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Abstract

We determine the evolving probability representations of several important nonclassical states of the
inverted oscillator by applying the method of integrals of motion for this system. The considered
nonclassical states initially prepared in the potential of the harmonic oscillator are even and odd
Schrödinger cat states, squeezed coherent states, and lattice superpositions of coherent states. The
latter superpositions can approximate several nonclassical states with high precision, hence their pro-
bability representation can describe various nonclassical states of the inverted oscillators. Explicit
results are shown for the approximation of number states, photon number superpositions, and ampli-
tude squeezed states by determining the parameters of the superposition appearing in the probability

Keywords: nonclassical states, inverted oscillator, probability representation, symplectic tomogram.

1. Introduction

Recently, the probability representation of quantum mechanics was constructed, where the system

states were described by conventional nonnegative probability distributions defined in the phase space [1–

5]. This representation can be derived from the density operator, and it contains all information on the

quantum system. In the probability representation, all quantum effects can be effectively explained

applying the standard properties of the conventional probability theory. The probability representation

is connected with other known quasiprobability representations, such as the Wigner function [6], the

Husimi Q-function [7, 8], and the Glauber–Sudarshan P -function [9, 10] by integral transforms [11]. The

idea of probability representation has been extended to discrete spin variables [12–21]. General formalism

describing all invertible maps connecting operators acting in a Hilbert space and functions of some

variables has also been developed [22].

Probability representations known as symplectic tomograms have been derived for several important

states of the harmonic oscillator, including coherent states, Fock states [5], thermal states [23], and

Schrödinger cat states [24] originally introduced as even and odd coherent states [25]. The evolution

of these initial tomograms has been also derived, using the method of integrals of motion for systems,

where these integrals of motion are linear in the position and momentum operators, e.g., for free particle

motion [3, 5, 23].
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The inverted harmonic oscillator, where the potential energy corresponds to imaginary frequencies of

the oscillator, was recently considered in relation to cosmological problems [26–28]. Some other problems

of the inverted oscillator were also discussed in Refs. [29–32]. Tomograms of evolving coherent and Fock

states of the inverted oscillator, initially prepared in the potential of the usual harmonic oscillator, were

derived in Ref. [33]. The evolution of even and odd Schrödinger cat states of the two-mode inverted

oscillator has also been obtained in the center-of-mass tomographic probability description [34].

In this paper, we consider the evolution of even and odd Schrödinger cat states, squeezed coherent

states, and lattice superpositions of coherent states of the inverted oscillator in the probability repre-

sentation. We determine the evolving symplectic tomograms of these nonclassical states of the inverted

oscillator, applying the method developed in Refs. [23,33] for obtaining the evolving probability distribu-

tion from the initial probability distribution, that is, from the tomograms of the considered nonclassical

states initially prepared in the potential of the harmonic oscillator. The lattice superpositions of cohe-

rent states can approximate several nonclassical states with high precision, hence their tomograms can

describe various nonclassical states of the inverted oscillators. We show examples for the approxima-

tion of number states, photon number superpositions, and amplitude squeezed states by determining the

parameters of the superposition.

This paper is organized as follows.

In Sec. 2, we review the construction of probability representation of quantum states. In Sec. 3, we

present our results on the evolution of symplectic tomograms of the considered nonclassical states of the

inverted oscillator. Finally, the results obtained are discussed in Sec. 4.

2. Probability Representation of Quantum States

Any function representing quantum states in the phase space can be derived, using the general method

introduced in Ref. [22]. In this formalism, all invertible maps, connecting operators acting in the Hilbert

space H, and functions of some variables can be described by two sets of operators called dequantizers

Û(x̄) and quantizers D̂(x̄). The vector x̄ = (x1, x2, . . . , xn) labels the particular operators in the set.

The parameters xi can be either continuous or discrete ones. One can construct a function fA(x̄), called

symbol of the operator Â, using the definition

fA(x̄) = Tr(ÂÛ(x̄)). (1)

The operator Â can be expressed in terms of symbol of the operator as

Â =

∫
fA(x̄)D̂(x̄) dx̄, (2)

in the case of continuous parameters xi. We note that, in the case of discrete variables xi, the integral

in this equation should be replaced by a corresponding sum. All these expressions are valid for density

operators ρ̂.

According to this formalism, the density operator ρ̂ can be mapped onto the function w(X|μ, ν),
called symplectic tomogram, by the following expression:

w(X|μ, ν) = Tr
[
ρ̂ δ
(
X1̂− μq̂ − νp̂

)]
, (3)

2
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with q̂ and p̂ being the position and momentum operators, respectively. Here, the dequantizer operator

reads Û(X,μ, ν) = δ
(
X1̂− μq̂ − νp̂

)
. The function w(X|μ, ν) is a nonnegative conditional probability

distribution function of random position X satisfying the normalization condition∫
w(X|μ, ν) dX = 1. (4)

The conditions are labeled by parameters μ and ν determining the reference frames, where the position

X is measured (i.e., the position X is determined as X = μq + νp in the reference frame in the phase

space).

The inverse transform reads

ρ̂ =
1

2π

∫
w(X|μ, ν) exp [i (X1̂− μq̂ − νp̂

)]
dX dμ dν. (5)

Hence, the quantizer operator is D̂(X,μ, ν) =
1

2π
exp
[
i(X1̂− μq̂ − νp̂)

]
.

For pure states, ρ̂ = |ψ〉〈ψ|, Eq. (3) can be converted into the expression

w(X|μ, ν) = 1

2π|ν|
∣∣∣∣
∫

ψ(y) exp

(
iμ

2ν
y2 − iX

ν
y

)
dy

∣∣∣∣
2

, (6)

where ψ(y) is the wave function of the state.

Equation (3) is actually the quantum version of the Radon transform [35] of the probability density

of two random variables f(q, p) that can be written as

wcl(X|μ, ν) =
∫

f(q, p)δ(X − μq − νp) dq dp. (7)

The inverse Radon transform reads

f(q, p) =
1

4π2

∫
wcl(X|μ, ν)ei(X−μq−νp) dX dμ dν. (8)

The relations (7) and (8) provide the invertible map of the probability density f(q, p) onto the conditional

probability density wcl(X|μ, ν) of one random position X, measured in a reference frame defined by the

parameters μ and ν, i.e., onto the tomogram describing the classical state. The quantum tomogram

given by (3) complies with the Heisenberg uncertainty relation, while the classical tomogram violates it.

In view of this fact, the classical and quantum Radon transforms enable the derivation of probability

distributions with properties corresponding to classical and quantum properties of the state, respectively.

We note that for a wave function, which is a normalized superposition of normalized wave functions,

i.e., ψ(y) =
∑

k ckψk(y), one has a probability distribution wψ(X|μ, ν), which can be expressed as a

superposition of the scalar products 〈ψk|Û(X,μ, ν)|ψk′〉; see Eq. (3). In this case, the application of

Eq. (6) provides a tomogram wψ(X|μ, ν) that can never be obtained for classical systems, as it describes

quantum superposition. We also note that for the extension of this theory to multi-mode oscillators,

entangled probability distributions can be introduced, which correspond to the description of entangled

quantum states [34]. Such distributions have not been discussed in the classical probability theory.

3
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The Wigner function, which is a quasiprobability distribution function in the phase space, is expressed

in terms of the wave function as follows (� = 1):

W (q, p) =
1

2π

∫
ψ(q + u/2)ψ∗(q − u/2) exp(−ipu) du. (9)

In the general case, which includes mixed states, the Wigner function can be derived from the density

matrix as

W (q, p) =
1

2π

∫ ∞

−∞
〈q − u/2|ρ̂|q + u/2〉eipu du, (10)

where 〈y||ψ〉 = ψ(y). The Wigner function can be obtained from the symplectic tomogram as

W (q, p) =
1

2π

∫
w(X|μ, ν)ei(X−μq−νp) dX dμ dν. (11)

The expression of the symplectic tomogram in terms of the Wigner function reads

w(X|μ, ν) = 1

2π

∫
W (q, p)δ(X − μq − νp) dq dp. (12)

We note that, for μ = cos(θ) and ν = sin(θ), the symplectic tomogram yields the optical tomogram

w(X|θ). This tomogram of photon states is measured in the experiments in quantum optics [36], and it

is used to reconstruct the Wigner function [37–39].

In view of the previous expressions, the symplectic tomogram and the Wigner function contain all

information on the density operator, that is, they completely describe the quantum state. Recall that

symplectic tomograms are always nonnegative functions, hence they are usual probability distributions.

In contrast, Wigner function can and normally does take on negative values for certain states, and this

property is a usual indicator of quantum interference.

Finally, let us consider the time evolution of symplectic tomograms. The density operator ρ̂(t) of the

system described with the Hamiltonian Ĥ evolves as

ρ̂(t) = û(t)ρ̂(0)û†(t), (13)

where û(t) = exp(−itĤ) is the time evolution operator. The tomogram w(X|μ, ν, t), which corresponds

to the density operator ρ̂(t), reads

w(X|μ, ν, t) = Tr(ρ̂(t)δ(X1̂− μq̂ − νp̂)). (14)

Using the properties of the trace of product of operators, we obtain

w(X|μ, ν, t) = Tr(ρ̂(0)δ(X1̂− μq̂H(t)− νp̂H(t))) = w0(X|μH(t), νH(t)), (15)

where q̂H(t) and p̂H(t) are the position and momentum operators in the Heisenberg representation, that

is,

q̂H(t) = û†(t)q̂û(t), p̂H(t) = û†(t)p̂û(t). (16)

The Hamiltonian of the inverted oscillator, assuming m = 1, ω = 1, and � = 1, reads

Ĥ =
p̂2

2
− q̂2

2
. (17)
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For this system, the operators q̂H(t) and p̂H(t) can be obtained as

q̂H(t) = q̂ cosh t+ p̂ sinh t, (18)

p̂H(t) = q̂ sinh t+ p̂ cosh t. (19)

Using these expressions, the argument of the delta function in Eq. (15) can be written in the form

X1̂− μH(t)q̂ − νH(t)p̂ = X1̂− μq̂H(t)− νp̂H(t), (20)

where

μH(t) = μ cosh t+ ν sinh t, (21)

νH(t) = μ sinh t+ ν cosh t. (22)

In this end, the symplectic tomogram w(X|μ, ν, t) for the inverted oscillator can be obtained by substi-

tuting Eqs. (21) and (22) into Eq. (15).

3. Results

In this section, we derive the symplectic tomograms of evolving nonclassical states of the inverted

oscillator initially prepared in the potential of the harmonic oscillator. The considered nonclassical states

are Schrödinger cat states, squeezed coherent states, and lattice superpositions of coherent states. These

latter superpositions can approximate several nonclassical states with high precision. We show examples

for the approximation of number states, photon number superpositions, and amplitude squeezed states.

Even and odd Schrödinger’s cat states are superpositions of two coherent states defined as

|ψα,±〉 = C±(|α, t〉 ± |−α, t〉), (23)

where

C± =
1√

2
(
1± e−2|α|2

) . (24)

Here, the positive sign refers to even cat states, while the negative sign corresponds to odd cat states.

These states are frequently referred to as even and odd coherent states. The wave functions of these

states read

ψα,±(x) =
1√

2
√
π[exp(2Re(α)2)± exp(−2 Im(α)2])

[
exp

(√
2αx− x2

2

)
± exp

(
−
√
2αx− x2

2

)]
.

(25)

Substitution of the wave function (25) into Eq. (6) leads to the symplectic tomogram

wα,±(X|μ, ν) =
1√

σ
√
πN2±(α)

exp

[
−X2 −X

2

σ

]{
exp

[
2XX

σ

]
+ exp

[−2XX

σ

]

±2 cos

[
23/2X(μ Im(α)− ν Re(α))

σ

]}
, (26)

5



Journal of Russian Laser Research Volume 45, Number 1, January, 2024

where

σ = μ2 + ν2, (27)

N2
±(α) = 2

[
1± exp(−2 (Re (α)2 + Im (α)2))

]
, (28)

and the mean value of the random variable X reads

X =
√
2(μRe(α) + ν Im(α)). (29)

Applying Eq. (15) and substituting Eqs. (21) and (22), we obtain the evolution of symplectic tomogram

for the inverted oscillator as follows:

wα,±(X|μ, ν, t) = 1√
σ
√
πN2±(α)

exp

[
−X2 − 2 [(Re (α)ν + Im (α)μ) sinh t+ (Re (α)μ+ Im (α)ν) cosh t]2

σ

]

×
{
exp

[
23/2X [Re (α) (ν sinh t+ μ cosh t) + Im(α) (ν cosh t+ μ sinh t)]

σ

]

+ exp

[
−23/2X [Re (α) (ν sinh t+ μ cosh t) + Im (α) (ν cosh t+ μ sinh t)]

σ

]

± 2 cos

[
23/2X [Im (α) (ν sinh t+ μ cosh t) + Re (α) (ν cosh t+ μ sinh t)]

σ

]}
, (30)

where

σ = (μ2 + ν2) cosh(2t) + 2μν sinh(2t), (31)

N2
±(α) = 2

{
1± exp[−2 (Re(α)2 + Im (α)2)]

}
. (32)

Squeezed coherent states can be obtained by applying the displacement and squeezing operators onto

the vacuum state, that is,

|ζ, α〉 = D̂(α)Ŝ(ζ)|0〉. (33)

The displacement and squeezing operators are defined as

D̂(α) = exp(αâ† − α∗â), Ŝ(ζ) = exp

[
1

2
(ζ∗â2 − ζ(â†)2)

]
, (34)

where ζ = reiφ, and r is the squeezing parameter. The wave function of the state |ζ, α〉 reads [40]

ψξ,α(x) =

(
1

π

)1/4 1√
|cosh r − eiφ sinh r|

√
cosh r − e−iφ sinh r√
|cosh r − e−iφ sinh r|

× exp [−iRe(α) Im(α)] exp
[
i
√
2 Im(α)x

]
× exp

[
− cosh r + eiφ sinh r

2(cosh r − eiφ sinh r)
(x−

√
2Re(α))2

]
. (35)

6
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Again, by substituting the wave function (35) into Eq. (6), we can obtain symplectic tomogram

wξ,α(X|μ, ν) = 1

2
√
π

1√
sinh(2r) [(ν2 − μ2) cosφ− 2μν sinφ] + cosh(2r)(ν2 + μ2)

× exp

{
−(

√
2 Im(α)ν +

√
2Re(α)μ−X)2

sinh(2r) [(ν2 − μ2) cos(φ)− 2μν sin(φ)] + cosh(2r)(ν2 + μ2)

}
. (36)

Then, the evolution of symplectic tomogram for the inverted oscillator can be obtained by substituting

Eqs. (21) and (22); it reads

wξ,α(X|μ, ν, t) = 1

2
√
π

{
cosh(2r)

[
cosh(2t)(ν2 + μ2) + 2 sinh(2t)μν

]
+sinh(2r)

[
(ν2 − μ2) cosφ− (sinh(2t)(ν2 + μ2) + 2 cosh(2t)μν

)
sinφ

]}−1/2

× exp
[
−(

√
2 Im(α)(μ sinh t+ ν cosh t) +

√
2Re(α)(μ cosh t+ ν sinh t)−X)2

× (cosh(2r) [cosh(2t)(ν2 + μ2) + 2 sinh(2t)μν
]

+sinh(2r)
{
(ν2 − μ2) cosφ− [sinh(2t)(ν2 + μ2) + 2 cosh(2t)μν

]
sinφ

})−1
]
. (37)

Finally, let us consider the superposition of nine coherent states

∣∣∣ψlattice
9

〉
=

1∑
l=−1

1∑
k=−1

ck,l|l · d+ k · id〉 (38)

on an equidistant lattice centered around the origin in the phase space. In this equation, d denotes

the distance between adjacent elements of the lattice, and ck,l are complex coefficients. Note that the

coefficients ck,l are chosen so that the state
∣∣ψlattice

9

〉
is normalized. The corresponding wave function can

be written as

ψlattice
9 (x) =

1∑
l=−1

1∑
k=−1

ck,l
1

π1/4
exp

[
−d2(l2 + ikl)− x2

2
+

√
2(l · d+ k · id)x

]
. (39)

Then, by substituting the wave function (39) into Eq. (6), the resulting formula gives

wlattice
9 (X|μ, ν) = 1√

π
√

ν2 + μ2

×
∣∣∣∣∣∑1

l=−1

∑1
k=−1 ck,l exp[−d2(l2 + ikl)] exp

(
−i(

√
2(−ild+ kd)−X/ν)2

2(μ/ν + i)

)∣∣∣∣∣
2

, (40)

7
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or, by calculating the absolute square in the formula, we arrive at

wlattice
9 (X|μ, ν) = 1√

π
√

ν2 + μ2
×

⎛
⎜⎜⎝
⎧⎪⎪⎨
⎪⎪⎩

1∑
l=−1

1∑
k=−1

e
−
[√

2d(kν + lμ)−X
]2

2(ν2 + μ2)

×
[
Re (ck,l) cos

(
2d2ν(kν + lμ)(lν − kμ) + 23/2Xdν(kμ− lν)−X2μ

2ν(ν2 + μ2)

)

−Im (ck,l) sin

(
2d2ν(kν + lμ)(lν − kμ) + 23/2Xdν(kμ− lν)−X2μ

2ν(ν2 + μ2)

)]}2

+

⎧⎪⎪⎨
⎪⎪⎩

1∑
l=−1

1∑
k=−1

e
−
[√

2d(kν + lμ)−X
]2

2(ν2 + μ2)

×
[
Re (ck,l) sin

(
2d2ν(kν + lμ)(lν − kμ) + 23/2Xdν(kμ− lν)−X2μ

2ν(ν2 + μ2)

)

+Im (ck,l) cos

(
2d2ν(kν + lμ)(lν − kμ) + 23/2Xdν(kμ− lν)−X2μ

2ν(ν2 + μ2)

)]}2
⎞
⎠ . (41)

The evolution of symplectic tomogram for the inverted oscillator can be obtained, similarly to the previous

cases, by substituting Eqs. (21) and (22); that leads to

wlattice
9 (X|μ, ν, t) = 1√

π
√
σ
×

⎛
⎜⎜⎝
⎧⎪⎪⎨
⎪⎪⎩

1∑
l=−1

1∑
k=−1

e
−
{√

2d[(kμ+ lν) sinh(t) + (kν + lμ) cosh(t)]−X
}2

2σ

×
[
Re (ck,l) cos

(
d2A+

√
2XdC −X2(sinh(t)ν + cosh(t)μ)

B

)

−Im (ck,l) sin

(
d2A+

√
2XdC −X2(sinh(t)ν + cosh(t)μ)

B

)]}2

+

⎧⎪⎨
⎪⎩

1∑
l=−1

1∑
k=−1

e
−
{√

2d[(kμ+ lν) sinh(t) + (kν + lμ) cosh(t)]−X
}

2σ

×
[
Re (ck,l) sin

(
d2A+

√
2XdC −X2(sinh(t)ν + cosh(t)μ)

B

)

+Im (ck,l) cos

(
d2A+

√
2XdC −X2(sinh(t)ν + cosh(t)μ)

B

)]}2
⎞
⎠ , (42)

8
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where

A =
1

2

[
sinh(3t)(3μ2 + ν2)ν(l2 − k2) + cosh(3t)(3ν2 + μ2)μ(l2 − k2)

+ sinh(t)[(l2 − k2)ν + 4klμ](ν2 − μ2) + cosh(t)[(l2 − k2)μ+ 4klν](ν2 − μ2)
]
, (43)

B =cosh(3t)ν(3μ2 + ν2) + sinh(3t)μ(3ν2 + μ2) + [cosh(t)ν + sinh(t)μ](ν2 − μ2), (44)

C =[k sinh(2t) + l cosh(2t)](ν2 + μ2) + l(ν2 − μ2) + 2[l sinh(2t) + k cosh(2t)]μν, (45)

σ =cosh(2t)(μ2 + ν2) + 2 sinh(2t)μν. (46)

As it was theoretically shown in Ref. [41], superpositions of coherent states, such as the one in Eq. (38),

can be effectively used to approximate various quantum states of the harmonic oscillator, by determining

the optimum distance d and coefficients ckl of the superposition. The accuracy of the approximation can

be characterized by the misfit parameter

ε = 1−
∣∣∣〈ψlattice

9

∣∣∣|Ψ〉
∣∣∣2H, (47)

where the quantity
∣∣〈ψlattice

9

∣∣|Ψ〉∣∣2 is known as the fidelity between the target quantum state |Ψ〉 and the

approximating coherent-state superposition
∣∣ψlattice

9

〉
. Using the misfit parameter as the objective function

in a minimizing problem, one can determine the optimum values of d and ckl. As it is a non-convex

optimization problem of one real and nine complex parameters, an optimization algorithm supporting

such problems has to be applied. In our calculations, we use the optimization method – the genetic

algorithm of [42]. Note that the algorithm is stochastic and, as such, it has an inherent uncertainty. This

can be suppressed by assuming high population sizes, choosing a high maximum number of iterations,

and considering that the algorithm finds local minima, by repeating the optimization various times.

Table 1. Misfits and Optimum Parameters of the Approximations of Nonclassical States on a Lattice

with 9 Coherent States. The Approximated States (Columns) Are Number State |4〉, Number State

Superpositions |ψ024〉 and |ψ0123〉, and Amplitude Squeezed State |ψAS(1, 4, 2)〉. The Rows Show the

Minimum Misfit ε, the Optimum Distances dopt, and Complex Coefficients ckl of the Approximation.

|4〉 |ψ024〉 |ψ0123〉 |ψAS(1, 4, 2)〉
dopt 1.375 0.703 0.544 0.838

c−1,−1 0.111 + 0.088i 0.606− 0.708i −0.370− 0.465i 0.066− 0.094i

c−1,0 −0.687− 0.550i −0.219 + 0.107i −0.217 + 0.160i 0.121 + 0.230i

c−1,1 0.111 + 0.088i 0.600− 0.769i 0.723− 0.489i −0.073− 0.632i

c0,−1 −0.687− 0.550i −0.888 + 0.923i 0.011 + 0.378i −0.036 + 0.039i

c0,0 1.000 + 0.801i −0.316 + 0.508i 0.037− 0.366i −0.467− 0.671i

c0,1 −0.687− 0.550i −0.741 + 0.854i −0.612− 0.753i 0.893 + 0.999i

c1,−1 0.111 + 0.088i 0.576− 0.700i −0.616 + 0.097i −0.116 + 0.094i

c1,0 −0.687− 0.550i −0.150 + 0.252i 0.414 + 0.313i 0.205 + 0.215i

c1,1 0.111 + 0.088i 0.674− 0.683i 0.148 + 0.891i −0.616− 0.122i

ε 1.321 · 10−4 1.244 · 10−4 4.983 · 10−5 5.436 · 10−4

9
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a) b)

c) d)

Fig. 1. Wigner functions of the superpositions of 9 coherent states on a 3× 3 lattice in the phase space, approxi-
mating four nonclassical states; here, the number state |4〉 (a), the number state superposition |ψ024〉 (b), the
number state superposition |ψ0123〉 (c), and the amplitude squeezed state |ψAS(1, 4, 2)〉 (d).

Next, we present the superpositions of 9 coherent states on a 3 × 3 lattice in the phase space, ap-

proximating four nonclassical states. The considered nonclassical states are the number state |4〉 (a),

the number state superpositions |ψ024〉 = 1√
3
(|0〉 + |2〉 + |4〉) (b), |ψ0123〉 = 1

2
(|0〉 + |1〉 + |2〉 + |3〉) (c),

and the amplitude squeezed state |ψAS(1, 4, 2)〉 (d). The wave functions of the number state and the

superpositions of the number states are

ψ4(x) =
1

4
√√

π4!
exp(−x2/2)H4(x), (48)

ψ024(x) =
1√
3

[
2∑

k=0

1

2k
√√

π(2k)!
exp(−x2/2)H2k(x)

]
, (49)

ψ0123 =
1

2

[
3∑

n=0

1√
2n

√
πn!

exp(−x2/2)Hn(x)

]
. (50)
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Amplitude squeezed states read

|ψAS(u, δ, R)〉 = N
π∫

−π

exp(−1

2
u2φ2 − iδφ)

∣∣∣Reiφ
〉
dφ, (51)

being defined by Gaussian continuous coherent-state superpositions in the phase space, where N is a

normalization constant. These states tend to the coherent state R in the limit u → ∞ and yield the

photon number state δ, when δ is a nonnegative integer in the limit u → 0, while at δ = R2, the

mean values of the photon number for these limiting states are equal. To analytically calculate the

wave function of these states is nontrivial, and explicit wave function is not known in the literature.

Consequently, the explicit exact symplectic tomogram deduced from Eq. (6) cannot be determined;

therefore, the approximate tomogram presented in Eq. (41) becomes useful.

First, using the methods described above, we determine the parameters of the coherent state super-

positions of 9 coherent states on a 3 × 3 lattice in the phase space by approximating these states. The

results are presented in Table 1, where the optimum parameters d and ckl of the approximations are shown

along with the minimum misfits ε. In Fig. 1, we show the Wigner functions of the four approximating

superpositions. The Wigner functions are calculated by substituting the approximating wave function

(39) into Eq. (9). Also, we checked that the same result could be obtained by inserting the approximating

tomogram (40) into Eq. (11). In addition, we calculated the Wigner functions of the target states and

found that the difference between the Wigner functions of the target states and the approximating states

are smaller than 10−3 for all the points in the phase space. Hence, generic symplectic tomogram defined

in Eq. (41) can be used to describe several nonclassical states.

4. Discussion

We determined the evolving symplectic tomograms of several important nonclassical states of the

inverted oscillator, by applying the method of integrals of motion developed in Ref. [23,33] for this system.

We considered even and odd Schrödinger cat states, squeezed coherent states, and lattice superpositions

of coherent states initially prepared in the potential of harmonic oscillator. In the case of the inverted

oscillator, the position q̂H(t) and momentum p̂H(t) operators in the Heisenberg representation are given

as the integrals of motion, and they are linear in the position and momentum operators in the Schrödinger

picture. Hence, evolving symplectic tomograms of the inverted oscillator can be found by a corresponding

time-dependent transformation of the parameters of the initial tomograms. The significance of the lattice

superpositions of coherent states is that they can approximate several nonclassical states with high

precision. We note that, in the case of multi-mode oscillators, superpositions of states can be entangled.

Tomograms of entangled states are entangled probability distributions [34]; they have not been studied

in the classical probability theory, and their properties can be studied, in view of the approach developed

above. Using lattice superpositions, we provided explicit results for the approximation of number states,

photon number superpositions, and amplitude squeezed states, by determining the parameters of the

superpositions also appearing in the approximating probability representation. Also, we calculated the

Wigner functions of the considered target states and found that the difference between the Wigner

functions of the target states and the approximating states are negligible for all the points in the phase

space. Hence, the lattice superpositions of coherent states and their probability representation can be

effectively used for describing various nonclassical states of the inverted oscillators.
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