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Abstract

In this paper, we study quantum correlations in a Heisenberg XYZ model with the Dzyaloshinskii–
Moriya interaction based on the Sharma–Mittal quantum discord and its limiting cases. The re-
sults obtained show that the Sharma–Mittal quantum discord is a faithful quantifier and that the
Dzyaloshinskii–Moriya interaction significantly enhances quantum correlations within the bipartite
system. In contrast, temperature has the opposite effect, leading to a reduction in the quantity of
quantum correlations in the system.
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1. Introduction

Quantum correlations, widely acknowledged as essential resources, significantly improve the perfor-

mance of quantum protocols compared to classical ones [1–4]. These correlations play a pivotal role

in various fundamental aspects of quantum information processing and have diverse applications, due

to their unique properties [5–7]. These applications extend across various scientific fields, including

quantum computing [8, 9], cryptography [10, 11], teleportation [12], sensing and metrology [13, 14], com-

munication [15,16], machine learning [17], and superdense coding [18].

From an applied standpoint, the utilization of quantum correlations is limited by decoherence effects

resulting from the interaction between the quantum system and its environment [19]. To address this

issue, several approaches have been suggested in the literature to either eliminate or minimize the im-

pact of environmental couplings in the evolution of open quantum systems [20, 21]. In contrast, from

a foundational standpoint, significant efforts have been made to discern the key characteristics that set

classical correlations apart from nonclassical correlations. This endeavor is crucial for gaining a deeper

understanding of the distinct properties of quantum correlations and their implications in various con-

texts. This has led to extensive research efforts focused on quantifying quantum correlations in quantum

systems with two or more qubits. While pure states can exhibit both separable and entangled proper-

ties, mixed states demonstrate more intricate characteristics of nonclassical correlations. Consequently,
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numerous indicators for quantum correlations have been investigated over the last two decades. Each

quantifier comes with its own advantages and limitations. For instance, the quantum discord, introduced

to characterize quantum correlations beyond entanglement [1, 22–24], is challenging to compute for a

general two-qubit state.

On the other hand, the geometric quantum discord in the literature is computationally feasible, but it

can grow under local operations on unmeasured qubits [21], making it an unreliable indicator of quantum

correlations [25, 26]. In recent years, there has indeed been a notable increase in the development of

quantifiers aimed at quantifying various aspects of quantum information. Notably, the Renyi quantum

discord [27] and Tsallis quantum discord [28] have been introduced in different contexts. Furthermore,

the Sharma–Mittal quantum discord [29] presents a comprehensive framework that encompasses both the

Renyi [27] and Tsallis quantum discord measures [30]. These quantifiers play a crucial role in facilitating

the understanding and characterization of quantum correlations and find applications across diverse areas

of quantum information science. They provide valuable tools for analyzing and harnessing quantum

correlations in quantum systems, contributing to advancements in quantum communication, quantum

cryptography, quantum computation, and other quantum technologies.

In this context, our research paper focuses on a comparative study of the Sharma–Mittal quantum

discord and its borderline cases as a quantifier of discord-like correlations in a Heisenberg XYZ model

with the Dzyaloshinskii–Moriya interaction [31–33]. We explore how the Sharma–Mittal quantum discord

behaves under different conditions and how it can effectively capture nonclassical correlations in this

model described below by Hamiltonian (6), by examining the interplay between the model’s parameters

and the quantifier. Therefore, we identify the Sharma–Mittal quantum discord as a more useful correlation

quantifier with respect to its limit cases and other quantifiers existing in the literature [34, 35].

This paper is organized as follows.

We start by introducing the basic concept related to general formulas of Sharma–Mittal quantum

discord. In Sec. 2, we present the physical model within the framework of two-spin Heisenberg model,

but we consider spin–orbit coupling describing by the Dzyaloshinskii–Moriya (DM) interaction, so that

this section is closed by results and discussions. Conclusions and remarks are given in Sec. 4.

2. Basic Concepts of Sharma–Mittal Quantum Discord

Then, we delve into the foundational aspects of Sharma–Mittal quantum discord, elucidating the

intricate interplay among entropy, quantum correlation, and the novel framework of Sharma–Mittal

discord. We embark on our exploration by revisiting the theoretical underpinnings that pave the way

for the Sharma–Mittal quantum discord. We then delve into the nuances of Sharma-Mittal entropy and

its connections to Renyi and Tsallis entropies, culminating in the elucidation of quantum discord and its

implications [36].

2.1. Sharma–Mittal Entropy

We commence our analysis by introducing the Sharma–Mittal entropy, which is a pivotal component

within the framework of Sharma-Mittal quantum discord. The Sharma-Mittal entropy of a random
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variable X reads [37, 38]

Hq,r(X = x) =
1

1− r

⎧⎨⎩
[∑
X=x

(P (X = x))q

](1−r)/(1−q)

− 1

⎫⎬⎭ , (1)

where q and r are two real parameters, with q > 0, q �= 1, r �= 1, and P is the probability function [39].

Moving forward, we examine the relationship to Renyi and Tsallis entropies within the context of the

Sharma-Mittal entropy.

2.2. Relationship to Renyi and Tsallis Entropies

It is notable that the Sharma–Mittal entropy encapsulates several well-known entropy measures as

special cases. By examining the limit conditions of the Sharma–Mittal entropy expression, we can discern

its relationship to various other entropic measures as follows:

• As r → 1, we recover the Renyi entropy,

HR
q (X) = lim

r→1
Hq,r(X = x) =

1

1− q
log

[∑
X=x

(P (X = x))q

]
. (2)

• Similarly, when r → q, in Eq. (1,) we obtain the Tsallis entropy,

HT
q (X) = lim

r→q
Hq,r(X = x) =

1

1− q

[∑
X=x

(P (X = x))q − 1

]
, (3)

where q ≥ 0 and q �= 1.

Next, we delve into the Sharma–Mittal entropy for density matrices, which extends the concept of

Sharma–Mittal entropy to the quantum realm. This adaptation offers a new perspective, through which

to analyze uncertainty and complexity within quantum systems.

2.3. Sharma–Mittal Entropy for Density Matrices

Extending the concept of Sharma–Mittal entropy to quantum mechanics, we define the Sharma–Mittal

entropy for density matrices. Given a density matrix ρ, the Sharma–Mittal entropy Hq,r(ρ) reads

Hq,r(ρ) =
1

1− r

⎧⎨⎩
[∑

i

(λi)
q

](1−r)/(1−q)

− 1

⎫⎬⎭ , (4)

where q and r are two real parameters, q > 0, q �= 1, r �= 1, and λi’s are eigenvalues of ρ. Furthermore,

in the realm of quantum mechanics, the concepts of Renyi and Tsallis entropies find their counterparts

and can be generalized in a manner similar to classical statistics [40, 41].
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2.4. Sharma–Mittal Quantum Discord

The notion of quantum discord within the Sharma-Mittal framework is a crucial development. Quan-

tum discord, denoted as Dq,r(ρ), quantifies the nonclassical correlations in a quantum state represented

by the density matrix ρ in the composite Hilbert space H(a)⊗ H(b); it is defined as follows [29]:

Dq,r(ρ) = Hq,r(ρb) + max
(Πi)

[∑
i

piHq,r(ρ
(i)
a )

]
−Hq,r(ρ). (5)

By replacing Hq,r(ρ) with HR
q (ρ) and HT

q (ρ), we can obtain analogs of the Renyi and Tsallis discords

denoted by DR
q (ρ) and DT

q (ρ), respectively.

In the next section, we seamlessly combine theory and practice by studying insights from the Sharma–

Mittal quantum discord to the Heisenberg model.

3. System Model

In this section, we consider two-spins anisotropic XYZ model, with take into account the DM inter-

action. So, the Hamiltonian of the model has the following form [42]:

H = Jxσ
x
1σ

x
2 + Jyσ

y
1σ

y
2 + Jzσ

z
1σ

z
2 +D · (σ1 × σ2) , (6)

where Jl’s (l = x, y, z), �D and σl
k’s (l = x, y, z) are, respectively, the spin–spin interaction coupling and

the strength of DM interaction and Pauli matrices of Kth spin. In this work, we restrict our study to the

situation, where the Dzyaloshinski–Moriya interaction exists only along the z-direction, i.e., Dx = Dy = 0.

Then, we can rewrite Eq. (6) as follows:

H = Jxσ
x
1σ

x
2 + Jyσ

y
1σ

y
2 + Jzσ

z
1σ

z
2 +Dz (σ

x
1σ

y
2 − σy

1σ
x
2 ) . (7)

In computational basis {|00〉, |01〉, |10〉, |11〉}, Eq. (6) can be represented in the following matrix form:

H =

⎛⎜⎜⎜⎜⎝
Jz 0 0 Jz − Jy

0 −Jz Jx + Jy + 2iDz 0

0 Jx + Jy − 2iDz −Jz 0

Jz − Jy 0 0 Jz

⎞⎟⎟⎟⎟⎠ . (8)

The spectra of the Hamiltonian (6) are

E1,2 = ±Jx ∓ Jy + Jz, E3,4 = −Jz ± κ, (9)

with

κ =
√

(Jx + Jy)2 + 4D2
z . (10)

The eigenstates of (6) are defined as

|Φ1,2〉 = |00〉 ± |11〉√
2

, |Φ3,4〉 = |01〉 ± eiθ|10〉√
2

, (11)
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where

cos θ =
Jx + Jy√

(Jx + Jy)2 + 4D2
z

. (12)

The density operator of this model can be described as

ρ(T ) = Z−1e−βH = Z−1
4∑

i=1

e−βEi |Φi〉〈Φi|, (13)

where Z = Tr(e−βH) is the partition function of the system and β = 1/kBT , with kB being the Boltzmann

constant (kB = 1). Thus, the density matrix of the system reads

ρz(T ) =

⎛⎜⎜⎜⎜⎝
r 0 0 s

0 u v 0

0 v∗ u 0

s 0 0 r

⎞⎟⎟⎟⎟⎠ , (14)

with the elements

r =
e−Jz/T

Z
cosh

(
Jz − Jy

2

)
, u =

eJz/T

Z
cosh

(
κ

T

)
,

(15)

v =
eJz/T

Zκ

sinh
(
κ

T

)
(Jx + Jy + 2iDz) , s =

e−Jz/T

Z
sinh

(
Jz − Jy

2

)
.

The partition function (13) can be written as

Z = 2e−Jz/T cosh

(
Jz − Jy

2

)
+ 2eJz/T cosh

(
κ

T

)
. (16)

Next, exploiting to the local unitary transform v∗ −→ |v∗| = |v|, one can find that

ρz(T ) −→ ρ̃z(T ) =

⎛⎜⎜⎜⎜⎝
r 0 0 s

0 u |v| 0

0 |v∗| = |v| u 0

s 0 0 r

⎞⎟⎟⎟⎟⎠ , (17)

where |v∗| = |v| =
eJz/T

Z
sinh

(
κ

T

)
for the case of two-qubit, assuming the DM interaction in the z

direction Dz and the temperature T .

The eigenvalues of ρ in terms of α1, α2, and α3 are

λ0 =
1

4
(1− α1 − α2 − α3), λ1 =

1

4
(1− α1 + α2 + α3),

λ2 =
1

4
(1 + α1 − α2 + α3), λ3 =

1

4
(1 + α1 + α2 − α3),

(18)
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with

α1 =

e(2Jz)/T sinh
(
κ

T

)
+ sinh

[
1

2
(Jz − Jy)

]
e(2Jz)/T cosh

(
κ

T

)
+ cosh

[
1

2
(Jz − Jy)

] , (19)

α2 =

e(2Jz)/T sinh
(
κ

T

)
+ sinh

[
1

2
(Jy − Jz)

]
e(2Jz)/T cosh

(
κ

T

)
+ cosh

(
1

2
(Jz − Jy)

) , (20)

and

α3 =
2

e(2Jz)/T cosh
(
κ

T

)
sech

[
1

2
(Jz − Jy)

]
+ 1

− 1. (21)

Since ρ is a Hermitian matrix, all the eingenvalues are real. Also, ρ is positive semi-definite matrix;

therefore, λ2 ≥ 0. As Tr(ρ) = 1, we have λ0 + λ1 + λ2 + λ3 = 1. As λ0 ≥ 0, we have α1 + α2 + α3 ≤ 1.

In addition, λ0 + λ1 ≥ 0 indicates α1 ≤ 1 and λ2 + λ3 ≥ 0 indicates α1 ≥ −1. Combining, we obtain

−1 ≤ α1 ≤ 1. Similarly, −1 ≤ α2 ≤ 1 and −1 ≤ α3 ≤ 1.

In the following section, we take an alternative approach by directly demonstrating limit operations

on Dq,r(ρ) instead of relying on entropy. This reasoning serves to establish that the traditional concept of

quantum discord is essentially a result of the limit scenario within the framework of the Sharma–Mittal

quantum discord, our results agree with the expressions deduced in the following analysis.

• Sharma–Mittal quantum discord:

In this section, we discuss Dq,r(ρ) analytic expression and its relationship with DR
q (ρ) and DT

q (ρ) mea-

sures, as they emerge in the context of limiting cases. Additionally, we perform a comprehensive calcula-

tion of the quantum discord within the framework of Sharma–Mittal quantum discord and elucidate its

distinctive characteristics pertaining to our analyzed system.

Recall Eq. (5), upon reviewing the reduced density matrices of the subsystems, we can verify the

quantum discord, as proposed by the Sharma–Mittal entropy, H(a) and H(b) are given by ρa = ρb = I2/2,

which is a density matrix, which eigenvalues are equal to 1/2.

The Sharma–Mittal entropy value of I2 is now given by

Hq,r(ρa) = Hq,r(ρb) = Hq,r

(
I

2

)
=

21−r − 1

1− r
. (22)

We obtain the analytical expression of Hq,r(ρ
(0))

max
θ

[
Hq,r(ρ

(0))
]
= max

θ

[
Hq,r(ρ

(1))
]
=

1

1− r

⎡⎢⎣{(1 + α)q

2q
+

(1− α)q

2q

}1− r

1− q − 1

⎤⎥⎦ . (23)

After a straightforward calculation, we arrive at the Sharma–Mittal entropy; the analytical expression is

Hq,r(ρ) =
1

1− r

[
1

4
q(1−r)
(1−q)

{(1− α1 − α2 − α3)
q + (1− α1 + α2 + α3)

q

+ (1 + α1 − α2 + α3)
q + (1 + α1 + α2 − α3)

q} 1−r
1−q − 1

]
.

(24)
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By replacing Eqs. (22) and (23) in Eq. (5), we find the analytical expression for the Sharma–Mittal

quantum discord; it reads

Dq,r(ρ) =

[
(1− α)q

2q
+

(α+ 1)q

2q

] 1−r
1−q

− 1

1− r
+

21−r − 1

1− r
−Hq,r(ρ), (25)

where Hq,r(ρ) is given by Eq. (24) and α = max(|α1|, |α2|, |α3|), as well as q and r are two real numbers,

such that q > 0, q �= 1, r �= 1.

• Renyi quantum discord:

The Sharma–Mittal entropy is equivalent to the Renyi entropy for certain conditions.

If r → 1, in Eq. (2) we obtain

H(R)
q

(
I

2

)
=

1

1− q
log

(
1

2q
+

1

2q

)
= 1. (26)

Taking r → 1 in Eq. (23), we arrive at

max
θ

(Hq,r(ρ0)) = max
θ

(Hq,r(ρ1)) =
1

1− q
log

[(
1 + α

2

)q

+

(
1− α

2

)q]
. (27)

The analytical expression of H
(R)
q (ρ) reads

H(R)
q (ρ) =

1

1− q
log

(
1

4q
{(1− α1 − α2 − α3)

q + (1− α1 + α2 + α3)
q

+(1 + α1 − α2 + α3)
q + (1 + α1 + α2 − α3)

q}
)
. (28)

By replacing Eqs. (26) and (27) in Eq. (5), we obtain the analytical expression for the Renyi quantum

discord as follows:

DR
q (ρ) = 1 +

log

[(
1− α

2

)q

+

(
α+ 1

2

)q]
1− q

−H(R)
q (ρ), (29)

where H
(R)
q (ρ) is given by Eq. (28).

• Tsallis quantum discord:

The Sharma–Mittal entropy corresponds to the Tsallis entropy under specific conditions.

If r → q, in Eq. (3), we arrive at

H(T )
q

(
I

2

)
=

1

1− q

(
1

2q
+

1

2q
− 1

)
=

21−q − 1

1− q
. (30)

Assuming r → q in Eq. (23), we obtain

max
θ

[
H(T )

q (ρ(0))
]
= max

θ

[
H(T )

q (ρ(1))
]
=

1

(1− q)

[{
(1 + α)q

2q
+

(1− α)q

2q

}
− 1

]
. (31)
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The analytical expression of H
(T )
q (ρ) reads

H(T )
q (ρ) =

1

1− q

[
1

4q
{(1− α1 − α2 − α3)

q + (1− α1 + α2 + α3)
q

+(1 + α1 − α2 + α3)
q + (1 + α1 + α2 − α3)

q} − 1]. (32)

By replacing Eqs. (30) and (31) in Eq. (5), we obtain the analytical expression for the Tsallis quantum

discord as follows:

DT
q (ρ) =

[
(1− α)q

2q
+

(α+ 1)q

2q

]
− 1

1− q
+

21−q − 1

1− q
−H(T )

q (ρ), (33)

where H
(T )
q (ρ) is the Tsallis entropy given by (32).

In the next section, we move from the analytical results to the step of substantive discussions in the

Heisenberg model.

4. Results and Discussions

In this section, we examine the behavior of Sharma–Mittal quantum discord, Renyi quantum discord,

and Tsallis quantum discord as functions of both the DM interaction and T .

a) b) c)

Fig. 1. The variations in the Sharma–Mittal discord (a), Renyi discord (b), and Tsallis discord (c) in terms of T
for D = 2 (solid curves), D = 2.5 (dashed curves), and D = 3 (dotted curves); here, Jx = 0.5, Jy = 0.75, Jz = 0.25,
q = 2.05, and r = 0.2.

In Fig. 1, we illustrate our analysis into the impact of the DM interaction on quantum correlations

in a two-qubit Heisenberg XYZ model system at different values of temperature T . One can see that

Dq,r(ρ), DR
q (ρ), and DT

q (ρ) behave in the same way, with respect to the parameter D. The first increase

in the initial values depends on T , with D increasing to reach asymptotically the values 1 for the very

sufficient Sharma–Mittal quantum discord and Renyi quantum discord, and the value 0.4926 for the Tsallis

quantum discord, when D reaches a value very sufficient. Moreover, it is noticed that the influence of

temperature diminishes entirely for large D values. This observation emphasizes the crucial role played

by the antisymmetric contribution of spin–orbit coupling in the z-direction, as it enhances and sustains

the quantum correlations within the two-spin Heisenberg XYZ model. Additionally, this characteristic

renders the studied system more resilient against the decoherence phenomenon caused by fluctuations in

temperature effects.
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a) b) c)

Fig. 2. The variations in the Sharma–Mittal discord (a), Renyi discord (b), and Tsallis discord (c) in terms of
D for T = 0.5 (solid curves), T = 1 (dashed curves), and T = 1.5 (dotted curves); here, Jx = 0.5, Jy = 0.75,
Jz = 0.25, q = 2.05, and r = 0.2.

Next, we investigate the impact of the DM interaction, acting antisymmetrically, due to spin–orbit

coupling along the z axis DM, on quantum correlations under constant temperature conditions.

In Fig. 2, we observe that the Sharma–Mittal quantum discord, Renyi quantum discord, and Tsallis

quantum discord exhibit almost very similar behavior with respect to temperature T . They all reach their

maximum values as T approaches zero. The reason behind this behavior is that, at very low temperatures,

the bipartite system exists in a state of maximum entanglement, which is a pure and fundamental state.

However, as the temperature rises, thermal fluctuations start to influence the system, leading to an

asymptotic decay of all three quantifiers. Remarkably, the thermal characteristics of Dq,r(ρ), DR
q (ρ),

and DT
q (ρ) manifest a minimum quantum correlation, when the value of parameter D is relatively small.

Likewise, this characteristic completely disappears as the values of D increase significantly. Therefore,

higher values of D effectively eliminate the minimum for the three quantifiers.

Finally, our simulation results indicate that the Sharma–Mittal quantum discord is a faithful quanti-

fier, when compared to the others in our system, regardless of the values of T and D.

5. Concluding Remarks

We summarize the key points developed in this paper.

We studied quantum correlations in a two-qubit Heisenberg XYZ model in the presence of the

Dzyaloshinski–Moriya interaction. In our research, we used three quantifiers, namely, the Sharma–Mittal

quantum discord, Renyi quantum discord, and Tsallis quantum discord to assess quantum correlations.

We obtained analytic expresions for each of these quantifiers, specific to our bipartite system under

study. A comparative study was carried out to analyze the quantum correlations presented in the ex-

amined model. To sum up, our results demonstrated that the Dzyaloshinskii–Moriya DM interaction

enhances quantum correlations in the two-qubit Heisenberg XYZ model. Moreover, we found that the

Sharma–Mittal quantum discord proved to be a reliable and efficient quantifier to capture the maximum

information present in the system under study. This observation highlights the importance of the DM

interaction in enriching quantum correlations and highlights the crucial role of the Sharma–Mittal quan-

tum discord as a valuable tool to assess these correlations in this specific context. Thus, these discoveries

contribute to deepening our understanding of quantum physics and open up new perspectives for future

research in this field.
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