
Journal of Russian Laser Research, Volume 45, Number 2, March, 2024

DYNAMICAL SYMMETRY AND GENERATION

OF SQUEEZED STATES OF LIGHT

Sergey V. Prants

Laboratory of Nonlinear Dynamical Systems

Pacific Oceanological Institute of the Russian Academy of Sciences

dynalab.poi.dvo.ru

Vladivostok 690041, Russia

Author e-mail: prants@poi.dvo.ru

Abstract

Using the Lie-algebraic approach, we develop the theory of generation of squeezed states of light in
nonstationary parametric processes of the light interaction with a medium with the quadratic and
quartic nonlinearities. The exact solution for the variance of the quadrature component of the field
strength is obtained in the case of the quadratic parametric process with the SU(1, 1) dynamical
symmetry. We show that decay of the field mode in this processes may have strong impact on squeezing.
The solution for the standard deviation of the field strength in the case of the quartic parametric process
with the approximated L5 dynamical symmetry is obtained in the first order of smallness with respect
to the nonlinearity parameter.
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1. Introduction

A squeezed state is a special class of coherent states of quantum systems, for which the variance of

one of the canonically conjugate components is smaller than the other. In quantum optics, it is such a

coherent field state, in which the variance of one of the quadrature field strength component is smaller

than the other; see, e.g., [1–3]. In other words, it is smaller than the standard quantum limit, but the

Heisenberg uncertainty principle is not violated. The squeezed states of light can be generated in a variety

of nonlinear optical processes including parametric amplification, parametric up and down conversions,

generation of the second harmonic in crystals, four-wave mixing in atomic vapors, resonance fluorescence

of atoms and other processes; for review, see [4].

One of the main purposes of experiments in quantum physics is the controlled transfer of quantum

system from a given initial state to the desired final state for a certain time interval. This is a typical

control problem provided that the controlled quantity satisfies one of the equations of motion. The

process of control can be considered on the Lie groups of all unitary transformations of a domain of

admissible states. Dynamic symmetry concept, based on underlying dynamical Lie algebras, has been

successfully applied to solve a number of problems that can be considered in the context of control of

different quantum systems, from atoms and cavity field modes to neutrino oscillations; see, e.g., [5–10],

and even for partial controlling chaotic quantum systems; see, e.g., [11–15].

Dynamic symmetry is a property of the evolution of dynamical systems that can be strictly formalized

in the language of group theory; see, e.g., [16]. It is rooted deep in the nature of things, being more fun-

damental than differential equations used for description of the evolution. The famous “Eightfold Way”
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in theory of elementary particles has been discovered based solely on considerations of symmetry, while

the corresponding differential equations are still unknown. Here, we mean that a quantum system, with

a Hamiltonian H(t) having the dynamic symmetry, if H(t) generates a Lie algebra, a finite-dimensional

one either infinite-dimensional one. This property allows us not only to classify quantum systems, using

the structure of underlying Lie algebras, but also to solve some evolution problems.

2. Lie Algebra Approach for Solving the Evolution Problems

The evolution operator in quantum mechanics satisfies the equation

i�
d

dt
U = H(u,t) U, U(0) = I. (1)

Let H generates a finite-dimensional Lie algebra

H(t) =

n∑
i=1

li(t) Li. (2)

The set of operators {Li} forms the basis of n-dimensional Lie algebra L, and li(t) are scalar complex-

valued functions of time. It follows from the Frobenius theorem [17], that the solution of (1), at least

locally, can be represented in the form

U =

n∏
i=1

exp (gi(l, t) Li). (3)

Substituting (3) into (1), one gets a system of nonlinear differential equations of the first order for the

parameters gi of the dynamical group G,

li(t) = Nij
.
gl (t), i, j = 1, . . . , n, (4)

where Nij(g) is a n×n matrix with the elements, which are analytic functions of g. The multiplicative

parametrization (3) facilitates calculating of the probability amplitudes, observables, and various average

values in quantum theory. Equation (4) is invariant with respect to the set of representations and

implementations of the associated dynamic algebra L.
The following conclusions can be drawn based only on structural features of dynamical algebras. If L

belongs to a class of solvable algebras, then its basis can obviously be organized to represent the matrix

N(g) in a triangular form to reduce the solution (4) to n successive integrations. For solvable algebras,

the solution in the form (4) is valid for all t, i.e., globally [18]. In view of the Levi–Maltsev theorem, an

arbitrary Lie algebra can be decomposed as follows; see, for example, [19]:

L = �⊕R, (5)

where � is a semisimple Lie algebra, andR is its radical. Owing to (5), the following further decomposition

is possible [18]:

U = U� UR, (6)
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where

i�
d

dt
U� = H�(t) U�, U�(0) = I, (7)

i�
d

dt
UR = U+

� HR(t) U� UR, UR(0) = I, (8)

H(t) = H�(t)⊕HR(t). (9)

The operators H� and HR generate the algebras � and R, respectively.

Since every semisimple algebra � can be uniquely decomposed into a direct sum of simple subalge-

bras [19]

� = �1 ⊕ . . .⊕�k, (10)

the further decomposition is possible,

S� =
n∏

i=1

Si, (11)

where each of the factors satisfies the equation like (7), with the Hamiltonian Hi generating the corre-

sponding ideal �i with

H�(t) = H1 + · · ·+Hk(t). (12)

3. Model Nonlinear Hamiltonian

Let us consider a Hamiltonian of the fourth degree by the boson operators describing a field mode

H =
1

2
�

[
ω0(a

†a+ 1/2) + (αa†2 + α∗a2) + β(a† + a)4
]
, (13)

where the first term describes a free field, the second and third terms describe quadratic and quartic

quantum processes; the parameters α and β can be time dependent. In the approximation with slowly

varying amplitudes, the Hamiltonian can be rewritten in the terms of generators J0 ≡ 1

2
(a†a + 1/2),

J− ≡ 1

2
a2, and J+ ≡ 1

2
a†2 of a SU(1, 1) group and their bilinear combinations

H = H0 +H1, H0 = �ω0J0 + �(αJ+ + α∗J−), H1 = 2�β(C + 3J 2
0 ), (14)

where

C = J 2
0 − 1

2
(J+J− + J−J+) (15)

is the Casimir operator of SU(1, 1) algebra.

In the first order in the nonlinearity parameter β, the infinite dimensional Lie algebra of the Hamilto-

nian (14) can be approximated by a five-dimensional Lie algebra L5, which, in turn, can be decomposed

in the direct sum of SU(1, 1) and a two-dimensional commutative subalgebra. That allows us to factorize

the evolution operator as follows:

U(t) = exp(−2iβtC) exp(−6iβtJ 2
0 )USU(1,1)(t), (16)

where the operator of the representation of the SU(1, 1) group can be factorized into a product of

exponentials of the group generators following to (3), with three parameters gi satisfying the set of

nonlinear differential equations (4). The multiplicative parametrization (16) is convenient for calculating

the evolution of nonstationary quantum systems of the fourth order.
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4. Generation of Squeezed States in the Processes with SU(1, 1)

Dynamical Symmetry

The squeezed state of light is a kind of generalized coherent states for which the uncertainty relation

becomes the equality

〈(ΔGi)
2〉〈(ΔGj)

2〉 = 1

4
|ckij〈Gk〉|2, 〈(ΔGi)

2〉 = 〈G2
i 〉 − 〈Gi〉2, (17)

where [Gi,Gj ] = ckijGk and G are generators of a Lie group, and ckij are structural constants.

Among the class of states (17) with equal values of the variances of Gi and Gj , there exist the squeezed

states for which one of the variance is smaller than the other. If Gi and Gj are linear combinations of

creation and annihilation operators, then one deals with squeezed states of light.

It is convenient to use the quadrature operator components in order to describe squeezed states,

G1 ≡ G+ exp[i(ω0t− φ)] + G− exp[−i(ω0t− φ)],

G2 ≡ G+ exp[i(ω0t− φ− π/2)] + G− exp[−i(ω0t− φ− π/2)],
(18)

where G+ and G− are positive and negative frequency parts of the field strength with the commutators

[G+,G−] = c, [G1,G2] = 2ic; also c is a positive number, and φ is a phase angle, that can be varied in

experiments. Now we arrive at the following uncertainty relation:

〈(ΔG1)
2〉〈(ΔG2)

2〉 ≥ c2, (19)

which is minimized in a squeezed state, where the variance of one of the quadrature components is smaller

than c, whereas the other one is larger than c.

A squeezed state can be generated from the vacuum state, under the action of the relevant evolution

operator,

|χ|2
[
1 + 2n0(1− e−γt)

]
< 1. (20)

The variance is calculated as follows:

〈(ΔG1)
2〉 = 〈0|[G1(t)− 〈G1(t)〉]2|0〉 < b, G1 = U+(t)G1U(t), 〈G1(t)〉 = 〈0|G1|0〉. (21)

The Hamiltonian H0 with the SU(1, 1) dynamical symmetry describes the simplest optical process,

which is able to generate squeezed states of light. The Hamiltonian H1 can also generate squeezed

state of light under appropriate conditions. The combined Hamiltonian H0 +H1 with the approximated

dynamical symmetry L5 allows us to vary the squeezing conditions to increase the degree of squeezing.

Let us consider squeezing of light in the process of degenerate parametric amplification with the

Hamiltonian H0 generating SU(1, 1) algebra. The classical pumping field is assumed to be harmonic one,

α(t) = α0 exp(−2iω0t), c = 1. (22)

Computing the quadrature component G1 with the SU(1, 1) evolution operator, in accordance with (21),

we obtain

G1 ≡ a(t) exp[i(ω0t− φ)] + a† exp[−i(ω0t− φ)] = χ(t)a+ χ∗(t)a†, (23)
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where

χ(t) = e−iφ cosh(α0t) + ieiφ sinh(α0t). (24)

The variance is calculated, in view of formula (21) the result reads

〈(ΔG1)
2〉 = |χ|2, (25)

where

|χ|2 = cosh(2α0t)− sinh(2α0t) sin(2φ). (26)

The squeezing condition is fulfilled, if φ = π/4. The final formula is

〈(ΔG1)
2〉sq = e−2α0t. (27)

5. Account for Decay of the Field Mode

To take into account decay of the field mode, it requires to add the term

H3 =

∞∑
j=1

�ωjb
†
jbj + �(θja

†bj + θ∗jab
†
j) (28)

to the Hamiltonian H0 with the SU(1, 1) dynamical symmetry. This term describes a thermal “bath”

(b†j , bj) and the interaction of the field mode (a†, a) with it. The solutions of the Heisenberg equations

are well known; see, e.g., [20],

a(t) = u(t)a+
∑
j

vj(t)bj , bj(t) =
∑
i

xij(t)bi + yj(t)a, u(0) = 1, vj(0) = 0, xij(0) = δij , yj(0) = 0.

(29)

In the Weisskopf–Wigner approximation, the functions u(t) and vj(t) have the following forms:

u(t) = exp{−[(γ/2) + iωt]},

vj(t) = θj
1− exp[i(ωj − ω)t− γt/2]

ωj − ω + iγ/2
exp(−iωjt).

(30)

where γ ≡ 2πθ2(ω)ρ(ω) is a damping constant, ω = ω0+ δω, ρ(ω) is a form of line for the oscillators from

the reservoir, and the frequency shift δω is defined by the main value of the integral,

δω = −
∞∫

−∞
|θj |2ρ(ωj)(ωj − ω0)

−1dωj . (31)

The conservation law follows from the unitarity of the evolution operator

|u(t)|2 +
∑
j

|vj(t)|2 = 1. (32)

In view of the solutions (30)–(32), now we can calculate the variance of the quadrature component (23)

averaged over the vacuum state of the field mode and the Fock states |nj〉 of the modes of the reservoir,

〈(ΔG1)
2〉 = |χ|2

[
1 + 2n0(1− e−γt)

]
, (33)
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where the average number of reservoir’s quanta n0 with the frequency ω is given by the Plank distribution.

Finally, the condition for squeezing of one of the quadrature components of the field mode is given by

|χ|2
[
1 + 2n0(1− e−γt)

]
< 1. (34)

This formula shows that decay of the field mode significantly impacts on squeezing. The corresponding

variance can be lowered decreasing the number of photons n0 and/or the decay coefficient γ.

Assuming that the contribution of the nonlinearity parameter β is small, the condition for squeezing in

a quartic nonlinear optical process with the full Hamiltonian (13) can be found, using the same algorithm

as in the SU(1, 1) case. In this process, the standard deviation of the field strength is given by

A1(t) = χ(t)

{[
1− 2iβt(a†a+ 1)

]
a− i

βt

2
(a†a2 + a2a†)

}

+χ∗(t)
{
a†

[
1 + 2iβt(a†a+ 1)

]
+ i

βt

2

(
a†2a+ aa†2

)}
+O(χ2). (35)

The variance of this quantity in a squeezed state is calculated following (21).

6. Conclusions

In summary, we used the Lie-algebra approach to calculate variances of the quadrature components

and standard deviations of the field strength in the squeezed states of light in the processes of interaction

of light with a medium with quadratic and quartic nonlinearities, with the exact SU(1, 1) dynamical

symmetry and approximated L5 dynamical symmetry, respectively. We found the explicit solution for

the variance of the quadrature component of the field strength in the parametric process with the SU(1, 1)

dynamical Lie algebra. We showed that decay of the field mode in these processes has strong impact on

squeezing. The respective formula for the variance of the quadrature components of the field strength

in the squeezed states allows for control of the squeezing. The solution for the standard deviation of

the field strength in the quartic parametric process with the approximated L5 dynamical symmetry was

obtained, using the contribution of small nonlinearity parameter.
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