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Abstract

Evaluating quantum Fisher information is an essential task in the parameter estimation and quantum
metrology. It quantifies the sensitivity of a quantum state to probe and capture variations in an un-
known parameter, which is aimed to be estimated. In this context, the amount of quantum Fisher
information measures the operational nonclassicality of a given state, regarded as a quantifiable re-
source for quantum metrology. We construct su(1, 1) coherent states, using the Perelomov formalism,
and present their various optical realizations forming a general class of su(1, 1) algebraic squeezed
states. We analyze the nonclassicality of these states and evaluate the corresponding Fisher informa-
tion. Also, we find that su(1, 1) algebraic squeezed states surpass the standard quantum limit, thereby
exhibiting a quantum metrological advantage.
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operational resource theory, nonclassical states, su(1, 1) Lie algebra, su(1, 1) squeezed states, Perelomov

coherent states.

1. Introduction

The classical–quantum correspondence of dynamical systems has been a subject of great interest

since the very beginning of quantum mechanics [1]. In his seminal work on the quantum theory of

optical coherence [2, 3], Glauber introduced the coherent states of the electromagnetic field expressed as

|α〉 = ∑∞
0 cn(α)|n〉, where |cn(α)|2 represents the probability of detecting n photons in the field. As a

quantum superposition of number states |n〉, Glauber coherent states are inherently quantum-mechanical

states but establish a one-to-one correspondence with the properties of classical coherent electromagnetic

fields.

The benchmark for the classical behavior of a quantum optical state is defined by the celebrated notion

of the Glauber–Sudarshan P -function [2, 4]. Within this framework, a state is deemed classical, if its

underlying P -function is positive definite; otherwise, the state is considered nonclassical. States exhibiting

nonclassical properties are found to be of great importance, particularly, in quantum interferometry [5],

quantum information processing [6–8], and quantum computation [9]. Nonclassicality is recognized as

a key resource for numerous quantum technologies [10–12], including quantum teleportation [13, 14],

quantum metrology [15], and the implementation of various quantum gates [9, 16].
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The coherent states, along with their generalizations in various contexts [17–29], have played an

instrumental role in broad areas of research. A major focus has been on exploring their nonclassical

properties, such as through discrete excitation or photon addition to coherent states associated with vari-

ous general systems [30–33]. In this context, a seminal theoretical proposal by Agarwal and Tara [34,35]

introduced the coherent addition of a discrete number of photons to continuous-variable coherent states.

These photon-added coherent states (PACSs) exhibit strong nonclassical properties [34, 35]. Laboratory

experiments have realized such PACSs, demonstrating a smooth classical-to-quantum transition through

a single-photon addition to the coherent state of light [36] and experimentally probing quantum commu-

tation rules [37].

Originating from the formulation of Glauber coherent states, using the Heisenberg–Weyl algebra of

the harmonic oscillator [2], the generalization of this concept has been extended, using algebras related

to various Lie groups. Typical examples include Perelomov coherent states [18] and Barut–Girardello

coherent states [17]. The Lie group SU(1, 1) and its associated algebra find vast applications in quantum

optics [38–45].

In our previous papers [46–48], we introduced a general class of coherent states based on the su(1, 1)

Lie algebra and discussed various optical realizations of the su(1, 1) Lie algebra and its associated coherent

states. We observed that, under particular optical realizations, su(1, 1) Perelomov coherent states map

onto various types of squeezed states, referred to as su(1, 1) squeezed states. Furthermore, we analyzed

the nonclassical properties of our constructed coherent states and found that nonclassicality was enhanced

by multiphoton excitation [46–48]. Being highly nonclassical in nature, su(1, 1) squeezed states hold a

special place in quantum optics [49,50] and various related areas [51], especially in the theory of quantum

metrology [52,53].

However, quantifying the nonclassicality of optical states for quantum metrology is a fundamental

and crucial task [54–57]. In this context, quantum Fisher information provides an operational definition

of nonclassicality, quantifying the sensitivity of a quantum state to probe and capture variations of an

unknown parameter. In this work, we present a class of su(1, 1) squeezed coherent states and analyze

their nonclassical behavior: (i) first, using photon counting statistics and the Mandel Q-parameter; (ii)

then, by computing quantum Fisher information. We find that our constructed su(1, 1) squeezed states

have the potential to better perform in quantum metrology and surpass the standard quantum limit.

This paper is organized as follows.

In Sec. 2, first we review the su(1, 1) Lie algebra and associated Perelomov coherent states. Sub-

sequently, using the single-mode bosonic realization of the su(1, 1) algebra and the relevant unitary

irreducible representations, we present the su(1, 1) squeezed states and analyze the nonclassicality of

su(1, 1) squeezed states, employing the photon detection probability. In Sec. 3, we present the Mandel

Q-parameter and then discuss how quantum Fisher information quantifies the underlying nonclassicality

of a quantum state, within the framework of quantum metrology. Finally, we conclude our work in Sec. 4.

2. The su(1,1) Squeezed States

We define su(1, 1) squeezed states as the optical realization of su(1, 1) Perelomov coherent states [18].

Before digging into a detailed discussion of the su(1, 1) squeezed states, first we provide a quick review

of the SU(1, 1) group, its relevant unitary irreducible representations, and the associated Perelomov

coherent states. By expressing the elements of the su(1, 1) Lie algebra in terms of single-mode bosonic
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ladder operators, we explicitly demonstrate how su(1, 1) Perelomov coherent states map onto single-mode

squeezed states.

2.1. The su(1,1) Algebraic Model

The su(1, 1) Lie algebra comprises three generators L̂+, L̂−, and L̂0 satisfying the commutation

relations,

[L̂0, L̂±] = ±L̂±, [L̂−, L̂+] = 2L̂0, (1)

where L̂± collectively denotes both L̂+ and L̂−. These operators adhere to the Hermiticity conditions,

(L̂−)† = L̂+, (L̂+)
† = L̂−, and (L̂0)

† = L̂0. Additionally, we define combinations L̂1 = (L̂+ + L̂−)/2
and L̂2 = (L̂+ − L̂−)/2, which, along with L̂0, constitute the set of generators belonging to the SU(1, 1)

group. The generator L̂0 generates compact SU(1, 1) transforms of the elliptic class, while L̂1 and L̂2

generate noncompact SU(1, 1) transforms of the hyperbolic class [58]. Expressed in terms of L̂1, L̂2, and

L̂0, the su(1, 1) Lie algebra is given by

[L̂1, L̂2] = −iL̂0, [L̂2, L̂0] = iL̂1, [L̂0, L̂1] = iL̂2. (2)

The corresponding Casimir operator is expressed as

Ĉ = L̂2
0 − L̂2

1 − L̂2
2 = L̂2

0 −
1

2
(L̂+L̂− + L̂+L̂−). (3)

Having defined the structure of associated algebra, the relevant irreducible representations of SU(1, 1) are

given by positive discrete series Dκ : {|κ,m〉,κ > 0;m = 0, 1, 2, . . .} satisfying the eigenvalue equations,

Ĉ|κ,m〉 = κ(κ − 1)|κ,m〉, (4)

L̂0|κ,m〉 = (m+ κ)|κ,m〉, (5)

along with the following relations:

L̂−|κ,m〉 =
√

m(2κ +m− 1) |κ,m− 1〉, L̂+|κ,m〉 =
√

(m+ 1)(2κ +m) |κ,m+ 1〉, (6)

where κ is the so-called Bargmann index.

In Eq. (6), we regard the operators L̂− and L̂+ as SU(1, 1) annihilation and creation operators,

respectively, and the SU(1, 1) ground state can be defined as

L̂−|κ, 0〉 = 0. (7)

In this sense, the state |κ,m〉 can be generated by repeated action of L̂+ on the ground state |κ, 0〉,
according to

|κ,m〉 =
[

Γ(2κ)

m!Γ(2κ +m)

]1/2
(L̂+)

m|κ, 0〉. (8)
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2.2. The su(1,1) Perelomov Coherent States

In his seminal work on the quantum theory of optical coherence, Glauber defined coherent states [2]

as displaced vacuum states; they read

|α〉 = D(α)|0〉, D(α) = exp [αa† − α∗a], (9)

where α is a complex parameter representing the amplitude of a coherent electromagnetic field. Equiva-

lently, the coherent states are defined as eigenstates of bosonic annihilation operator, i.e., a|α〉 = α|α〉.
Expanding the coherent state |α〉 as superposition of photon-number states |n〉 yields

|α〉 = e−(|α|2)/2
∞∑
0

αn

√
n!
|n〉. (10)

In analogy, by generalizing the above-mentioned Glauber’s formalism, the su(1, 1) displacement opera-

tor [18] can be defined as

D(β) = exp(βL̂+ − β∗L̂−); β = −r

2
e−iϕ, (11)

where 0 < r < ∞ and 0 ≤ ϕ ≤ 2π are group parameters. The Perelomov coherent state [18] associated

to su(1, 1) algebra is defined by applying displacement operator, given in Eq. (11), to the ground state

|β,κ〉 = D(β)|κ, 0〉. (12)

In view of the SU(1, 1) disentangling theorem [39], the displacement operator can be written as

D(β) = exp (βL̂+) exp (ΛL̂0) exp (−β∗L̂−), (13)

where β = −e−iϕ tanh(r/2) and Λ = ln (1− |β|2). The parameter |β| is thus limited within unit circle,

0 ≤ |β| < 1, on the complex plane. Now it is easy to express the Perelomov coherent states in terms of

basis |κ,m〉 as follows:

|β,κ〉 = (1− |β|2)κ
∞∑
n=0

√
Γ(2κ +m)

m!Γ(2κ)
βm|κ,m〉. (14)

Below, we connect the Perelomov coherent states to single-mode squeezed states under a specific bosonic

realization of su(1, 1) algebra.

2.3. Single-Mode su(1,1) Algebraic Squeezed States

The elements of the su(1, 1) Lie algebra, as defined in Eq. (3), can be realized through various com-

binations of standard bosonic annihilation and creation operators a and a†. In a single-mode realization,

the operators L+, L−, and L0 are expressed as

L̂+ =
1

2
a†2, L̂− =

1

2
a2, L̂0 =

1

2

(
a†a+

1

2

)
. (15)
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In this case, the Casimir operator becomes C = −3/16, and the possible values of Bargmann indices are

κ = 1/4 and κ = 3/4. Moreover, the usual boson number states |n〉;n = 0, 1, 2, . . . map onto the unitary

irreducible representations of SU(1, 1) [59] according to

|n〉 ↔ |κ,m〉 for n = 2(m+ κ)− 1/2. (16)

It is important to note from Eq. (16) that, for κ = 1/4, we get n = 2m. This implies that, for κ = 1/4,

only the even number of photons are mapped onto the unitary irreducible representation of SU(1, 1). On

the other hand, using κ = 3/4 in Eq. (16) reveals that the odd photon-number states with n = 2m+1 are

mapped onto the other unitary representation of SU(1, 1). It is worth mentioning that the ground states,

corresponding to these representations, link up to the Fock states as |1/4, 0〉 = |0〉 and |3/4, 0〉 = |1〉.
Using the single-mode bosonic realization of SU(1, 1) operators, given in Eq. (15), the SU(1, 1)

displacement operator can be written as

D(β) = exp

(
1

2
βa†2 − 1

2
β∗a2

)
, (17)

which is exactly the same as a single-mode squeezing operator. For κ = 1/4, the corresponding Perelomov

SU(1, 1) coherent states, in terms of photon-number states, are given by

|β, 1/4〉 = (1− |β|2)1/4
∞∑

m=0

[
Γ(m+ 1/2)

m!Γ(1/2)

]1/2
βm|2m〉. (18)

It is important to note that the state in Eq. (18) is the single-mode squeezed vacuum state, in which

only the even photon-number states are populated. On the other hand, for κ = 3/4, the corresponding

Perelomov coherent state reads

|β, 3/4〉 = (1− |β|2)3/4
∞∑

m=0

[
Γ(m+ 3/2)

m!Γ(3/2)

]1/2
βm|2m+ 1〉, (19)

which is a single-mode squeezed one-photon state, containing only odd photon-number states being

populated.

3. Quantification of Nonclassicality and Quantum Fisher Information

A quantum optical state ρ̂ can be expressed by a diagonal representation of coherent states; it reads

ρ̂ =

∫
P (α, α∗)|α〉〈α|d2α. (20)

Here, P (α, α∗) is known as the Glauber–Sudarshan P -function. The state ρ̂ is considered as classical

state, if its corresponding Glauber–Sudarshan P -function is positive definite; otherwise, if the probability

distribution P (α, α∗) is negative or narrower than a delta-function [2,4], the state is defined as nonclassical

state. However, directly characterizing P (α, α∗) is challenging in many practical situations; alternative

suitable indicators are employed in various scenarios [5].

Within the framework of quantum metrology, the operational definition of nonclassicality refers to the

exploitation of uniquely quantum features to achieve precision beyond what is classically achievable. This
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operational interpretation of nonclassicality relies on evaluating the amount of Fisher information related

to some appropriate generator of the unitary evolution of an unknown parameter aimed to be estimated.

In the following, we analyze the nonclassicality of su(1, 1) squeezed coherent states using photon-counting

statistics and quantum Fisher information, within the framework of quantum metrology.

3.1. Sub-Poissonian Statistics

The most convenient way to explore the nonclassical nature is to analyze the underlying photon

counting probability distribution

Pn(|β|) = |〈n, k|β, k〉|2. (21)

In Eq. (10), one can see that the photon detection probability |〈n|α〉|2 of Glauber coherent states exhibits

Poissonian statistics, which is a benchmark of classical behavior. In the case of su(1, 1) squeezed states,

the probability distribution is given as

Pn(|β|) = (1− |β|2)2κΓ(2κ +m)

m!Γ(2κ)
βm. (22)

Fig. 1. Mandel Q-parameter versus |β| for su(1, 1)
Perelomov coherent states.

However, it is difficult to ascertain the exact nature

of the underlying statistics for these coherent states

from Eq. (22). To identify the underlying probabi-

lity distribution, we can characterize the Mandel

Q-parameter [60] defined as

Q =

[〈(â†â)2〉 − 〈â†â〉2]
〈â†â〉 − 1. (23)

For Q = 0, the distribution is Poissonian, and

for Q < 0 (Q > 0), the distribution is sub-

Poissonian (super-Poissonian). The detection of

sub-Poissonian statistics is an indicator of nonclas-

sicality. We numerically compute the Mandel Q-

parameter for su(1, 1) squeezed states; the results

are displayed in Fig. 1. These plots show that Q > 0 for all chosen values of β, indicating that su(1, 1)

squeezed states exhibit super-Poissonian statistics. Hence, in this case, the analysis of the Mandel Q-

parameter alone is not enough to detect and quantify the correct amount of nonclassicality.

3.2. Quantum Fisher Information as a Measure of Nonclassicality

Quantum Fisher information is an essential element in quantum metrology and parameter estimation.

While estimating an unknown parameter, say λ, the Fisher information quantifies the sensitivity of a

quantum state ρ̂ to variations in λ during some unitary evolution introduced by some generator Ĝ. For

a pure state ρ̂ = |ψ〉〈ψ| evolving under a unitary transform ρ̂(λ) = U(λ)ρ̂U †(λ), where U(λ) = e−iλĜ,

with Ĝ being a Hermitian operator, the quantum Fisher information [61,62] is given by

FQ(ρ, λ) = 4(ΔG)2|ψ〉, (24)
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where (ΔG)2|ψ〉 = 〈ψ|Ĝ2|ψ〉 − 〈ψ|Ĝ|ψ〉2.
For example, in the case of a single-mode phase estimation, the generator Ĝ = n̂/2, where n̂ = â†â, is

the bosonic number operator. In view of Eq. (24), for classical pure states, for instance, coherent states

ρ̂ = |α〉〈α|, the quantum Fisher information is

FQ(ρ, λ) = 4(Δn/2)2|α〉 = (Δn)2 = 〈n〉α. (25)

This is due to the fact that the number distribution of the coherent state is Poissonian; therefore, the

variance and mean of the number distribution are the same. For a classical mixed state defined in terms

of coherent states ρcl =

∫
Pcl(α, α

∗)|α〉〈α|d2α, where Pcl(α, α
∗) is a positive probability distribution

function, the quantum Fisher information reads

FQ(ρcl, n/2) ≤
∫

d2α Pcl(α, α
∗)〈n〉α = Tr [ρcln] = 〈n〉ρcl . (26)

The measurement precision in the parameter estimation is related with quantum Fisher information by

the quantum Cramer–Rao bound [61,62],

Δφ ≥ 1√〈n〉ρcl
. (27)

The above expression is called the standard quantum limit or the shot noise limit, which states that,

for classical light sources, the measurement precision scales with the inverse square root of the mean

photon number at best. It is important to note that the quantum Fisher information, for classical states

FQ(ρcl, n/2), scales with the average photon number 〈n〉ρcl at best. Hence, for any quantum state ρ̂, if

FQ(ρ, n/2) > FQ(ρcl, n/2) = 〈n〉ρcl , (28)

it implies that ρ̂ must be nonclassical and may provide useful quantum metrological advantage.

As a typical example, we consider the constructed su(1, 1) coherent states given in Eq. (14). For the

value of the Bargmann index κ = 1/4, the su(1, 1) basis states |m,κ〉 map onto even number states |2n〉,
i.e., |m, 1/4〉 = |2n〉. In this case, the su(1, 1) squeezed states are connected with squeezed vacuum states;

see Eq. (18). The mean photon number and variance for squeezed vacuum states can be calculated as

〈n〉ρsq = sinh2(|β|) and (Δn/2)2ρsq = 2 cosh2(|β|) sinh2(|β|). Using Eq. (24), we can calculate the quantum

Fisher information as follows:

FQ(ρsq, n/2) = 2(〈n〉2ρsq + 〈n〉ρsq). (29)

Equation (29) clearly shows that FQ(ρsq, n/2) > FQ(ρcl, n/2), indicating the operational nonclassicality

of squeezed vacuum states available to surpass the standard quantum limit, i.e., FQ(ρsq, n/2) > 〈n〉ρsq .
We numerically plot quantum Fisher information for su(1, 1) squeezed states; the results are presented

in Fig. 2. Moreover, we numerically compute the phase uncertainty for various values of Bargmann indices

κ, belonging to various classes of su(1, 1) squeezed states. The corresponding results are displayed in

Fig. 3.
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Fig. 2. The quantum Fisher information for su(1, 1)
Perelomov coherent states as a function of |β|.

Fig. 3. The phase uncertainty Δφ for su(1, 1) Perelomov
coherent states as a function of |β|.

4. Summary and Conclusions

Detecting and quantifying the nonclassicality of quantum optical states is a crucial task due to its

profound impact on advancing quantum technologies. The nonclassicality of a quantum optical state is

defined by the Glauber–Sudarshan P -function [2, 4]. A state is considered nonclassical, if its underlying

P -function is negative or narrower than a delta-function. However, in many practical situations, direct

analysis of the P -function may become challenging, leading to the use of various alternative measures to

detect and analyze the inherent nonclassical properties of given quantum states. Nonetheless, harnessing

nonclassicality to perform a specific quantum task beyond the classical limit requires a resource-theoretic

approach. In this article, we demonstrated that the amount of quantum Fisher information measured

operational nonclassicality, serving as a quantifiable resource for quantum metrology.

In this article, employing a specific realization of the su(1, 1) Lie algebra and associated Perelomov

coherent states, we introduced a large class of squeezed states. The su(1, 1) algebra finds extensive

applications in describing various special situations in the quantum optical field. Specifically, we utilized

the single-mode realization, expressing the generators of the su(1, 1) algebra in terms of standard bosonic

ladder operators. Correspondingly, we mapped Perelomov coherent states onto a class of su(1, 1) squeezed

states. Then, we computed quantum Fisher information for the constructed su(1, 1) squeezed states,

quantifying operational nonclassicality for performing quantum metrological tasks better than classical

states. The results indicate that su(1, 1) algebraic squeezed states have the potential to surpass the

standard quantum limit, thereby exhibiting a quantum metrological advantage.
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