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Abstract

We investigate effects of a classical external field and the initial state of the field on the nonlinear
interaction of a Λ-type three-level atom with the two-mode field through the Raman type interaction.
Appropriate canonical transforms are performed for atomic states. The analytic solution to the model
is obtained, using the Schrödinger differential equation. The wave function is obtained under specific
initial conditions of the atom and field. The effect of a classical external field and the initial state of the
field on the population occupations, the squeezing phenomenon, and the atomic emission spectrum are
studied. The collapse–revival phenomena are affected by the presence of the classical field. Increasing
the activation of the role of the initial state of the field improves the phenomena of collapses and
revivals. The squeezing intervals decrease with increase in the classical field effect. The squeezing
intervals increase with decrease of the parameter of the initial state of the field. The maximum values
of the emission spectrum are improved after taking into account the classical field. In addition, the
peaks significantly decrease after reducing the influence of both the bandwidth of the filter and the
interaction time.

Keywords: finite pair coherent state, external classical field, squeezing phenomena, physical transient

spectrum.

1. Introduction

The interaction between the atom and the quantum field has been extensively studied, due to its

applications in a number of different fields, such as the lasing without inversion [1], laser cooling [2], and

electromagnetically-induced transparency [3, 4]. There are some models that describe such interaction,

the most important of which is the Jaynes–Cummings model (JCM) [5]. It has been experimentally

implemented and solved exactly in the rotating wave approximation (RWA) and has been subjected to
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many theoretical investigations [6–8]. There are many generalizations of this model, such as multilevel

atom [9–13], multi-photon transitions [14], and multi-mode field [15,16].

The effect of an external classical field (ECF) on some quantum properties, such as degree of the

entanglement, the squeezing phenomenon and the phenomenon of revivals and collapses (RCP) has been

studied in different models. The effect of the ECF on the squeezing phenomenon, the entanglement,

and RCP has been studied in the JCM [17]. The influence of damping and ECF on the JCM has been

discussed in [18]. Also, generating multipartite entanglement in N two-level atoms interacting with a

quantized field and external classical fields was realized [19]. The effect of ECF and a nonlinear medium

on the interaction between an electromagnetic field and a two-level atom has been studied [20]. The

influence of ECF on the squeezing phenomena and the geometric phase of the interaction of two two-

level atoms and N -level atom has been studied [21]. The effect of ECF and damping on the entropy

squeezing and the nonlocal correlation between a nonlinear quantum system and two-level atom has been

examined [22]. The analytical solution for a quantized cavity field interacting with a two-qubit system

in the presence of two types of external fields has been derived; also, the quantum coherence and the

entanglement have been discussed [23].

On the other hand, the physical transient spectrum received a lot of attention over recent years,

because it contains information on the atom–field interaction. The physical transient spectrum of a

three-level atom in ∨-configuration, where two upper levels are coupled by a classical field, has been

studied [24]. The effects of a broadband squeezed vacuum on three-level atoms at different configurations

have been investigated [25–27]. Also, the effect of the mean photon numbers and detuning parameter

on the emission and absorption spectra have been analyzed for a Λ-type three-level atom interacting

with a two-mode cavity field [28]. The effect of the photon multiplicities, detuning parameter, and

mean photon number on the emission spectrum have been studied for a multi-photon Ξ-type three-level

atom interacting with one-mode cavity field [29]. The analytical form of the emission spectrum has

been calculated, using the dressed state of the interaction of a three-level atom with a multi-photon

single-mode cavity field [30].

The aim of this paper is to study the effect of ECF on Λ-type three-level atom–field interaction, by

analyzing the atomic-level occupations and the squeezing phenomena and using the finite pair coherent

state. Also, we study the physical transient spectrum.

This paper is organized as follows.

In the next section, we introduce the formulation and analytical relation of the problem. In Sec. 3,

we study the atomic-level occupations. In Sec. 4, we investigate the squeezing phenomena. Then, the

physical transient spectrum is analyzed in Sec. 5. Finally, some concluding remarks are given in Sec. 6.

2. The Formulation of the Problem

In Fig. 1, we show the system Hamiltonian describing the interaction between a three-level atom in Λ-

configuration and two correlated modes in the presence of classical external field. There is no dissipative

processes in this system like the spontaneous emission, dephasing of transitions, etc. Assuming � = 1,

this Hamiltonian can be written as follows [31]:

Ĥ = Ĥ0 + Ĥ1 + Ĥ2, (1)
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where

Ĥ0 =
ω

2
(â†â− b̂†b̂) + ωe|e〉〈e|+ ωi|i〉〈i|+ ωg|g〉〈g|, (2)

Ĥ1 = iΩ(â†b̂+ âb̂†)(|e〉〈g| − |g〉〈e|) + iΩ(â†b̂+ âb̂†)(|e〉〈i| − |i〉〈e|), (3)

and

Ĥ2 = τ(|2〉〈3|+ |3〉〈2|). (4)

Fig. 1. A sketch of the three-level atom in the Λ-
configuration located inside a cavity field with an ex-
ternal classical field.

Also, in Eq. (1), ω represents the field frequency, and

ωβ with β ∈ {e, i, g} are the frequencies of the atomic

levels, with ωg < ωi < ωe; operators â and b̂ are the bo-

son operators for the field, satisfying the commutation

relations [â, b̂] = 0, [â, â†] = Î, and [b̂, b̂†] = Î. Then,

operators |l〉〈m|; l,m ∈ {e, i, g} satisfy the commuta-

tion relations [|l〉〈m||u〉〈o|] = |l〉〈o|δmu − |u〉〈m|δlo, Ω
represents the quantized field coupling parameter, and

τ is the ECF coupling parameter.

In order to solve Hamiltonian (1), we introduce the

following transform:⎛
⎜⎝
|e〉
|i〉
|g〉

⎞
⎟⎠ =

⎛
⎜⎝
1 0 0

0 cos(ϑ) sin(ϑ)

0 − sin(ϑ) cos(ϑ)

⎞
⎟⎠

⎛
⎜⎝
|1〉
|2〉
|3〉

⎞
⎟⎠ , (5)

where ϑ =
1

2
arctan

(
2τ

ωg − ωi

)
.

Using this transform and applying RWA to Hamiltonian (1), we obtain the transformed Hamiltonian

as follows:

Ĥtran = Ĥ1 + Ĥ2, (6)

where

Ĥ1 =
ω

2
(n̂a − n̂b) + ωe|1〉〈1|+ Ω̄i|2〉〈2|+ Ω̄g|3〉〈3|, (7)

Ĥ2 = iμ1(âb̂
†|1〉〈2| − â†b̂|2〉〈1|) + iμ2(âb̂

†|1〉〈3| − â†b̂|3〉〈1|), (8)

with

n̂a = â†â, n̂b = b̂†b̂, (9)

Ω̄i = ωi cos
2(ϑ) + ωg sin

2(ϑ)− τ sin(2ϑ), (10)

Ω̄g = ωg cos
2(ϑ) + ωi sin

2(ϑ) + τ sin(2ϑ), (11)

μ1 = Ω[cos(ϑ)− sin(ϑ)], (12)

μ2 = Ω[cos(ϑ) + sin(ϑ)]. (13)

Now, we need to find the exact solution of Hamiltonian (6); so we look for the interaction picture of the

Hamiltonian in the following form:

Ĥint = iμ1(âb̂
†eiΔ1t|1〉〈2| − â†b̂e−iΔ1t|2〉〈1|) + iμ2(âb̂

†e−iΔ2t|1〉〈3| − â†b̂eiΔ2t|3〉〈1|), (14)
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where the detuning parameters Δα; α = 1, 2 read

Δ1 = −ω − (Ω̄i − ωe), (15)

Δ2 = ω − (ωe − Ω̄g). (16)

The initial state |uAF(0)〉 of the atom–field system reads

|uAF(0)〉 = |uA(0)〉 ⊗ |uF (0)〉, (17)

where the initial state of the atom |uA(0)〉 = |1〉 is the upper-most state, the initial state of the field

|uF (0)〉 = |ξ, q〉, and the initial state |ξ, q〉 represents the finite pair coherent state; it is [32]

|ξ, q〉 = Nq

q∑
n=0

ξn

√
(q − n)!

q!n!
|q − n, n〉, (18)

with

Nq =

[
q∑

n=0

|ξ|2n (q − n)!

q!n!

]−1/2

, (19)

where q is a positive integer, and ξ may be a complex number.

The exact solution of (14) at t > 0 may be considered in the following form:

|u(t)〉 =
q∑

n=0

[A1(n, t)|1, q − n− 1, n+ 1〉+A2(n, t)|2, q − n, n〉+A3(n, t)|3, q − n, n〉], (20)

where Ai(n, t); i = 1, 2, 3 are the probability amplitudes, which satisfy
3∑

i=1
|Ai(n, t)|2 = 1. In view the

Schrödinger equation, we obtain the following system of differential equations:

i
d

dt
A1(n, t) = Π1e

iΔ1tA2(n, t) + Π2e
−iΔ2tA3(n, t), (21)

i
d

dt
A2(n, t) = −Π1e

−iΔ1tA1(n, t), (22)

i
d

dt
A3(n, t) = −Π2e

iΔ2tA1(n, t), (23)

where

Πj = iμj

√
n+ 1

√
q − n; j = 1, 2. (24)

If we assume A2(n, t) = eiεt in Eq. (21) and insert it in Eq. (23), we obtain the cubic equation for ε;

it reads

ε3 + ι1ε
2 + ι2ε+ ι3 = 0, (25)

where

ι1 = 2Δ1 +Δ2, (26)

ι2 = Δ2
1 +Δ1Δ2 +Π2

1 +Π2
2, (27)

ι3 = Π2
1(Δ1 +Δ2). (28)
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The solution of this equation is

εj = −1

3
ι1 +

2

3

√
ι21 − 3ι2 cos

[
κ +

2

3
(j − 1)π

]
; j = 1, 2, 3, (29)

where

κ =
1

3
cos−1

[−2ι31 + 9ι1ι2 − 27ι3

2(−3ι2 + ι21)
3/2

]
. (30)

When A2(n, t) is taken as a linear combination of eiεjt,

A2(n, t) = Π1

3∑
j=1

bje
iεjt, (31)

after inserting it in the differential equations (21)–(23), we arrive at Ai(n, t) as follows:

A1(n, t) =
3∑

j=1

bjεje
i(εj+Δ1)t, (32)

A2(n, t) = Π1

3∑
j=1

bje
iεjt, (33)

A3(n, t) =
−1

Π2

3∑
j=1

bj [εj(εj +Δ1) + Π2
1]e

i(εj+Δ1+Δ2)t. (34)

Coefficients bj ; j = 1, 2, 3 are determined from the initial condition |uAF(0)〉 (17), which amount to

A1(n, 0) = Nq

q∑
n=0

ξn
√

(q − n)!

q!n!
and A2(n, 0) = 0 = A3(n, 0).

Now, we can obtain the wave function of Hamiltonian (1) at t > 0 as follows:

|Φ(t)〉 =
q∑

n=0

[Y1(n, t)|e, q − n− 1, n+ 1〉+ Y2(n, t)|i, q − n, n〉+ Y3(n, t)|g, q − n, n〉], (35)

where

Y1(n, t) = A1(n, t), (36)

Y2(n, t) = A2(n, t) cos(ε) +A3(n, t) sin(ε), (37)

Y3(n, t) = −A2(n, t) sin(ε) +A3(n, t) cos(ε). (38)

Then, the reduced atomic density matrix ℘̂atom(t) reads

℘̂atom(t) = Trfield |Φ(t)〉〈Φ(t)|, ℘̂atom(t) =

⎛
⎜⎝
℘ee(t) ℘ei(t) ℘eg(t)

℘ie(t) ℘ii(t) ℘ig(t)

℘ge(t) ℘gi(t) ℘gg(t)

⎞
⎟⎠ , (39)
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where

℘ee(t) =

q∑
n=0

|Y1(n, t)|2, ℘ii(t) =

q∑
n=0

|Y2(n, t)|2, ℘gg(t) =

q∑
n=0

|Y3(n, t)|2, (40)

℘ei(t) =

q∑
n=0

Y1(n, t)Y
∗
2 (n+ 1, t) = ℘∗

ie(t), (41)

℘eg(t) =

q∑
n=0

Y1(n, t)Y
∗
3 (n+ 1, t) = ℘∗

ge(t), (42)

℘ig(t) =

q∑
n=0

Y2(n, t)Y
∗
3 (n, t) = ℘∗

gi(t). (43)

In what follows, we discuss some nonclassical properties of the system under study, such as the atomic

level occupations, squeezing phenomena, and the atomic emission spectrum.

3. The Atomic Level Occupations

In this section, we use the atomic level occupations ρee(t), ρii(t), and ρgg(t) to obtain the collapse and

revival intervals during the interaction period. Undoubtedly, the phenomena of collapses and revivals

have a great importance in quantum information. Previous studies also confirmed that determination of

periods of collapses and revivals depends on the Rabi frequency [33].

We investigate the effect of classical field on the atomic level occupations with two values for the

parameter ξ. First, the classical field effect (τ = 0) is neglected, and a small value for the parameter

ξ = 3 is considered. In Fig. 2 a, we confirm the congruence of the occupation ρgg(t) and ρii(t) and

show chaotic oscillations. The ρee(t) occupation fluctuates with a large amplitude and ranging between

0.3 and 1. In the three level occupations, the phenomenon of collapses and revivals does not occur

during the interaction period. The phenomenon of collapses and revivals is generated after increasing

the parameter ξ to 20. Moreover, the amplitudes of the oscillations decrease, and successive periods of

revival are formed; see Fig. 2 b. The three values of occupatrion values ρee(t), ρii(t), and ρgg(t) appear

different after taking into account the external field. The amplitudes of the oscillations improve and an

exchange of roles is generated for the ρii(t) and ρgg(t) levels; see Fig. 2 c. When ξ = 20 is seated, the

exchange of oscillations between the ρii(t) and ρgg(t) levels is more pronounced. The collapse periods in

the absence of the classical field is erased after adding the classical field to the interaction; see Fig. 1 d.

When the parameter ξ is small, the occupation numbers improve greatly with increase in the intensity

of the oscillations. The oscillations decrease, when the parameter ξ is taken large; see Figs. 2 e, f.

4. The Squeezing Phenomena

In this section, we study the squeezing phenomenon, which is considered as one of the nonclassical

phenomena in quantum optics, using the entropy and the variance squeezing.
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a) b)

c) d)

e) f)

Fig. 2. The time evolution of the atomic level occupations as a function of the scaled time t; here, q = 50, Ω = 0.2,
ωe = 1, ωi = 0.6, ωg = 0.4, ω = 0.5, and ξ = 3 (a, c, e) and ξ = 20 (b, d, f). Here, ρee(t) is shown by the red curve,
ρii(t), by the blue curve, and ρgg(t), by the green curve at τ = 0 (a, b), τ = 0.5 (c, d), and at τ = 1 (e, f).

4.1. The Entropy Squeezing

The entropic uncertainty relation for (d+1) complementary observables is described by the following

inequality [34–36]:

d+1∑
σ=1

H(L̂σ) ≥ d ln

[
1

2
(d+ 1)

]
. (44)

This inequality is achieved for a prime d-dimensional Hilbert space only.

20



Volume 45, Number 1, January, 2024 Journal of Russian Laser Research

The Shannon information entropy H(L̂σ) is defined as follows:

H(L̂σ) = −
d∑

α=1

Gα(L̂σ) lnGα(L̂σ); σ = x, y, z, (45)

where Gα(L̂σ) represents the probability distribution for n possible outcomes of measurements of the

operator L̂σ.

In the case of the three-level atom, Gα(L̂σ) are calculated as [35–37]

G1(L̂x) =
1

2
(℘ee(t)− 2Re [℘eg(t)] + ℘gg(t)), (46)

G2(L̂x) =
1

4
℘ee(t) +

1√
2
Re [℘ei(t)] +

1

2
℘ii(t) +

1

2
Re [℘eg(t)] +

1√
2
Re [℘ig(t)] +

1

4
℘gg(t), (47)

G3(L̂x) =
1

4
℘ee(t)− 1√

2
Re [℘ei(t)] +

1

2
℘ii(t) +

1

2
Re [℘eg(t)]− 1√

2
Re [℘ig(t)] +

1

4
℘gg(t). (48)

G1(L̂y) =
1

2
{℘ee(t) + ℘gg(t) + 2Re [℘eg(t)]}, (49)

G2(L̂y) =
1

4
℘ee(t) +

1

2
℘ii(t) +

1

4
℘gg(t) +

1√
2
Im [℘ei(t)]− 1

2
Re [℘eg(t)] +

1√
2
Im [℘ig(t)], (50)

G3(L̂y) =
1

4
℘ee(t) +

1

2
℘ii(t)− 1√

2
Im [℘ei(t)]− 1

2
Re [℘eg(t)]− 1√

2
Im [℘ig(t)] +

1

4
℘gg(t). (51)

G1(L̂z) = ℘ee(t), G2(L̂z) = ℘ii(t), G3(L̂z) = ℘gg(t). (52)

In view of inequality (44), H(L̂σ) satisfies the following relation:

H(L̂x) +H(L̂y) +H(L̂z) ≥ 3 ln 2. (53)

When δ(L̂σ) = exp[H(L̂β)], we obtain

δH(L̂x)δH(L̂y)δH(L̂z) ≥ 8. (54)

Then the fluctuation in L̂σ; σ = x, y represents squeezing, if H(L̂σ) satisfies the following condition:

E(L̂σ) =

⎡
⎣δH(L̂σ)− 2

√
2√

|δH(L̂z)|

⎤
⎦ < 0; σ = x, y. (55)

We devote this part to the study of the effect of classical field and the parameter ξ on the squeezing

intervals, using the conditions mentioned above in the level occupations. First, the classical field effect

(τ = 0) is neglected and a small value for the parameter ξ = 3 is considered. In Fig. 3 a, we show

two curves of E(L̂x) and E(L̂y), which randomly fluctuate and approach negative values in the most of

the interaction period. The squeezing is achieved in the quadrature E(L̂x), while it is not achieved in

the quadrature E(L̂y). The squeezing intervals slightly improve after increase in the parameter ξ to 20.

Moreover, the oscillation intensities of the curves increase, and the squeezing is not achieved in most of the

interaction period; see Fig. 3 b. The squeezing in both quadratures E(L̂x) and E(L̂y) is interchangeably

exhibited, when the parameter ξ is small; see Fig. 3 c. In Fig. 3, we show the regularity of the curves;

the squeezing intervals are erased after increasing ξ to 20; see Fig. 3 d. In Fig. 3 e, f, we show that the

squeezing intervals significantly decrease with increasing influence of the classical field, whether in the

case of small or large ξ.
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a) b)

c) d)

e) f)

Fig. 3. The time evolution of the entropy squeezing components E(L̂x) (red curves) and E(L̂y) (blue curves) as
functions of scaled time t. The parameters are the same as in Fig. 2.

4.2. Squeezing in the Atomic Variables

In this section, we study the squeezing phenomena of the atomic variables – the variance squeezing.

The uncertainty relation for any three-level atom reads [38]

� l̂x � l̂y � 1

2

∣∣∣〈l̂z〉∣∣∣ , (56)

where l̂x, l̂y, and l̂z satisfy the relation [l̂x, L̂y] = il̂z.
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The expectation values of l̂x, l̂y, and l̂z for the three-level atom are

〈l̂x〉 =
1√
2
(℘ei(t) + ℘ie(t) + ℘ig(t) + ℘gi(t)), (57)

〈l̂y〉 =
i√
2
(−℘ei(t) + ℘ie(t)− ℘ig(t) + ℘gi(t)), (58)

〈l̂z〉 = ℘ee(t)− ℘gg(t). (59)

In straightforward calculations, 〈l̂2i 〉; i = x, y, z can be easily performed, and hence � l̂x = 〈l̂2i 〉 − 〈l̂i〉 is

easily obtained. If � l̂β satisfies the condition

V (l̂β) =

(
� l̂β −

√
|〈l̂z〉|/2

)
< 0; β = x, y, (60)

then the fluctuations in the component l̂β are squeezed, where

� l̂β =
√

〈l̂2β〉 − 〈l̂β〉2, (61)

with

〈l̂2x〉 =
1

2
[℘ee(t) + ℘eg(t) + 2℘ii(t) + ℘ge(t) + ℘gg(t)], (62)

〈l̂2y〉 =
1

2
[℘ee(t)− ℘eg(t) + 2℘ii(t)− ℘ge(t) + ℘gg(t)], (63)

〈l̂2z〉 = [℘ee(t) + ℘gg(t)]. (64)

In view of Eq. (60), we can analyze the periods of squeezing, using the same conditions, as in the

previous section. For small values of parameter ξ and ignoring the classical field, the periods of squeezing

are alternately formed with respect to V (l̂x) and V (l̂y), respectively; see Fig. 4 a. In Fig. 4 b, the squeezing

greatly decreases in both V (l̂x) and V (l̂y) after increasing of ξ to 20. To activate the role of classical

field, we consider τ = 0.5. The periods of squeezing decrease in both V (l̂x) and V (l̂y). This result

confirms the one obtained from the entropy squeezing by comparison Fig. 3 c and Fig. 4 c. In Fig. 4 d, we

show that the squeezing periods completely disappear, when ξ increases, except for some small periods

at the beginning of the interaction. In Figs. 4 e, f, one observes confirmation of results previously shown

in entropy squeezing – the squeezing periods decrease and the intensity of oscillations increases with

increase in the influence of the classical field.

5. The Physical Transient Spectrum

Here, we derive the physical spectrum S(ν) of the radiation field, which is emitted by the atom in a

cavity, calculating the Fourier transform of the time-averaged dipole–dipole correlation function

〈(℘ei(t1) + ℘eg(t1))(℘ie(t2) + ℘ge(t2))〉. (65)

The physical spectrum S(ν) is given by [28,39]

S(ν) = Γ

∫ T

0
dt1

∫ T

0
dt2 exp[−(Γ− iν)(T − t1)− (Γ + iν)(T − t2)]

∗ 〈(℘ei(t1) + ℘eg(t1))(℘ie(t2) + ℘ge(t2))〉 , (66)
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a) b)

c) d)

e) f)

Fig. 4. The time evolution of the variance squeezing components V (l̂x) (red curves) and V (l̂y) (blue curves) as
functions of scaled time t. The parameters are same as in Fig. 2.

where Γ is the bandwidth of the filter, T represents the interaction time, and ν is the probe field frequency.

After straightforward calculations, we obtain the following expression for the physical emission spec-
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trum of the Λ-type three-level atom:

S(ν) = |Nq|2
q∑

n=0

ξ2n
(q − n)!

q!n!

{
Γ(

exp[−2ΓT ](−1 + exp[TX])(−1 + exp[TX∗])
|X|2

}

×
{
(q − n)(n+ 1)

(
Ω2

δ21
+

Ω2

δ22
+

2Ω2

δ1δ2

)
+

τ2

δ21
+

τ2

δ22

}

+Γ

q∑
n=0

{
1− exp[−T (X∗ − iδ1)]

(|X|2 + δ21)
+

exp[−T (2Γ + iδ1)(− exp[TX∗] + exp[iT δ1])]

|X2 + δ21

}

+Γ

q∑
n=0

{
1− exp[−T (X∗ − iδ2)]

(|X|2 + δ22)
+

exp[−T (2Γ + iδ2)(− exp[TX∗] + exp[iT δ2])]

|X|2 + δ22

}

+Γ
τ

δ1

{
q∑

n=0

[
exp[−TX](exp[−TX∗]− exp[−iT δ2])

|X|2 − iδ2X
− exp[−2ΓT ](−1 + exp[TX∗])

|X|2 + iδ2X∗

]

+
exp[−T (X∗ − iδ2)](−1 + exp[TX∗])

|X|2 + iδ2X∗ − exp[−TX∗]− exp[−iT δ2]

|X|2 − iδ2X

]}

+Γ
τ

δ2

{
q∑

n=0

[
exp[−TX](exp[−TX∗]− exp[−iδ1])

|X|2 − iδ1X
− exp[−2ΓT ](−1 + exp[TX∗])

|X|2 + iδ1X∗

+
exp[−T (X∗ − iδ1)](−1 + exp[TX∗])

|X|2 + iδ1X∗ − (exp[−TX∗]− exp[−iT δ1])

|X|2 − iδ1X∗

]}
, (67)

where X = (Γ− iν), X∗ = Γ+ iν, δ1 = ωe − ωi, δ2 = ωe − ωg, and Sj(tr) = exp[iδjtr]; j = 1, 2, r = 1, 2.

We analyze the effect of the bandwidth of the filter, the interaction time in addition to the classical

field on the emission spectrum, using the conditions T = 5, Γ = 0.1, and τ = 0. In Fig. 5 a, we show the

emission spectrum in the resonant case after switching of the classical field. A symmetrical main peak

is formed around the vertical axis, and small peaks are formed on both sides of the vertical axis. The

maximum value of the main peak at the vertical axis slightly increases after switching of the classical

field; see Fig. 5 b. For T = 0.5, Γ = 0.01, and τ = 0, the maximum value of the main peak at the vertical

axis significantly decreases compared with the previous case. The maximum values of the small peaks

increase on both sides of the vertical axis; see Fig. 5 c. After adding the classical field, the maximum

value of the peaks are improved, as obtained previously; see Fig. 5 d.

6. Conclusions

In this paper, we studied the effects of the initial state and the classical field on a system consisting

of a three-level atom interacting with a two-mode field. We transformed the atomic system to remove

the parts containing the classical field. The constants of motion of the visual system were obtained.

Therefore, the solution of the Schrödinger equation was obtained and returned to the wave function

that describes the original system. We studied the effects of the initial state and the classical field on a

system consisting of a three-level atom interacting with a two-mode field. Our system differs from the

one considered in [40], since we used the finite pair coherent state as an initial state of the field but in [40]

the field has been prepared in the entangled pair coherent states.
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a) b)

c) d)

Fig. 5. The atomic emission spectrum S(ν) as a function of ν with ωe = 1, ωt = 0.6, ω0 = 0.5, Ω = 0.2, q = 50,
and ξ = 3. Here, T = 5, Γ = 0.1, and τ = 0 (a), T = 5, Γ = 0.1, and τ = 1 (b), T = 0.5, Γ = 0.01, and τ = 0 (c),
and T = 0.5, Γ = 0.01, and τ = 1 (d).

We investigated the atomic level occupations, entropy squeezing, variance squeezing, and atomic

emission spectrum. Our results showed that the initial state of the field was strongly influenced by

the level occupations. The occupation oscillates chaotically, when the parameter ξ is small, while the

oscillations are regular, when the parameter ξ is large. The occupations of the second and third levels

were influenced by the classical field, as they exchanged the loss and gain of energy between them, this

phenomenon was also observed in [40]. The squeezing intervals were improved, when the parameter ξ

was taken small, while the squeezing intervals decreased, when the parameter ξ was taken large. When

the classical field was included, the squeezing intervals were almost erased. For the emission spectrum,

a large peak was formed on the vertical axis; moreover, small peaks were formed on either side of the

vertical axis. The maximum value increased after adding the classical external field. The maximum

values of the peaks decreased after decreasing the influence of both the bandwidth of the filter Γ and the

interaction time T .
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