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Abstract

In this paper, we propose a numerical calculation model, which considers thermal and gain distribution
instabilities and inhomogeneities, for analyzing beam pointing instability in Nd :YAG solid-state lasers.
Disturbance factors are defined for pumping power and pumping field, representing their degrees of
disturbance. We discuss a numerical example to calculate the beam pointing instability for a positive
branch confocal unstable resonator. Subsequently, an optimization design method is discussed for
minimizing beam pointing fluctuation in a resonant cavity. This method incorporates considerations
of thermal and gain distribution instabilities and inhomogeneities, thus offering a straightforward
design approach with broad applicability.
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1. Introduction

Recently, high-power solid-state lasers have garnered significant attention owing to their vital roles

in military and scientific research [1–5]. Among these lasers, high-power solid-state Nd :YAG lasers

have emerged as key assets for military operations and find widespread applications in fields, such as

laser material processing, measurements, cutting, spectroscopy analysis, optical communication, and

others [6–12]. These lasers are valued for their compact design, longevity, efficient energy conversion,

stable output, resilience to external conditions, superior beam quality, and broad crystal coverage.

For high-power solid-state lasers, particularly those suited for long-distance battlefield environments,

in addition to high power and high beam quality, the high beam pointing stability is of paramount

importance, as it directly impacts the efficacy of laser weapons. However, existing research on this

aspect remains limited. In 2016, Ding et al. utilized a scientific-grade charge-coupled device (CCD) to

investigate the beam pointing stability within a single-shot nanosecond-level high-power Nd : glass laser

system; the output beam diameter was 60 mm with 100 J laser energy at 1053 nm. The study reported

A root mean square (RMS) value of the long-term angle drift in the output laser beam to be smaller

than 17 μrad. Nonetheless, a comprehensive exploration of factors influencing beam pointing instability

was lacking [13]. In 2019, Xie et al. delved into the application of high-precision laser-beam pointing

technology in the airborne aiming pods. Their findings revealed a maximum pointing error of 0.015◦ and

RMS value of 0.0075◦. Their investigation primarily investigated the impact of aircraft disturbances and

atmospheric turbulence on beam directionality, without delving into the effects of laser disturbances on

output beam direction [14]. A seminal study by Dixit et al. in 2008 provided a comprehensive analysis
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of pointing stability in Copper vapor lasers, with a focus on the role of the optical resonator. Results

indicated that a minimum beam pointing angle of 8 μrad was obtained with the generalized diffraction

filtered resonator (GDFR), in contrast to a maximum value of 120 μrad from the plane–plane resonator;

unstable resonators yielded intermediate values. However, the study also omitted consideration of the

instabilities and inhomogeneities in thermal and gain distributions and their impact on beam pointing

instability [15].

In this study, we introduce a numerical calculation model aimed at analyzing beam pointing instability,

while considering the instabilities and inhomogeneities in the distribution of temperature and gain. The

gain within the gain medium is intricately linked to the population inversion density, which is determined

by the pump energy’s absorption. A part of leftover energy transforms into waste heat, thus resulting

in an uneven temperature field within the crystal. Ideally, temperature and gain distributions maintain

axis-symmetric patterns, essentially ensuring that the laser beam aligns perfectly with the optical axis.

However, in practical situations involving end-pumped lasers, disturbance in pumping power and pumping

field induces unstable and non-uniform temperature and gain distributions. This results in laser-beam

pointing deviations. To quantify these disturbances, we define the pumping power disturbance factor and

the pumping field disturbance factor, thereby signifying the extent of disruption in each parameter. For

water-cooled lasers, the Nd :YAG crystal is placed in a copper radiator, which absorbs and temporarily

stores the heat from the crystal through a flow of cold water. Employing the finite difference method [16,

17] and rate equation [18], we calculated the transient temperature field and gain distribution within

the gain medium during the pumping phase. The classical numerical method of the Fox–Li open-cavity

mode algorithm [19–22] is effective for calculating the laser mode. We perform this calculation by

considering thermal and gain instability, as well as inhomogeneity, and solving the motion equation of

laser oscillation in the cavity. The positive branch confocal unstable cavity – a typical high-power laser

cavity configuration – is chosen as an illustrative example for studying beam pointing instability.

Subsequently, combined with the cubic spline interpolation method, we propose an optimization

design approach for resonant cavity parameters that minimizes beam pointing fluctuations. This method

considers the instabilities and inhomogeneities in temperature and gain distributions. We provide an

algorithm flowchart and present a simulation example to demonstrate the practical application of our

approach.

2. Establishment of Positive Branch Confocal Unstable Resonator

Model

The resonant cavity is a crucial aspect in the design of high-power solid-state lasers. Although a stable

cavity is typically employed at medium to low pumping power levels, its usage at high pumping power

levels can lead to significant degradation of laser beam quality. The incorporation of a mode-limiting

element to improve beam quality within the stable cavity leads to a reduced mode volume and efficient

energy conversion. In contrast, an unstable resonator offers a solution by concurrently achieving superior

beam quality and heightened energy conversion efficiency, thereby addressing the design complexities of

high-power solid-state lasers [23].

Among the resonator cavity types suitable for high-power solid-state laser engineering, the positive

branch confocal unstable resonator is a crucial one [24,25]. Under ideal conditions, this resonator produces

a parallel output beam according to the unstable cavity’s conjugate image point theory, essentially yielding
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a divergence angle of zero. This facilitates attainment of higher beam quality, whereas the absence of a

focal point within the unstable resonator cavity prevents, optical element damage is not easily caused by

erroneous operation. Consequently, equipment reliability is enhanced.

Fig. 1. Positive branch confocal unstable resonator.

As shown in Fig. 1, the positive branch confocal unstable resonator takes the form of a typical concave-

convex cavity configuration. Here, M1 represents a reflector mirror possessing the radius of curvature R1,

whereas M2 corresponds to an output coupler with the radius of curvature R2 (R2 < 0). These mirrors are

both designed as all-reflective mirrors, featuring 100% reflectivity to facilitate oscillating light. Notably,

the beam emerges epitaxially from the output coupler. The two mirrors exhibit an external confocal

arrangement with the common focal point O. Leveraging this confocal characteristic, the cavity length L

assumes a value of (R1+R2)/2, and the equivalent Fresnel number Neq can be expressed as (a1+a2)/λL,

where a1 and a2 denote the half-widths of the square reflector mirror and the square output coupler,

respectively, essentially satisfying the condition a1 = a2 ·R1/(−R2).

The beam pointing of the laser is defined as the straight line between the center of the output coupler

and the gravity center of the far-field spot. The coordinates of the gravity center of the far-field spot are

as follows:

x̂ =

∫
xI(x, y) dx dy∫
I(x, y) dx dy

, ŷ =

∫
yI(x, y) dx dy∫
I(x, y) dx dy

. (1)

In paraxial conditions, the tangent of a small angle (measured in Radians) is approximately equal to the

angle, that is, tan θ ≈ θ. The beam pointing drift angle is defined as

θ =

√
x̂2 + ŷ2

z
. (2)

3. Theoretical Analysis of the Disturbance Factor and Instability

As shown in Fig. 2, the crystal is approximated as an aperture diaphragm, with thickness consider-

ations set aside. As the oscillating beam traverses this diaphragm, it undergoes modulation stemming

from both the gain and thermal fields. This modulation can be expressed as follows:

U ′(x, y) = W (x, y)F (x, y)U(x, y), (3)
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where U(x, y) is the oscillating optical field entering the aperture diaphragm, U ′(x, y) is the oscillating

optical field exiting in the aperture diaphragm, and W (x, y) and F (x, y) denote the modulation func-

tions corresponding to the gain and thermal fields, respectively. These functions can be defined in the

subsequent manner,

W (x, y) = exp(G(x, y)), F (x, y) = exp(−iΔφ(x, y)), (4)

where G(x, y) is the single-pass gain, and Δφ(x, y) is the single-pass additional phase difference arising

from the thermal effects within the crystal.

Fig. 2. Crystal and cavity model.

In the case of LD end-pumped Nd:YAG lasers,

the entirety of the pumping energy absorbed by the

gain medium does not transform into laser output

owing to phenomena such as the quantum defect

effect and fluorescence quenching effect. Instead, a

significant proportion is deposited within the gain

medium as waste heat. This heat distribution fol-

lows a density function [26,27]; it reads

q(x, y, z) = Pinη(1− exp(−αl))I(x, y, z), (5)

where Pin is the pumping power directed into the

Nd :YAG rod, η is the thermal conversion coeffi-

cient, α is the absorption coefficient for the pump light, l is the length of the Nd :YAG rod, and I(x, y, z)

is the pumping intensity. This normalized function can be expressed as

I(x, y, z) =
2α

πω2
p [1− exp(−αl)]

·
[
exp

(
−2

(
x2 + y2

ω2
p

))]
exp(−αz), (6)

where ωp is the radius of the pump light. Considering the absorption of pump light along the axial

direction and heat dissipation from the side face of the Nd :YAG rod, we can omit the heat flow along

the axial direction; this results in a simplified form of the heat conduction equation [28],

γ ·
(
∂2T (x, y)

∂x2
+

∂2T (x, y)

∂y2

)
+ q(x, y) = ρC

∂T (x, y)

∂t
, (7)

where T (x, y) represents the internal temperature of the Nd :YAG rod, γ represents the thermal con-

ductivity, ρ represents the crystal density, and C represents the heat capacity of the crystal. The finite

difference method [16, 17] proves to be an effective approach for solving the heat conduction equation.

As shown in Fig. 3, the crystal’s end face is partitioned into (n− 1)× (m− 1) mesh regions. Nodes are

established at the intersections of grid lines, with the step size h. The coordinates of these nodes are

given by (x, y) = (ih, jh), where i = 0, 1, . . . , n and j = 0, 1, . . . ,m, which can be expressed as (i, j).

The temperature at node (i, j) is Ti,j . Following the principles of the finite difference method, the

second-order partial derivative of Ti,j can be estimated through the difference between Ti+1,j , Ti−1,j ,

Ti,j+1, Ti,j−1, and Ti,j , in view of the following expression:

∂2Ti,j

∂x2
+

∂2Ti,j

∂y2
≈ Ti+1,j + Ti−1,j + Ti,j+1 + Ti,j−1 − 4Ti,j

h2
. (8)
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Fig. 3. Finite difference grid.

The pump time t is divided into u steps with the

step size ht, namely,

t = pht; p = 0, 1 . . . u. (9)

The temperature at time t is Ti,j,p, and its time

derivative is approximated by the difference quo-

tient, which can be expressed as follows:

∂Ti,j,p

∂t
=

Ti,j,p+1 − Ti,j,p

ht
. (10)

By incorporating Eqs. (8) and (10) into Eq. (7),

the iterative equation governing heat conduction

can be represented as

Ti,j,p+1 = Ti,j,p +
htγ

ρCh2
(
Ti+1,j,p + Ti−1,j,p + Ti,j+1,p + Ti,j−1,p − 4Ti,j,p

)
+

ht
ρC

qi,j,p, (11)

where qi,j,p is the heat source intensity of node (i, j) at time t. Within the Nd :YAG rod, alterations

in the temperature field prompt shifts in the crystal’s refractive index, which causes the change of the

optical path difference (OPD), when the oscillating beam traverses the gain medium, and ultimately

introduces the additional phase difference to the oscillating beam within the cavity. The expression for

the single-pass additional phase difference reads

Δφ(x, y) =
2π

λ
OPD =

2π

λ

∫ l

0
Δn(x, y, z) dz Δn(x, y, z) =

dn

dT

[
T (x, y, z)− T (0, 0, z)

]
, (12)

where T (0, 0, z) is the temperature along the central axis of the crystal, λ is the wavelength, and
dn

dT
is

the temperature dependent of the refractive index.

According to the rate equation [18], the single-pass gain of the laser oscillation can be expressed as

follows:

G(x, y) = σ

l∫
0

N0(x, y, z)dz =
στ

E0
Pin[1− exp(−αl)]

[
1− exp

(
− t

τ

)] l∫
0

∂I(x, y, z)

∂z
dz, (13)

where σ is the stimulated absorption cross section, N0(x, y, z) is the population inversion density, τ is

the lifetime of the upper-level population, and E0 is the single photon energy of the pump light.

We employ the well-established classical Fox–Li open-cavity mode iterative algorithm, centered around

the Fresnel–Kirchhoff diffraction formula, to compute the distribution of the output optical field. This

approach yields results closely aligned with engineering experiments, showcasing only minor deviations.

As shown in Fig. 4, the algorithm’s formulation is presented as [19, 20]

UDIA(x, y) =
ik

4π

∫∫
S1

U1(x
′, y′)

e−ikμ

μ
(1 + cosβ) ds, (14)
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where S1 is the area of the reflector mirror M1, U1(x
′, y′) is the optical field distribution at M1, UDIA(x, y)

is the optical field distribution at the aperture diaphragm before modulation, k is the wave number of

the oscillating beam; μ is the distance between the points (x′, y′) and (x, y), and β is the angle between

the normal �n and �μ at the point (x′, y′). When considering the curvature radius of the reflector mirror,

the expressions for μ and cosβs in Eq. (14) become

μ =
√

(x′ − x)2 + (y′ − y)2 + (z′ − z)2,

cosβ =
(−x′)(x− x′) + (−y′)(y − y′) + (R1 − z′)(z − z′)

R1

√
(x− x′) + (y − y′) + (z − z′)

, (15)

and the laser oscillates in the resonant cavity to achieve stimulated amplification. If the oscillation

achieves a steady state, the light field motion equation in the resonant cavity can be expressed as follows:

δaU1 =

(
ik

4π

)4 ∫∫
SDIA

exp(G) exp(−iΔφ)
e−ikμD1

μD1
(1 + cosβD1) dsDIA ×

∫∫
S2

e−ikμ2D

μ2D
(1 + cosβ2D) ds2

×
∫∫
SDIA

exp(G) exp(−iΔφ)
e−ikμd2

μd2
(1 + cosβD2) dsDIA ×

∫∫
S1

e−ikμ1D

μ1D
(1 + cosβ1D)U1 ds1, (16)

where μij ; i, j = 1, 2, D and βij ; i, j = 1, 2, D are the distance and angle between the reflector mirror,

output coupler, and equivalent aperture, respectively, and δa; a = 1, 2, 3, 4, . . . are eigenvalues. The

basic-mode Gaussian function of the light field obtained from this equation is the fundamental mode of

the laser.

Fig. 4. Positive branch confocal unstable resonator Fox–
Li algorithm model.

In the case of quasi-continuous operating lasers,

various factors inevitably disrupt the pumping

power and pumping field. Examples include fluc-

tuations in pump current and poor heat dissipation

of pump. The disturbance of pumping power and

pumping field can be expressed as

Preal(t) = Pinε1(t),

Ireal(x, y, z, t) = I(x, y, z)ε2(x, y, z, t),
(17)

where δa(a = 1, 2, 3, 4, . . .) and ε2(x, y, z, t) are des-

ignated as the pumping power disturbance coeffi-

cient and the pumping field disturbance coefficient, respectively. These coefficients can be defined as

ε1(t) ∼ U(1− ξ1, 1 + ξ1), ε2(x, y, z, t) ∼ U(1− ξ2, 1 + ξ2), 0 ≤ t ≤ t0,

ε1(t) = ε2(x, y, z, t) = 1, t > t0, (18)

where ξ1 is the pumping power disturbance factor, ξ2 is the pumping field disturbance factor, and t0 is

the pumping duration.
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4. Simulation Analysis of the Beam Pointing Instability

4.1. Ideal Pumping Conditions

We utilize MATLAB software to simulate the heat conduction process within the end-pumped water-

cooled Nd :YAG rod. The absorption coefficient α of the Nd :YAG rod is set equal to 0.73 mm−1 and

thermal conversion coefficient η equal to 0.32; the length l of the Nd :YAG rod is 10 mm; and pump light

radius ωp is 1.5 mm. Also, r is the radial length of the Nd :YAG rod. In Fig. 5, we show the heat source

intensity calculated, using Eq. (5), for various pumping powers.

a) b) c)

Fig. 5. Heat source intensity of the pump-end face with different pumping power. Here, Pin = 1000 W (a),
5000 W (b), and 10000 W (c).

Set the thermal conductivity of the Nd :YAG rod γ = 0.013 W/(mm ·K), the crystal density ρ =

4.5 · 10−3 g/mm3, the specific heat capacity C = 0.56 J/(g ·K), the diameter of the Nd :YAG rod

d = 10 mm, the spatial step h = 0.2 mm, the corresponding time step ht = 3 · 10−8 s, and the grid

quantity for simulation is 50×50.

The Nd :YAG crystal rods are placed in a copper heat sink. The heat source intensity in the region

r < d/2 is qi,j,p; whereas, it is zero in the region r ≥ d/2, because this is in the heat sink portion.

The initial temperature across all nodes, as well as that of the heat sink, is set to 300K. For simplicity,

we neglect the complexities introduced by nonuniform and intricate thermal contact resistance between

the crystal and heat sink. This allowed us to employ Dirichlet boundary conditions for simulation,

maintaining the boundary temperature of the cylindrical surface at 300K.

Note that Eq. (11) is resolved during a pump duration of 200 μs. In Fig. 6, we illustrate the changes

in temperature at the crystal’s end face across different pumping powers. Notably, the temperature at

the crystal’s end face displays linear and symmetrical variation throughout the pumping duration. Thus,

the most rapid temperature increase pumping occurs at the center of the crystal’s end face.

We set the temperature dependence of refractive index
dn

dT
= 7.3 · 10−6 K−1, the wavelength λ =

1064 mm, and pumping power Pin = 10000 W. Combined with the calculations of temperature field

distribution in Fig. 6, the additional phase differences, computed using Eq. (12), exhibit analogous axis

symmetric profiles across varying pump times. This behavior is shown in Fig. 7.

Set the stimulated absorption cross section σ = 5.3 · 10−18 mm2, single photon energy Eo = 2.46 ·
10−19 J, lifetime of upper-level population τ = 230 μs, and pumping power Pin = 10000 W. In Fig. 8,

we present the gain profiles corresponding to different pump times computed, using Eq. (13); here, these

profiles also exhibit axis symmetric characteristics.
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a) b) c)

Fig. 6. Variation in temperature with different pumping powers Pin = 1000 W (a), 5000 W (b), and 10000 W (c).

a) b) c)

Fig. 7. Additional phase difference profiles at different pump times. Here, t = 50 μs (a), 100 μs (b), and 200 μs
(c).

a) b) c)

Fig. 8. Gain profiles at different pump times. Here, t = 50 μs (a), 100 μs (b), and 200 μs (c).

Next, we consider the following parameter settings. The length of the positive branch confocal

unstable resonator length is 200 mm, curvature radius of reflector mirror is 900 mm, and output coupler

curvature radius is 500 mm; also equivalent Fresnel number Neq = 6.0903, pump duration t0 = 200 μs,

and pumping power Pin = 10000 W. With these parameter settings, the calculation of the output optical

field distribution and beam pointing drift angle are feasible according to Eq. (16). In the context of the

positive branch confocal unstable cavity operating under ideal pumping conditions, the distributions of

the temperature field and gain field demonstrate axis symmetric properties. Consequently, the output

optical field consistently maintains an axis symmetric distribution, thus ensuring that the beam pointing

drift angle remains at zero under these ideal pumping conditions.
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4.2. Pump with Disturbances

To obtain the heat source and light field distributions under the condition of pump disturbance, we

substitute Eq. (17) into Eqs. (5) and (6). Under the simulation conditions described in Sec. 4.1, we

perform calculations, using Eq. (12). The profiles of the additional phase difference at the end of the

pump cycle are displayed in Fig. 9, essentially illustrating variations under different pump disturbance

factors. One can see that, under perturbation conditions, the axis symmetry of these profiles observed

under ideal pumping conditions no longer holds; this conclusion applies to the gain profiles as well.

a) b) c)

Fig. 9. Additional phase difference profiles with different disturbance factors at the end of the pump duration.
Here, ξ1 = ξ2 = 0.01 (a), 0.03 (b), and 0.05 (c).

Set the disturbance factors ξ1 = ξ2 = 0.01, and the pump duration t = 2 · 10−4 s. Referring to

the above calculation method, we substitute the nonuniform thermal effect and gain results at different

times into Eq. (16) and calculate the laser mode under pump disturbance at different times, in view of

Eq. (12). The plots illustrating the beam pointing drift angle as a function of time in a single pump

duration, under varying pumping powers, are presented in Fig. 10 a. In another scenario, assuming the

pumping power Pin = 10000 W, the plots depicting beam pointing drift angle versus time in a single pump

duration, considering different disturbance factors, are displayed in Fig. 10 b. Owing to the stochastic

nature of pump power and pump field disturbances in a single pump duration, multiple repetitions of

the simulation experiment must be conducted to derive the RMS value, which reflects the statistical

attributes. After performing 100 times operation, the averaged statistical outcomes are showcased in

Fig. 10. Notably, the drift angle of the pump light experiences pronounced fluctuations throughout

the entire pump duration, with the fluctuation intensifying as the pump time increases, and the jitter

becoming increasingly prominent. When disturbance factors are held constant, larger pumping powers

yield greater jitter in the beam pointing drift angle. Similarly, with constant pumping power, higher

disturbance factors lead to increased jitter in the beam pointing drift angle.

To delve deeper into the impact of pumping power Pin, pumping power disturbance factor ξ1, and

pumping field disturbance factor ξ2 on the beam pointing drift angle, an in-depth analysis is undertaken.

The beam-pointing drift angle fluctuation range is defined as the disparity between the maximum and

minimum values of the beam-pointing drift angle θ [in Radians] within a single pump duration. If

pump duration t = 2 · 10−4 s, the variation mesh surface detailing the range of beam-pointing drift angle

fluctuations with respect to ξ2 and Pin is visualized in Fig. 11, for a case where ξ2 = 0.01. This fluctuation

range serves as the assessment parameter for beam pointing stability. Evidently, a heightened value of Pin

corresponds to an expanded beam pointing drift angle fluctuation range, indicative of diminished beam

pointing stability. In contrast, the influence of ξ1 on beam pointing stability is relatively modest; instead,
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a) b)

Fig. 10. Variation curves of beam pointing drift angle versus time with different pumping power at ξ1 = ξ2 =
0.01 (a) and different disturbance factors at Pin = 10000 W (b).

Fig. 11. Beam pointing drift angle [in Radians] versus
ξ1 and Pin.

Fig. 12. Beam pointing drift angle [in Radians] versus
ξ1 and ξ2.

it primarily shapes the extent of variation in beam pointing stability. Amplified ξ1 values result in a more

pronounced range of variation in beam pointing stability. For example, when ξ1 = 0.01, 0.03, and 0.05,

the variation range of the beam pointing stability is 8.09 · 10−5 rad, 8.83 · 10−5 rad, and 10.47 · 10−5 rad,

respectively.

Assuming that the pumping power Pin = 10000 W, we show in Fig. 12 the influence of ξ1 and ξ2
on the beam pointing stability. Evidently, an increased ξ2 value corresponds to a deterioration in beam

pointing stability. As observed in Fig. 11, ξ1 has minimum influence on beam pointing stability; however,

it significantly shapes the variation of beam pointing stability concerning ξ2. Notably, heightened ξ1
values lead to a broader range of variation in beam pointing stability. For example, when ξ1 = 0.01, 0.03,

and 0.05, the variation range is 10.7 · 10−5 rad, 14.3 · 10−5 rad, and 15.2 · 10−5 rad, respectively.

The simulation outcomes confirm that the disturbance factors ξ1 and ξ2 defined in this study align with

the underlying physical principles. These factors quantitatively capture the perturbations in pumping

power and pump field, thus offering a means to quantify the impact of external disturbances on beam

pointing stability. In the actual measurement, Pi; i = 1, 2, . . . , n is the pump source power of a single

measurement, n is the number of measurements, and Pin is the average power of n measurements.

Therefore, ε1i = pi/pin. The uniform distribution U(1− ξ1, 1 + ξ1), which is equivalent to the mean and
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standard deviation of n measurements related to Pi, is used to describe the disturbance of the actual

power of the pump source. Similarly, the distribution of the pump source field is divided into two-

dimensional grids. Ij(x, y, z); j = 1, 2, . . . , n is the pump source light intensity measured by a single node,

n is the number of measurements, and Iin(x, y, z) is the average light intensity of a single node. Therefore,

ε2j(x, y, z) = Ij(x, y, z)/Iin(x, y, z). The uniform distribution U(1− ξ2, 1 + ξ2), with the same mean and

standard deviation of all nodes as n measurements related to Iin(x, y, z), describes the disturbance of

the actual field distribution of the pump source. The fluctuation range of the beam-pointing angle is the

difference between the maximum and minimum measured values of the deviation angle of the far-field

spot center in a single laser pulse width.

5. Design Method of Resonant Cavity Parameter with the Minimum

Beam Pointing Drift Angle Fluctuation

Fig. 13. Flow chart of the method for calculating the optimum
resonator parameters.

In real-world applications, assessing the

pumping parameters, such as the pumping

power, pumping power disturbance factor,

and pumping field disturbance factor poses

minimum challenges. However, the resonator

parameters, such as the radius of curvature

R1 for the output coupler, the radius of re-

flector mirror R2, and the length of cavity

L, requires further optimization according to

the pumping parameters. In this study, we

introduce a technique to compute optimum

resonator parameters that result in the min-

imum beam-pointing drift-angle fluctuation

range within a single pump duration.

We formulate the following technique:

• The calculation method is used to ob-

tain the fluctuation range of the optical-

axis offset angle with different R1 and

R2 under the condition, that the pump

source power and its disturbance are

known – refer to Eq. (15), wherein R1,

R2, the equation of motion of the light

field, the output mode, and the optical-

axis offset angle all change.

• This forms a two-dimensional data grid.

• The cubic spline interpolation method is used to obtain R1 and R2 with the minimum fluctuation

range of the optical-axis offset angle.

The corresponding flowchart is presented in Fig. 13.
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First, measure the pumping power Pin and disturbance factors ξ1 and ξ2, and thus establish the

physical parameters of the crystal. Next, determine the pump light radius ωp and the half width of the

square output coupler a2. Derive half width of the square reflector mirror a1, using the equation a1 =

a2×R1/(−R2) for the positive branch confocal unstable cavity. Next, calculate the beam pointing stability

across a single pump duration, considering different values ofR1 andR2, with the cavity length determined

through the confocal equation L = (R1 + R2)/2 specific to the positive branch confocal unstable cavity.

Finally, calculate the optimum resonator parameters employing the cubic spline interpolation method.

For instance, the computed outcomes of beam pointing drift angle fluctuation ranges with respect to

R1 and R2 are displayed in Table 1, when Pin = 10, 000 W, ωp = 1.5 mm, a1 = 0.6 mm, d = 10 mm,

l = 10 mm, α = 0.73 mm−1, and ξ1 = ξ2 = 0.05.

Table 1. Beam Pointing Drift Angle Fluctuation Range [in Radian] with R1, R2, and L = (R1 +R2)/2.

R2
R1

700 mm 800 mm 900 mm 1000 mm 1100 mm 1200 mm

−100 mm 4.98 · 10−4 1.22 · 10−4 3.19 · 10−4 3.57 · 10−4 3.79 · 10−4 3.48 · 10−4

−200 mm 2.94 · 10−4 4.13 · 10−4 2.34 · 10−4 1.71 · 10−4 1.45 · 10−4 4.06 · 10−4

−300 mm 2.45 · 10−4 3.66 · 10−4 2.78 · 10−4 2.56 · 10−4 3.03 · 10−4 2.02 · 10−4

−400 mm 2.19 · 10−4 2.87 · 10−4 3.72 · 10−4 1.36 · 10−4 3.14 · 10−4 1.23 · 10−4

−500 mm 2.65 · 10−4 2.47 · 10−4 2.39 · 10−4 3.99 · 10−4 2.66 · 10−4 1.74 · 10−4

−600 mm 3.76 · 10−4 2.86 · 10−4 1.51 · 10−4 9.78 · 10−4 1.19 · 10−4 3.50 · 10−4

Utilizing the cubic spline interpolation method, the optimum curvature radius of the reflector mirror

R1 and the output coupler R2 are determined to be 1003 mm and −395 mm, respectively. This yields a

corresponding optimum beam pointing drift angle fluctuation range of 1.18 · 10−5 rad.

6. Conclusions

In this study, we proposed a numerical calculation model, which considered the instabilities and

inhomogeneities within the thermal and gain distribution, to analyze the beam pointing instability in

high-power solid-state lasers. We applied this model to assess the beam pointing instability of a quasi-

continuously pumped Nd :YAG laser with positive branch confocal unstable resonator. The outcomes

revealed that, when the pumping power resided within the range of 1000 – 25000 W, and both the pumping

power disturbance factor and pumping field disturbance factor have fallen within the range of 0.01 – 0.05,

the RMS value of the beam pointing drift angle varied within 1 · 10−6 − 1 · 10−4 rad. During a single

pump duration, larger pumping field disturbance factors correlated with worsened beam pointing stability,

whereas increased pumping power disturbance factors led to a broader range of variation in beam pointing

stability. When ξ1 = 0.01, ξ2 = 0.01− 0.05 and Pin = 10, 000 W, the RMS value of the fluctuation range

of beam pointing drift angle was 2 · 10−5 − 1.2 · 10−5 rad. Whereas, when ξ1 = 0.01 − 0.05, ξ2 = 0.01,

and Pin = 10, 000 − 25, 000 W, the variation range of the RMS value of beam pointing stability was

8.83 · 10−5 − 1.04 · 10−5 rad.
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The subsequent discussion addresses the optimization methodology for a resonant cavity operating

with minimum beam pointing fluctuation. This approach considers instabilities and inhomogeneities of

the thermal and gain distributions, exemplified through a numerical example featuring the calculation of

the minimum beam pointing instability for a positive branch confocal unstable resonator with different

curvature radii of reflector mirror R1 and output coupler R2. The results indicated that, under certain

conditions, specifically ξ1 = ξ2 = 0.05 and Pin = 10, 000 W, the optimum curvature radius R1 = 1003 mm

and R2 = −395 mm, thus resulting in the achievement of a minimum beam pointing drift angle fluctuation

of 1.18 · 10−5 rad.

This study provides a rational and efficient framework for evaluating beam pointing instability in

high-power solid-state lasers, along with designing resonant cavity parameters to minimize beam pointing

fluctuation. The approach boasts have the benefits of straightforward design and wide-ranging applica-

bility. Theoretically, it can be extended to solid-state lasers utilizing resonators and laser crystals beyond

the positive branch confocal unstable resonator and Nd :YAG crystal.
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