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Abstract

We show that by minor modification of the previously proposed procedure for the generation of near-
coherent states, one can produce “near states” even from a mixed input state. In this study, we
consider this procedure as a conditional quantum-state transformation and find the explicit form of
the non-unitary transformation operator. We demonstrate that even in mixed states, this quantum
process can produce nonclassical states with a smooth non-positive P -function.
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1. Introduction

Nonclassical states of light have wide applications in quantum optics [1,2]. State nonclassicality refers

to the presence of statistical correlations that cannot be explained by any classical statistical model.

Typically, a state is considered as nonclassical, if its representation in terms of the Glauber–Sudarshan

P -function [3, 4] is either non-positive or includes derivatives of the Dirac delta-function. In this sense,

coherent states, which are the closest quantum states to a classical field, and any statistical mixture

of them are considered as classical states, while photon-added and photon-subtracted thermal states,

with regular non-positive P -functions, and various forms of cat states, squeezed states, and the similar

ones, are nonclassical states. Single-mode state nonclassicality and quantum entanglement, which enable

quantum information processing [5, 6], quantum teleportation [7], and quantum communication [8], are

closely related [9], making nonclassicality an important issue.

Some quantum states possess semi-classical features, similar to coherent states, and at the same time,

they exhibit nonclassical behavior [10]. Some of them are photon-added (photon-subtracted) coherent

states, which are nonclassical, even if they have a large number of photons [11, 12], and the Schrödinger

cat states [13, 14]. One of the motivations for the generation of such states is the fact that they provide

insight into quantum aspects of the wave–particle duality. The other interesting point is that, due to

their semiclassical part, one can macroscopically control them without losing the nonclassical features of

the states.

Recent examples of the aforementioned states include near-coherent [15] and Mth coherent states [16].

These states are essentially some kind of cat states formed by the superposition of two almost identical

coherent states. A generation method has been introduced for these states, utilizing an optical setup

that takes a coherent state as an input and conditionally generates a near-coherent state. However, all
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previous investigations were focused on coherent states as input states, with no attention given to other

pure or mixed states.

In this article, we use the generation method for the near-coherent states of the previous research [15],

with minor modifications, to propose a potential new definition of near states for arbitrary (generally

mixed) input states. Both experimentally (due to unavoidable quantum noises) and theoretically (because

of the expanding domain of input states), this problem may be interesting.

This paper is organized as follows.

In Sec. 2, we review the definition of near-coherent states and some of their basic properties, while in

Sec. 3 we introduce a useful modification to the generation method of near-coherent states. An optical

setup is considered for generating a near-coherent state as a conditional quantum state transformation,

and an explicit form of the corresponding transformation operator is derived in Sec. 4. Then, this

transformation is examined as a generator of a more general form of near states, including near mixed

states. Section 5 is devoted to the conclusions.

2. Near Coherent States and Derivative States

The near-coherent states are defined as a superposition of two almost identical coherent states [15].

If superposed states are denoted by complex parameters z and z +Δz, we obtain

|z,Δz〉 = N{|z +Δz〉 − |z〉}, at Δz −→ 0, (1)

where N is a normalization factor that tends to infinity in the prescribed limit. One should note that

such a state, as a limit of a function of complex parameter Δz, does not exist. To demonstrate the truth

of this claim, within the framework of the photon number representation of coherent states, we have

〈n|z〉 = exp

(
−1

2
zz∗

)
zn√
n!
; n = 0, 1, 2, . . .

which is not a differentiable function of complex parameter z. This means that the limit (1) depends on

the phase of Δz = |Δz|eiθs , which is called the source term. The normalization factor obtained in the

previous research [15] reads

N =
1√

1 + |z|2 sin2 δθ
1

|Δz| ,

where δθ = θs − θ is defined as the relative phase of the source, and θ denotes the phase of complex

parameter z. By expanding |z +Δz〉 up to the first order of the source term, we obtain

|z,Δz〉 = 1√
1 + |z|2 sin2 δθ

(
eiδθ

∂|z〉
∂|z| + i|z| sin(δθ) |z〉

)
.

Hence, the normalized near-coherent state depends only on δθ, the relative phase of the source term in

the complex plane. The non-normalized state
∂|z〉
∂|z| is called a derivative coherent state, so near-coherent

states are a superposition of a derivative coherent state and the coherent state itself. Moreover, when

δθ = π/2, we have

|z,Δz〉 = i√
1 + |z|2

(
∂|z〉
∂|z| + |z||z〉

)
,

148



Volume 45, Number 2, March, 2024 Journal of Russian Laser Research

and using the relation n̂|z〉 = |z|∂|z〉
∂|z| + |z|2|z〉, for coherent states, we arrive at

|z,Δz〉 = i

|z|√1 + |z|2 n̂|z〉.

Therefore, the generation of near-coherent states, when δθ = π/2, leads to the generation of n̂|z〉 – the

first state of a class of nonclassical states, called Mth coherent states [16].

Mathematical, statistical, and nonclassical properties of near-coherent states were considered in [15].

These states exhibit nonclassical properties, such as sub-Poissonian statistics, squeezing, and a partially

negative Wigner function. At the same time, they possess distribution functions for field quadratures

and photon numbers that are highly similar to coherent states, when |z| � 1. Consequently, these states

simultaneously demonstrate both classical and nonclassical behaviors.

3. Generation of Near Coherent States

Fig. 1. An optical setup for generating the near coherent states.

In this section, we review a method

for creating a near-coherent state de-

scribed in [15], with some modifications

depicted in Fig. 1. The Mach–Zehnder

interferometer has two modes (c) and (d)

in the photon number state |1〉c|0〉d. The
counterclockwise arm of the interfero-

meter is coupled with the other mode (b),

which is in a coherent state |β〉b, through
the cross-Kerr interaction, which has a

unitary operator ÛK = exp(−iφb̂†b̂ĉ†ĉ).
The Mach–Zehnder interferometer has

two identical 50/50 beam splitters (BS1

and BS2). An additional similar 50/50

beam splitter (BS3) is used to couple

modes (a) in the coherent state |α〉a with
mode (b). Overall, this setup has four in-

put ports and four output ports.

It is assumed that all beam splitters are the same, with a transformation matrix T , and the related

unitary operator B̂T acts on the two-mode coherent states as follows:

T =
1√
2

(
1 1

−1 1

)
←→ B̂T |α, β〉 =

∣∣∣∣α+ β√
2

,
−α+ β√

2

〉
. (2)

The phase shifter ϕ, with the corresponding unitary operator exp(−iϕd̂†d̂) in the clockwise arm of the

interferometer, is essentially utilized to compensate for any undesired phase shift in the arms. Finally,

we measure photon numbers in output ports (b), (c), and (d) to post-select state b〈0|c〈1|d〈0|, while we

do not touch the output port (a). Here, we show that, if the cross-Kerr interaction is weak (|φ| � 1),

the output state in port (a) is a near-coherent state.
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Every beam splitter acts on the two-mode number states, in view of the rules,

B̂|1, 0〉 = 1√
2
{|1, 0〉 − |0, 1〉}, B̂|0, 1〉 = 1√

2
{|1, 0〉+ |0, 1〉}; (3)

hence, BS1 transforms input states as follows:

B̂1|α〉a|β〉b|1〉c|0〉d =
1√
2
|α〉a|β〉b{|1〉c|0〉d − |0〉c|1〉d}.

Now, depending on the state (c), the operator ÛK acts on the right-hand side, and the resulting state

becomes
1√
2
{|α〉a|e−iφβ〉b|1〉c|0〉d − |α〉a|β〉b|0〉c|1〉d}.

Next, BS2 acts, and the state evolves to

1

2
{|α〉a|e−iφβ〉b − |α〉a|β〉b}|1〉c|0〉d − 1

2
{|α〉a|e−iφβ〉b + |α〉a|β〉b}|0〉c|1〉d.

Up to this point, all evolutions are unitary. Since BS3 only mixes modes (a) and (b), we can perform

post-selection c〈1|d〈0| to find

|α〉a|e−iφβ〉b − |α〉a|β〉b.
This two-mode state enters BS3 and is transformed to∣∣∣∣α+ e−iφβ√

2

〉
a

∣∣∣∣−α+ e−iφβ√
2

〉
b

−
∣∣∣∣α+ β√

2

〉
a

∣∣∣∣−α+ β√
2

〉
b

.

Finally, we have non-unitary post-selection of b〈0|, and single-mode output state for mode (a) is found

as follows:

|ψout〉a = e−1/4|e−iφβ−α|2
∣∣∣∣α+ e−iφβ√

2

〉
a

− e−1/4|β−α|2
∣∣∣∣α+ β√

2

〉
a

. (4)

By assumption, the cross-Kerr interaction is weak, |φ| � 1, so we can write

|ψout〉a ≈
∣∣∣∣α+ e−iφβ√

2

〉
a

−
∣∣∣∣α+ β√

2

〉
a

≡ |z +Δz〉a − |z〉a. (5)

Here, the complex parameters of two nearly identical coherent states z and z +Δz are defined by

z =
α+ β√

2
, Δz ≈ −iφβ√

2
. (6)

In the previous research [15], the researchers left the output port (b) of BS3 unused and considered

no post-selections for it. Such a quantum process will not result in a pure output state at all.

In the next section, we demonstrate that, if the input (generally mixed) state in port (a) is ρ̂in,

then conditional quantum state transformation can be described by a rule in the form ρ̂out ∝ Ŷ ρ̂inŶ
†;

while, without post-selection for b〈0|, the resulting mixed state has only an infinite-sum Kraus-operator

representation.
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4. Calculation of Conditional Transformation Operator

Superposition of two neighboring states can be defined in various ways, depending on the specific

criteria for neighborhood. For example, we can choose a Lie group of transformations, ĝ(α1, α2 . . .), and

consider states ĝ|ψin〉. Then, “near states” can be interpreted as the superposition of two states with

almost identical parameters (α1, α2, . . .). Therefore, there are many different possible definitions for near

states. In Sec. 3, we explain how the optical setup in Fig. 1, acting as a conditional quantum state

transformer, can produce a superposition of two almost identical coherent states. Here, to find a possible

definition for “near mixed states,” we investigate the output state of the same setup, when the input

state ρ̂in is arbitrary.

For any conditional quantum state transformation, up to a scalar factor, there exists a non-unitary

operator Ŷ , such that

ρ̂out =
Ŷ ρ̂inŶ

†

Tr[Ŷ ρ̂inŶ †]
. (7)

The operator Ŷ is the partial matrix element of unitary operator Û , which governs the time evolution of

the system, between pre- and post-selected states [17]. As shown in Fig. 1, |β〉b|1〉c|0〉d and |0〉b|1〉c|0〉d
are the pre- and post-selected states, respectively; thus,

Ŷ ∝ b〈0|c〈1|d〈0|Û |β〉b|1〉c|0〉d.
It should be noted that this partial matrix element is not a scalar; rather, it is an operator Ŷ (â†, â)
depending on the creation and annihilation operators of the unmeasured port.

Using unitary evolution operator Û = B̂3B̂2e
−iφb̂†b̂ĉ†ĉB̂1 for the setup shown in Fig. 1, up to an

unimportant scalar factor (which we always ignore), we arrive at

Ŷ = b〈0|c〈1|d〈0|B̂3(â, b̂)B̂2(ĉ, d̂) e
−iφb̂†b̂ĉ†ĉB̂1(ĉ, d̂)|β〉b|1〉c|0〉d.

By applying transformation rules, (3), we obtain

Ŷ = b〈0|B̂3(â, b̂)c〈1|d〈0|B̂2(ĉ, d̂) e
−iφb̂†b̂ĉ†ĉ|β〉b{|1〉c|0〉d − |0〉c|1〉d}.

Then, depending on the state of (c) on the right-hand side of ÛK , this operator acts on the state, and

the resulting partial matrix element becomes

Ŷ = b〈0|B̂3(â, b̂)c〈1|d〈0|B̂2(ĉ, d̂) {|e−iφβ〉b|1〉c|0〉d − |β〉b|0〉c|1〉d}.
By the repeated application of Eq. (3) for B̂2, the transformation operator adopts the following form:

Ŷ = b〈0|B̂3(â, b̂)|e−iφβ〉b −b 〈0|B̂3(â, b̂)|β〉b.
By applying the transformation rule given in Eq. (2), it is easy to show that Ŷ |α〉a reproduces Eq. (4),

which justifies our calculations.

Now, we find an explicit form of Ŷ (â†, â) as a function of the creation and annihilation operators of

port (a). By invoking the completeness relation for two-mode coherent states and Eq. (2), we obtain

b〈0|B̂3(â, b̂)|β〉b =
∫

d2λ

π

d2μ

π

∣∣∣∣λ+ μ√
2

〉
〈λ|

〈
0

∣∣∣∣−λ+ μ√
2

〉
〈μ|β〉 .
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Using identities |ξ〉 = e−|ξ|2/2eξâ† |0〉 and |0〉〈0| =: e−â†â : on the right-hand side and integrating in the

normally ordered product, we arrive at

b〈0|B̂3(â, b̂)|β〉b = e−|β|2/2 : e−â†âeâ
†â/

√
2eβâ

†/
√
2.

This can be simplified, in view of formula eηâ
†â =: e(e

η−1)â†â :, and finally, we obtain

Ŷ = e−|β|2/2
(
ee

−iφβâ†/
√
2 − eβâ

†/
√
2
)(

1√
2

)â†â
. (8)

In view of the assumption |φ| � 1, employing the Taylor expansion, and neglecting any unimportant

scalar factors, the transformation operator adopts the following form:

Ŷ ≡ â†eβâ
†/

√
2

(
1√
2

)â†â
, β = i

√
2Δz/φ. (9)

Note that, for fixed parameters of the cross-Kerr medium, the conditional transformation operator de-

pends on the source term Δz. In view of (7), this operator completely characterizes the quantum process

realized by the setup in Fig. 1.

Equation 8 elucidates the physical interpretation of our new definition for near states. On the right-

hand side of this equation, two nearly identical operators are subtracted. Hence, Ŷ |ψin〉 can be interpreted

as a superposition of two almost identical states. Moreover, although the output state is a superposition

state for any input quantum state |ψin〉, none of the superposed states are near to |ψin〉. In fact, instead of

|ψin〉, they are near to the quantum state eβâ
†/

√
22−â†â/2|ψin〉. For example, Ŷ |α〉a equals the superposition

of coherent states near to |(α+ β)/
√
2〉a.

To demonstrate some applications of formula (9), assume that the input state is a photon number

state |n〉, then

|ψout〉 ∝ Ŷ |n〉 = â†eβâ
†/

√
2

(
1√
2

)â†â
|n〉 ∝ â†n+1eβâ

†/
√
2|0〉,

|ψout〉 ∝ â†n+1|β/
√
2〉.

Thus, the output state is pure and can be considered as a photon-added coherent state.

The other example is the thermal state with the following P -function:

ρ̂in =
1

1 + n̄

(
n̄

1 + n̄

)â†â
, Pth(α) =

1

πn̄
exp

(
−|α|2

n̄

)
,

with n̄ denoting mean photon number of the state. Using Eqs. (7) and (9), we have

ρ̂out ∝ Ŷ ρ̂inŶ
† =

1

1 + n̄
â†eβâ

†/
√
2

(
1

2

n̄

1 + n̄

)â†â
eβ

∗â/
√
2â,

and then, applying operator identity M â†â =: e(M−1)â†â : we obtain

ρ̂out ∝ â†eβâ
†/

√
2 : exp

[
−1

2

(
n̄+ 2

n̄+ 1

)
â†â

]
: eβ

∗â/
√
2â.
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Now, we can calculate the Glauber–Sudarshan function of ρ̂out, using Fourier integral [18]; it reads

P (α) =
e|α|2

π

∫
d2u

π
eαu

∗−α∗ue|u|
2〈−u|ρ̂|u〉.

After some algebra, we obtain

Pout(α) ∝ e|α|2

π
∂α∂α∗

∫
d2u

π
exp

{
−1

2

(
n̄

n̄+ 1

)
|u|2 +

(
β√
2
− α

)∗
u−

(
β√
2
− α

)
u∗

}
.

The above Gaussian integral can be calculated and, up to a normalization factor N , the Glauber–

Sudarshan phase space representation of the output state is

Pout(α) = Ne|α|
2

[
2
(n̄+ 1)

n̄

∣∣∣∣α− β√
2

∣∣∣∣
2

− 1

]
exp

[
−2

(n̄+ 1)

n̄

∣∣∣∣α− β√
2

∣∣∣∣
2
]
.

This is a smooth but non-positive definite P -function that demonstrates the nonclassicality of the output

state.

These examples show that the transformation operator given by Eqs. (8) and (9) can generate near

states, according to our new definition.

5. Conclusions

In this article, we introduced a generalization of near-coherent states that can be generated from a

generally mixed input state. We completed the previously proposed setup [15] for the generation of near-

coherent states, by including an additional zero-photon detection post-selection step; thus, we achieved a

closed form for the transformation operator. The explicit form of this non-unitary transformation operator

was determined and subsequently applied to both pure and mixed input states. We demonstrated that,

even for a mixed state, this quantum process can produce nonclassical states characterized by a smooth,

non-positive P -function.
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