial photons via one of the port mirrors.

In Fig. 4, we show the dynamical nature of the entanglement between the cavity mode and the exciton

mode for various values of g/Γ; we see that the field–exciton entanglement depends on the field–exciton

coupling constant. At the initial moment, the field–exciton entanglement grows with increase in the

cavity–exciton coupling constant. With a further increase in time, the entanglement decreases with the

field–exciton coupling constant for a small interval of time. In the extended time frame, the entanglement

increases with the cavity–exciton coupling constant. Moreover, as the field–exciton coupling strength

increases, the entanglement function shows more oscillatory behavior. This is because an increase in

the photon–exciton coupling strength leads to a fast transfer of energy between the field mode and the

exciton mode. This, in turn, leads to increase in the Rabi frequency. Also, we observe that this increase

in the field–exciton mode interaction is the reason for the generation and loss of entanglement for large

g/Γ.
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4.1.2. Steady-State Entanglement

Within the extended time frame, the entanglement between the cavity mode and the exciton mode

becomes constant, showing the existence of steady-state entanglement. Here, we investigate the influence

of the injected squeezed light on the steady-state entanglement between the cavity mode and the exciton

mode. To this end, the steady-state entanglement is found to be

(Δŝ)2 + (Δt̂)2 = 2

[
1 +

(e−2r − 1)(4g2 + Γ2)

Γ2 + 4g2
− 2gΓ(e−2r − 1)

Γ2 + 4g2

]
. (27)

Fig. 5. Entanglement measure Δs2 + Δt2, Eq. (27),
vs g/Γ for the squeeze parameter r equal to 0.1 (the
solid curve), 0.18 (the dashed curve), and 0.2 (the dashed
curve).

Here, it is essential to consider two cases: the first

case is the condition, in which the cavity–exciton

coupling strength is much smaller than the dissipa-

tion rates, g � Γ (weak coupling regime) while, in

the second case, the cavity–exciton coupling con-

stant is much greater than the dissipation rates,

g � Γ (strong coupling regime). To examine the ef-

fect of the input squeezed light on the steady-state

field–exciton entanglement, we present in Fig. 5 the

entanglement measure Δs2+Δt2 versus g/Γ for va-

rious values of the injected squeeze parameter. It is

clear, from Fig. 5, that there is the photon–exciton

entanglement in the first case; this is because the

cavity is coupled to a broad-band squeezed light,

and the injected squeezed light can be the cause of

the photon–exciton entanglement in the weak cou-

pling regime. Also, it is not difficult to see that,

for a fixed value of the injected squeeze parameter

r, the amount of entanglement rapidly decreases with increase in g/Γ in the weak coupling regime and

reaches the minimum for a certain value of g/Γ, irrespective of the values of the squeeze parameter.

This demonstrates that the external quantum coherence of the injected squeezed light decreases as the

interaction between the photon and the exciton increases. A further increase in g/Γ results in increase in

the amount of entanglement between the field mode and the exciton mode in the strong coupling regime.

4.2. Logarithmic Negativity

We can also quantify bipartite entanglement by applying the logarithmic negativity defined by the

relation

EN = max [0,− log2 Vs] , (28)

where Vs =

√
(χ−

√
χ2 − 4 detμ)/2 is the smallest symplectic eigenvalue μ of the partial transposed

correlation matrix of the field mode and the exciton mode, with χ = detσA + detσB − 2 detσAB. Also,

here, σA and σB denote the field mode and the exciton mode, while σAB denotes the correlation between

the field mode and the exciton mode, and σA, σB, and σAB are related to the correlation matrix as

follows:

μ =

[
σA σAB

σT
AB σB

]
. (29)
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The matrix elements of μ read

μmn =
1

2
〈X̂mX̂n + X̂nX̂m〉 − 〈X̂m〉〈X̂n〉, (30)

where m,n = 1, 2, 3, 4 and the quadrature fluctuation operators are given by X̂1 = â1+ â†1, X̂2 =
â1 − â†1

i
,

X̂3 = â2 + â†2, and X̂4 =
â2 − â†2

i
. The condition for the entanglement between the field mode and the

exciton mode occurs, when EN > 1. Thus, in view of Eq. (28), for EN to be positive, log2 Vs must be

negative. This leads to the condition Vs < 1. Hence, the condition Vs < 1 is a sufficient condition for the

cavity mode and the exciton mode to be entangled.

Fig. 6. The smallest eigenvalue Vs of the field–exciton
modes vs g/γ for the squeeze parameter r equal to 0.3
(the solid curve), 0.35 (the dashed curve), and 0.4 (the
dashed curve).

As one can see in Fig. 6, Vs < 1 for all values

of g/Γ, and this indicates that the cavity modes

and the exciton modes are entangled in both the

weak and strong coupling regimes. It is also obvi-

ous in Fig. 6, that the generated entanglement de-

cays with the coupling strength until g/Γ = 0.28

for r = 0.4 in the weak coupling regime. This

feature of the generated entanglement between the

photon and the exciton is also observed in the

DGCZ criterion. Moreover, as one can see in Fig. 6,

the amount of entanglement increases with increase

in the squeeze parameter in the strong coupling

regime. In this case, also the entanglement measure

based on the DGCZ and the logarithmic-negativity

criteria shows a compatible outcome. Moreover, we

note that, as the input squeeze parameter increases,

the maximum value of the symplectic eigenvalue

shifts towards the weak coupling regime, i.e., the

value of g/Γ, at which the minimum entanglement occurs, decreases. It is also revealed that the field–

exciton entanglement are maximum at g/Γ = 0 (in the absence of coupling between the field mode and

the exciton mode), regardless of the value of the squeeze parameter. We hope that the cause of this

maximum entanglement of the photon–exciton modes is the externally injected squeezed photons. As

g/Γ increases from 0 to the point, at which the minimum entanglement occurs, the input squeezed pa-

rameter has a damaging effect on the photon–exciton entanglement. With a further increase in g/Γ, the

input squeeze parameter has an enhancement effect.

5. Conclusions

In this work, we considered a semiconductor microcavity with a quantum well and input squeezed

light. The transient entanglement and steady-state entanglement between the field mode and the exciton

mode were quantified, in view of the solution to the quantum Langevin equations. It turned out that

the field mode and the exciton mode were not entangled at the initial moment. The entanglement

between the two modes came into existence as time passed. Specifically, the transient photon–exciton
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entanglement appeared first without the initial average photons. Also, we observed that the input

squeezed parameter improved the transient photon–exciton entanglement whereas, in the strong coupling

regime, this entanglement was hurt by the initial mean cavity photons. Moreover, there existed robust

steady-state entanglement between the cavity photon and the semiconductor exciton in the absence of

coupling between them. This was due to the indirect coupling that appeared between the cavity mode

and the semiconductor exciton through their reservoir, despite the absence of a direct coupling between

them. Like the transient entanglement, the steady-state entanglement was also enhanced by the input

squeezed parameter in the strong coupling regime.
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