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Abstract

Optical systems, such as a mobile LiDAR system, encounter mechanical disturbances associated with
the condition of the road, resulting in significant misalignments in the optical paths within the system.
To address this issue, considerable time is dedicated to the realignment process to restart the system.
A suggested approach to overcome this challenge involves the implementation of automatic realignment
through the control of the motion of the steering mirrors using an advanced control technique known
as Model Predictive Control (MPC). This technique, which is relatively new in the field of optics, is
widely utilized in the industry due to its capability to manage and resolve a broad range of problems
that are inherent to industrial systems, particularly, those that are subject to constraints or undergo
disturbances during operation. In this study, we utilize MPC on the optical chain, specifically the
LiDAR component, to regulate the beam and promptly rectify any flexure that occurs during both
constant and variable trajectories, as well as in the presence of disturbances. A comparative analysis
is conducted with the PID controller to evaluate the performance of the advanced technique proposed.

Keywords: optical beam alignment, dynamic matrix control, Skogestad internal model control, noise,

disturbance.

1. Introduction

Model Predictive Control (MPC) is an advanced control strategy [1], its field of application extends to

all industrial areas [2], even in clinical and biomedical fields; it is considered as one of the most important

controlling strategies [3]. The MPC-MISO model for the depth of simultaneous co-administration of

the hypnotic and analgesic drugs and their effect on the Bispectral Index Scale (BIS) was analyzed to

provide the optimum dosage for the desired BIS level, taking into account constraints [4]. Under the

event-based adaptive horizon, the MPC was proposed to study the trajectory tracking of marine surface

vessels [5], to follow the reference attitude trajectories of an aerospace vehicle subject to constraints and

uncertainties [6], for the optimum charging of a Li-ion battery [1], and to study the effect of prediction and

control the horizon parameters [7]. The effectiveness of the Model Predictive Control (MPC) closed-loop

identification without excitation was demonstrated to improve the control performance [8]. The closed-

loop dynamics of linear systems under approximate MPC, using a finite number of Alternating Direction

Method of Multiplier (ADMM) iterations per time step, was studied to investigate the performance of

the MPC and offer practical guidance for its implementation in real-world applications [9]. A Dynamic
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Real-Time Optimization formulation with closed-loop prediction was proposed to coordinate distributed

model predictive controllers (MPCs) aiming to improve performance in both target tracking and economic

optimization [10]. A novel MPC algorithm that eliminated the need for terminal constraints and costs

was presented, resulting in a reduced prediction horizon, while maintaining stability and robustness

properties [11].

An Improved Model Predictive Direct Torque Control (IMPDTC) algorithm considered multi-step

delay compensation to address the issues of torque and stator flux pulsation in squirrel cage induction

motors. It aimed to minimize the deviation between the optimum voltage vector and the reference values

of stator flux linkage and torque, while also studying a measure to solve the delay problem in digital

control systems [12]. This IMPDTC method was proposed for a variable speed converter, selecting

the optimum switching state of the converter to minimize the error between predicted and computed

values of torque, flux, and reactive power components, using PSO optimization to optimize the weighting

factors for the control method [13]. An indirect MPC approach was proposed for a modular multilevel

converter connected to a high-voltage direct current bus line, to transfer active power bi-directionally

to the grid and compensate reactive power [14]. An energy collaborative optimization management

approach for an energy storage system (ESS) of a Virtual Power Plant (VPP), using model predictive

control (MPC), was studied. It utilized a long–short-term memory (LSTM) neural network to obtain

one-hour-ahead forecasting information for the load, wind generation, and photovoltaic generation to

minimize the economic cost of the VPP [15].

The Dynamic Matrix Control (DMC) was employed to study thermal conditions in the infant incu-

bator for premature babies [3]. It was used with an improved sliding mode for controlling the loading

and measuring system of a spindle [16], for a networked system that addresses the challenges of time

delay, packet loss, and disturbed sequence [17], with delays and large inertia demonstrated [18]. It was

proposed to control objects with integrals and delay links addressing the deficiencies of traditional control

methods and improving control quality [19].

An automatic alignment technique was developed, employing Global Positioning System (GPS), to

make use of the signal power returned to perform the fine alignment [20]. The technique, based on

photodiodes and the use of differential phase modulation, allowed the detection of the phase difference

between two Gaussian beams of an interferometer [21]. It is appropriate to analyze the effects of optical

cavity misalignment [22] and to realize its optimum performance [23]. The influence of alignment error

on the coupling efficiency, beam quality, and beam power distribution of a Gaussian beam for multimode

fiber was studied in [24]. The research conducted in this study concentrated on the alignment of the

optical chain, a crucial step in the LiDAR system. This system, which was housed in a moving van, was

subjected to vibrations resulting from mechanical strains associated with the condition of the road (such

as speed bumps and potholes) and rugged terrains, which, in turn, disrupted the optical alignments of the

system. Recognizing that the realignment process takes a considerable amount of time, measured in hours,

the proposed solution entailed the dynamic management of these alignments to compensate for them in

realtime. This was achieved through the electronic control of stepper motors, which secured the supports

of the optical components. The stepper motors rotate the laser beam at an angle of approximately

0.01 mrad. Their electronic control was executed in a closed loop, using light sensors positioned laterally

to the propagation axis, which received a portion of the light emitted by the laser beam. The automatic

alignment of the optical chain represents a significant advantage of our system compared to other studies

that still rely on manual alignment, such as the mobile LiDAR systems developed in South Africa, focusing

on the atmosphere [25], or those employing optical scanners to investigate aerosols [26] and clouds [27]. A
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similar case could be observed in a mobile LiDAR system autonomously controlled under the LabVIEW

platform developed by Swedish researchers [28]. Hence, the automatic alignment enables us to save time

in preparing the system for operation after each trip, given that we are dealing with a mobile system

that needs to quickly adapt to various road conditions. The entire system was utilized for the detection

of forest fires and the analysis of the atmosphere [29].

The research presented in this study aims to contribute to the field by introducing an innovative

approach to controlling the optical chain in the LiDAR system. The primary objective is to ensure the

optimum movement of the optical supports, which are responsible for rotating the optical beam and

scanning a specific area. This task becomes particularly challenging, when considering the presence of

external disturbances and the need to maintain the desired set point or reference value. To address

this problem, we employ an advanced Predictive Control technique, which not only helps in solving the

disturbance issue but also saves time through quick automatic alignment. The optical chain comprises

the mirror support and two stepper motors, which enable the movement of the laser beam. This beam

is generated by a laser source and is used for various purposes, such as fire detection or analyzing the

atmosphere in polluted environments near industrial sources. In this study, we thoroughly discuss the

LiDAR application’s synoptic scheme. The research primarily focuses on controlling the optic chain

system, using advanced Model Predictive Control (MPC) and Proportional Integral Derivative (PID)

techniques. Specifically, the rotation of the optical chain in the LiDAR system is controlled, using a

novel technique developed from a prediction model that utilizes the step response to obtain an optimum

solution by minimizing a quadratic criterion. The simulation results compare the performance of the

MPC technique with the SIMC-PID controller proposed by Skogestad [30] in terms of tracking accuracy

and disturbance rejection. The ultimate goal of the control system is to maintain the desired behavior

and achieve the desired set point or reference value, even in the presence of external influences.

This paper is organized as follows.

Section 2 entails the creation of the optical chain model, a component of the LiDAR application.

In Sec. 3, we develop the Dynamic Matrix Control (DMC) technique, which encompasses the prediction

model, prediction horizon, control horizon, receding horizon control, and synthesis of the DMC technique.

In Sec. 4, we present the findings and a discussion of the proposed technique, along with practical

outcomes. Finally, we conclude the paper in Sec. 5.

2. Design of the Optical Chain Model

2.1. Optical Chain of the LiDAR Application

The alignment optics employed in our investigation comprises multiple deflection mirrors, each of

which is produced by applying a layer of gold onto a metal disk with a diameter of 30 mm. The angular

rotation, denoted as θ, of each mirror results in a corresponding rotation of the beam by an angle of 2 θ.

In Fig. 1, we depict a beam expander (alternatively referred to as a collimator) as an integral component

of the transmission optics. This particular element serves the purpose of diminishing the divergence of

the laser beam to a magnitude of a few tenths of a milliradian, thus enabling enhanced precision in

directing the beam over significant distances.

The laser beam, being discharged, is aimed toward a designated target (smoke) and is then redirected

back from this target through backscattering. The arrangement of the telescope; see Fig. 1, is referred to

as Newtonian. It is of particular interest in cases involving stationary systems. The returning signal within
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a) b)

Fig. 1. Synoptic scheme of the LiDAR application with the elements: the laser, optical chain, telescope with a
detector, and target (a); the same elements with a scanner (b). Here, FV is the field of view of the telescope, Mp

is a primary mirror, and Ms is a secondary mirror.

the telescope’s field of view (measured in solid angle) is collected and intensified by its primary mirror,

and subsequently directed towards the secondary mirror, which then reflects it towards the detector. In

Fig. 1 a, the diagram indicates that the telescope’s field of view, along with the laser beam, possesses

a fixed orientation. However, in actual practice, we employ the diagram shown in Fig. 1 b, wherein a

sizable scanner mirror is incorporated to facilitate the rotation of the laser beam and the telescope’s field

of view, ensuring that they remain in alignment throughout the rotation. This enables the search for

targets, whose positioning is initially unknown. This investigation aims to achieve the alignment of the

emitted laser beam in such a manner, that it consistently remains coaxial with the telescope’s segment 3;

see Fig. 1 b. To accomplish this, we manipulate the mirrors M1 and M2 at extremely minute angles. The

execution of this operation must be automated.

2.2. Parameters of the Optical Chain Model

Fig. 2. Diagram of mirror’s control.

On each segment of the laser beam

alignment, it is necessary to position

the beam splitter BS, which reflects a

fraction of the beam towards a network

of luminescence sensors Sij, arranged in

a 3×3 matrix; see Fig. 2. This arrange-

ment enables the prompt identification

and adjustment of misaligned compo-

nents within the system.

The model system comprises a mir-

ror that is adjusted through rotation in

both right and left directions, as well

as up and down directions, and recipro-

cally through handles; see Fig. 3 a. This

adjustment is carried out by controlling

its support, which includes micrometric
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a) b)

Fig. 3. The mirror support to be controlled (a) and graduated scales quantifying the rotation of the mirror (b).

translators that convert linear motion into rotation; see Fig. 3 b. The equations of the model can be found

in Sec. 4.

3. Dynamic Matrix Control (DMC) Technique Characteristics

Dynamic Matrix Control (DMC) possesses certain distinctive features that set it apart from other

control strategies. These characteristics of DMC contribute to its effectiveness and make it a popular

choice in various industrial applications. DMC is known for its ability to handle systems with multiple

inputs and outputs, allowing for the control of complex processes. Additionally, DMC is highly adaptable

and can be easily customized to suit specific system requirements. This versatility enables DMC to

effectively control a wide range of processes, from simple to highly complex ones. The dynamic nature

of DMC allows it to continuously update its control actions based on realtime data, ensuring optimum

performance and stability. Furthermore, DMC employs a predictive control approach, which means that

it takes into account future system behavior and makes control decisions accordingly. This proactive

approach enhances the ability of DMC to respond quickly and accurately to system disturbances and

changes. The mathematical model used in DMC is based on a dynamic matrix, which represents the

relationship between inputs, outputs, and process dynamics. By utilizing this matrix, DMC can calculate

the optimum control actions that will minimize process deviations and achieve the desired set point.

Overall, the characteristics of DMC make it a powerful and flexible control strategy that can effectively

handle a wide range of industrial processes.

3.1. Prediction Model

Dynamic Matrix Control (DMC) utilizes the representation of the step response to forecast, both the

input and output. Its industrial accomplishments are attributed to its proficiency in managing constraints

and disturbances for large-scale multivariate systems [31,32]. The system’s step response can be described

as follows:

y(t) =

+∞∑
i=1

giΔu(t− i). (1)
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a) b)

Fig. 4. Principle of the prediction horizon (a) and the control horizon (b).

The system’s step response is produced by the application of a unit step; see Fig. 4. The variable

u(t) denotes the control input at time t and serves to portray the system’s reaction to a step input. The

command increment Δu(t) symbolizes the alteration in the control input from its preceding value to its

present value at time t, with

u(t) =

{
0 ∀ t < 0,

1 ∀ t ≥ 0.
(2)

The model output, denoted as y(t), is influenced by the coefficient of the step response gi. Additionally,

the increment control Δu plays a role in the prediction of the output system at the instant (t+ k),

ŷ(t+ k) =

k∑
i=1

giΔu(t+ k − i) +
+∞∑

i=k+1

giΔu(t+ k − i) + η̂(t+ k). (3)

Since η̂(t+ k) is the predicted disturbance at (t+ k), it reads

η̂(t+ k) = η̂(t) = ym(t)− y(t). (4)

The predicted output can be expressed as

ŷ(t+ k) =

k∑
i=1

ΔgiΔu(t+ k − i) +
+∞∑

i=k+1

giΔu(t+ k − i) + ym(t)−Δk
i=1giΔu(t− i), (5)

or
ŷ(t+ k) =

k∑
i=1

giΔu(t+ k − i) + fu(t+ k). (6)

3.2. Prediction Horizon [p1 and p2]

MPC operates by predicting the system’s future behavior over a defined prediction horizon. The

prediction horizon represents a time span into the future, and the system’s response is estimated for

that duration. The finite time interval, from which the output is expected, is referred to as the output

prediction horizon. The evolution of this interval begins at the lower prediction component p1, and
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progresses towards the upper prediction part p2 of the output. Thus, the length of this interval is

influenced by factors, such as the speed or slowness of the gadget and whether it is delayed or not, among

others.

If the time delay d is exactly known, there is no need to put in p1 unless d, because it would then be

useless calculations in the corresponding output, which cannot be affected by the first action u(t). If d is

not known or is variable, then p1 can be set to 1. The final (maximum) prediction horizon p2 depends

on both the open loop response time and the sampling time Ts. Specifically, p2 is determined to be equal

to the Closed Loop Response Time (CLRT) divided by the sampling time p2≤CLRT/TS. It should be

noted that the larger p2, the longer the computing time; see Fig. 4 a.

3.3. Control Horizon [m]

The control horizon, denoted as m, is a subset of the prediction horizon and represents the time span,

for which control actions are explicitly determined. Typically, only the first control action is implemented,

and the optimization problem is repeatedly solved at each control step. For simple processes, the control

horizon m is taken to be equal to one; on the other hand, for complex processes, m must be at least equal

to the number of unstable or poorly damped poles. Under no circumstances, should the control horizon

be larger than the maximum forecast horizon; in other words, m should be either smaller or equal to p2

(m ≤ p2); see Fig. 4 b. A value of m equal to one is commonly used for achieving generally applicable

control. By applying these two rules to specific systems, accurate results can be obtained. Furthermore,

alternative approaches can also be employed. The aforementioned guidelines are commonly used in the

calculation of process control and output [33–35],

5 ≤ m ≤ 20, (7)

p = N +m. (8)

The coefficients of the step response of the process model denoted as N are typically selected as follows:

30 ≤ N ≤ 120. (9)

3.4. Receding Horizon Control

MPC employs a receding horizon control strategy, also known as a moving horizon control. At each

control step, the optimization problem is solved over the prediction horizon, but only the first control

action is applied. The optimization problem is then solved again at the next control step, considering

updated measurements and states.

3.5. Synthesis of the DMC Algorithm

The primary aim of a DMC controller is to steer the output toward the desired set point, with

utmost precision by employing a least-squares approach. It is also possible to integrate a penalty term on

the input moves, thereby enhancing the controller’s overall performance. Accordingly, the manipulated

variables are carefully chosen to minimize a quadratic objective function, that takes into account the

reduction of future errors and incorporates the control effort. This results in the controller adopting a

generic form [36],

J(p1, p2,m) =

p2∑
j=p1

[ŷ(t+ j)− w(t+ j)]2 + λ
m∑
j=1

[Δu(t+ j − 1)]2 , (10)
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where ŷ(t+ j/t) is the predicted output, with (p1, p2) being the minimum and maximum values of the

prediction horizon, m is the value of the control horizon (more details are given above), and w(t+ j) is

a set point or reference path at a time (t+ j); by assumption, it reads

w(t+ k) = αw(t+ k − 1) + (1− α)C(t+ k). (11)

Here, C(t + k) is the set point, which is constant with a value of α = 0 (α can vary from 0 to 1), and

a small value of α provides a quick reference to its set point C. The coefficient λ, being the weighting

coefficient of the control signal, is an important parameter that allows to give more or less weight to the

control and the output, to ensure convergence, when the starting system presents a risk of instability.

Also, Δu(t+ j − 1) is the command increment at the instant (t+ j − 1).

The optimum solution is obtained by derivation of the matrix form concerning control vector incre-

ments, it reads

Δuopt = (GTG+ λI)−1GT (w − f), (12)

where Δu is a column vector, G is a matrix, f and w are vectors, λ is a scalar, I is the identity matrix,

and Δuopt are the values that minimize J . The derivative is taken with respect to the vector Δu, and

the result is a vector equation, where J is minimized.

So, the values of Δuopt that minimize J are given by the following expression:

Δuopt(t) = K1(w − f), (13)

with K1 representing the first row of the matrix K,

K = (GTG+ λI)−1GT . (14)

Therefore, the values of Δuopt that minimize J are given by the above expression. The predicted future

control sequence is

u(t) = u(t− 1) +K1(f − w). (15)

Through utility of the precept of the moving horizon, as in other predictive control strategies, only

the first sequence of the control, which makes use of the primary line of the matrix (GTG + λI)−1GT ,

is implemented and sent to the process. The calculation is repeated at the subsequent time to have the

brand new command u at time t+ 1.

4. Results and Discussion

To demonstrate its efficacy, the Model Predictive Control (MPC) technique is employed on a system

comprised of a support and a mirror for regulating its rotation. This particular system, which serves as

one of the constituents in the optical chain of Light Detection and Ranging (LiDAR), can be represented

by Eq. (16) given below. Within this simulation, we examine various scenarios including a constant

trajectory (as shown in Fig. 1), a variable trajectory (as illustrated in Fig. 2), and the presence of

disturbances (as shown in Figs. 8 and 5) to assess the capability of the proposed controllers to maintain

the desired output and achieve satisfactory performance. The external disturbance signals manifest

themselves at sample 700 and persist for a duration of 100 samples; see Fig. 8, thereby influencing the

behavior of the system and causing oscillations in the response that reach a magnitude of 16 before being

attenuated and eventually eliminated by the proposed controllers. This system possesses the ability to

effectively manipulate the orientation of the laser within a solid angle that encompasses a square section,

spanning from −112 to +112 mrad.
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Fig. 5. Synoptic scheme of the closed-loop mirror con-
trol for a single variable, with the MPC.

The mirror transfer function [37], as shown in

Fig. 3 b, is defined as follows:

H(t) =
2nδ

Δf
n(t), (16)

K
′
p =

2ηδ

Δf
. (17)

In Fig. 5, we illustrate the closed-loop mirror control, utilizing the MPC controller. The η relationship

between the motor’s rotation division and the support division of the micrometric table reads

η = Ns/Nm = 0.25, (18)

with Nm = 200 steps and Ns = 50 steps, where Nm is the number of steps per motor revolution, and

Ns is the number of steps/revolution of the support handle, θ is a mirror alignment position (angle of

the beam rotation), ϕ is the angle of rotation motor (input), δ is the support translation subdivision

δ = 0.01 mm, Δf is the distance between the mirror’s axis of rotation and the axis of attachment of

the handle measured in millimeters; Δf = 35 mm, and n is an integer that defines the number of motor

rotation steps. Thus,

H(s) = n · 0.005/s and H(z) = n · 0.0005/(z − 1). (19)

The discrete transfer function H(z) possesses a sampling time Ts of 0.1 ms in order to achieve optimum

control performance and efficient utilization of computing resources. It is recommended that the sampling

time be approximately one-tenth of the constant of the dominant process time [38]. It is important to

note that the parameter n (representing the number of motor rotation steps) is a variable in this context,

and for this simulation, it is set to n = 800. Then K
′
p =

2 · 0.25 · 0.01
35

· 800 = 0.1143.

Simulation Parameters: SIMC-PID Skogestad Tuning. By implementing the SIMC-PID Sko-

gestad tuning methodology for an integral process [30], we derive the subsequent parameters for the PI

controller; they read

K =
1

K ′
p

· 1

τc + θ
, Ti = 4(τc + θ). (20)

Here K is the proportional gain, K
′
p is the integral process gain, τc is the closed loop time constant, θ

is the delay (equal to zero in our case), and Ti is the integral time. Therefore, the computation leads

to K = 2.91 and Ti = 12, with K
′
p = 0.1143, θ = 0, and τc = 3. Note, that a compromise between

performance and robustness requires a medium τc (neither small value nor big).

DMC Parameters: P = 10, m = 5, α = 0.6, and λ = 0.6. Simulation time T = [350, 1600, and

1500] is allocated for three different scenarios, namely, a constant trajectory, a variable trajectory, and the

presence of disturbance. The constant trajectory w(t) = 5 and the variable trajectory are implemented

as step changes in both upward and downward directions. The effectiveness of the DMC technique

is assessed in the context of the mentioned scenarios, and it is compared to the SIMC-PID approach

proposed by Skogestad. This evaluation is conducted by examining Figs. 6–9.
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In Fig. 6 a, b, the performance of both the MPC and SIMC-PID controllers, with no position error,

is analyzed with respect to the angle of the beam rotation (i.e., the output). Initially, oscillations in the

output are observed for a duration of 250 samples or 25 ms, before it stabilizes with the DMC controller;

see Fig. 6 a. The SIMC-PID and DMC controllers exhibit favorable behavior, except for a brief peak at

the beginning; see Fig. 6 a. A duration of 250 samples is deemed satisfactory for the static alignment

operation without laser beam emission. However, in dynamic scenarios, where the laser beam is emitted

at intervals of 50 ms between shots, the oscillation period must be reduced to less than 5 ms, using the

DMC controller. In contrast, the SIMC-PID controller overcomes this issue effectively; see Fig. 6 b, as

the control operation is one of several operations in the chain.

In Fig. 6 c, we present the evolution of the angle motor rotation u (the input). The rotating motor

is responsible for exerting this rotation. Initially, an oscillation is observed at the commencement of

the movement, lasting for 250 samples or 25 ms. Subsequently, the motor movement becomes stable

with the MPC controller; see Fig. 6 c. In terms of control input u, the SIMC-PID exhibits a smooth

behavior, except for the initial peak. However, compared to the DMC controller, the SIMC-PID requires

a larger amplitude value to effectively control the system; see Fig. 6 d, which is not the case with the

DMC controller.

a) b) c) d)

Fig. 6. Mirror alignment position (output θ) with DMC (a) and with SIMC-PID (b). Rotation of the motor shaft
(input u) with DMC (c) and with SIMC-PID (d).

a) b) c) d)

Fig. 7. The output θ with DMC (a) and with SIMC-PID (b). Rotation of the motor shaft (input u) with DMC (c)
and with SIMC-PID (d), variable reference case.

In Fig. 7, we analyze the monitoring of the anticipated outcome for a variable trajectory. Before the

stabilization, a diminishing oscillation is observed with each variation of the trajectory, when utilizing the

DMC controller; see Fig. 7 a. Conversely, the SIMC-PID controller; see Fig. 7 b, expedites the attainment

of the trajectory’s final value, thus, granting it a higher priority compared to the DMC controller.
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a) b)

Fig. 8. The output of the system in the presence of disturbance with DMC (a) and with SIMC-PID (b). Here,
desired output (dash-dotted curves), disturbance (dotted curves), and θ output (solid curves).

When considering the variable trajectory, the input of the system is enhanced, when employing

the DMC controller (Fig. 7 c) in contrast to the SIMC-PID controller (Fig. 7 d). Despite the presence of

oscillation with the DMC controller, the system is still able to perform better with it, due to the allowable

energy requirement.

The final examination shown in Fig. 8 is conducted in the event of the existence of a perturbation.

It occurs in the configuration of pattern 700 for one hundred samples; see Fig. 8 and influences the

functioning of the system by inducing vibrations that deviate from the desired response at a magnitude

of 16. Subsequently, these deviations are mitigated and completely eliminated through the utilization of

the proposed controllers; see Fig. 8. The performance of the output, using the SIMC-PID controller, is

exceptional, as it swiftly rejects the disturbance as soon as it emerges; see Fig. 8 b, in contrast to the

DMC controller, which necessitated a greater amount of time; see Fig. 8 a.

In Fig. 9, we see that the input initially exhibits excessive vigor, when the disturbance arises, be-

fore eventually transiting into a smoother trajectory with the aid of the DMC controller; see Fig. 9 a.

Conversely, the input demonstrates a smooth behavior with the SIMC-PID controller, which can be at-

tributed to its prompt rejection of the disturbance. Nevertheless, it maintains a considerable magnitude

that exceeds 40 in terms of amplitude, which can be perceived as a drawback; see Fig. 9 b.

a) b)

Fig. 9. The input of the system in the presence of disturbance with DMC (a) and with SIMC-PID (b).
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5. Conclusions

Based on the modeling of a LiDAR system’s optical chain, we subjected the integration system’s

transfer function to two controllers. With a brief overview of the LiDAR system utilized for forest fire

detection and atmospheric analysis, the optical chain was modeled and visually represented through

various figures. We presented the Dynamic Matrix Control (DMC) algorithm’s theoretical development,

which employed the step response. The fundamental principle of predictive control lied in the establish-

ment of an anticipatory effect. The explicit knowledge of the future trajectory’s evolution was exploited

and compared with the SIMC-PID Skogestad controller through simulation. The simulation results,

which examined constant trajectory, variable trajectory, and the presence of disturbances, demonstrated

stable behavior and commendable performance for this intricate system with the proposed pair of con-

trollers. Despite the existence of external disturbances, they effectively maintained the desired behavior

and achieved the desired set point and reference value, with a preference for SIMC-PID for output and

DMC for input. The obtained results from the proposed technique successfully addressed the raised issue,

enabling accurate manipulation of alignment in similar systems, saving time, and swiftly returning to the

preferred alignment for the mobile LiDAR system to function correctly.
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