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Abstract

LiDAR is one of the main sensors for 3D object detection in autonomous driving. LiDAR has the
advantages of high precision and high resolution, but as the distance increases, the points it acquires
become sparse, resulting in uneven sampling points and hindering the feature extraction of discrete
objects. Current 3D object detection methods using LiDAR ignore the sparse features of the original
LiDAR point cloud, resulting in low classification accuracy over small object detection, hindering the
development of autonomous driving technology. To address this problem, we propose point cloud
Sparse Detection Network (PCSD), an end-to-end two-stage 3D object detection framework. First,
PCSD uses a data augmentation algorithm to preprocess the KITTI dataset, then uses voxel point
centroids to locate voxel features, and then uses a point sparsity-aware RoI grid pooling module to
aggregate local voxel features. Finally, we improve the confidence of the final bounding box by using
voxel features with the original point cloud sparse features. Experimental evaluation on the challenging
KITTI object detection benchmark shows significant improvements, especially in pedestrian and cyclist
classification accuracy improved by 13.22% and 9.33%, respectively, demonstrating the feasibility and
applicability of our work.
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1. Introduction

LiDAR for 3D object detection has become one of the most popular sensors, 3D object detection,

and the task of localizing and classifying objects in LiDAR point cloud. However, the point cloud data

obtained by LiDAR is proportional to the distance, and the LiDAR point cloud data of the complete

object cannot be scanned due to the occlusion of the object. Therefore, for objects closer to the LiDAR,

the scanned point cloud data is denser, while for objects farther away from the LiDAR, the scanned point

cloud data is sparser.

Voxel-based methods rely on the quantitative representation of LiDAR point cloud and ignore the

sparsity of point cloud when processing LiDAR point cloud data. Other methods employ farthest point

sampling (FPS) to attenuate changes in point cloud sparsity. While effective at sampling locations when

the LiDAR point cloud distribution is uneven, it performs poorly on large-scale LiDAR point cloud,

increasing processing time, and reduce the number of key points in the LiDAR point cloud used in the

next stage of proposal refinement.
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At the same time, the sparsity of the original LiDAR point cloud will also affect the detection accuracy

of smaller objects. Since they have a smaller contact area with the LiDAR beam, they are less efficient at

locating objects. Current methods largely ignore the sparsity of original LiDAR point cloud and mainly

focus on the detection accuracy of vehicles, resulting in low accuracy in detecting small objects. However,

improving the accuracy of pedestrians and cyclists is critical to enhancing road safety, as autonomous

driving technology develops.

Therefore, we propose a network for small object detection to address the low accuracy of current 3D

detectors for pedestrians and cyclists by exploiting centroid localization and feature encoding of voxel

points. These encoded features directly reflect the LiDAR point cloud sparsity of multiple classes of

detected objects. In summary, our contributions include:

1. We propose an occlusion-resistant data augmentation algorithm (OA) developed specifically for

3D LiDAR point cloud, which simulates occluded objects, reconstructs intact objects, and flexibly

locates and rotates objects, thereby increasing the diversity of full-body target construction.

2. We find that original LiDAR point cloud sparsity affects the detection of smaller objects such as

pedestrians and cyclists, so we propose a point cloud sparsity analysis module (PA) to sense the

sparsity of original point cloud and use sparse point features encoding additional features to refine

the next stage of bounding box regression. PA includes voxel point centroid positioning and point

sparse analysis RoI grid pooling.

3. Our proposed PCSD network achieves better performance for pedestrians and cyclists on the KITTI

data set.

2. Related Works

Voxel-based LiDAR 3D object detection involves partitioning the LiDAR point cloud into voxel grids

and applying 3D and 2D convolutions directly to generate predictions. VoxelNet [1] introduced a VFE

voxel feature encoding network, which efficiently extracts voxel features. Second [2] introduced 3D sparse

convolution as a replacement for the original 3D convolution and proposed a novel angle regression

method. CenterPoint [3] utilizes VoxelNet or PointPillars as backbone networks to characterize the in-

put LiDAR point cloud. Voxel-rcnn [4] introduces voxel RoI pooling, which aggregates voxel features to

generate RoI features. On the other hand, the Voxel Transformer [5] is the first to use Voxel-based Trans-

former Backbone, which can be flexibly inserted into other networks to realize functions. In 3D Cascade

RCNN [6], in order to pursue higher object detection accuracy, multiple detection heads are connected in

series to form a network. However, the voxel-based method offers significantly faster processing speeds

compared to the point-based 3D object detection scheme. Therefore, voxel-based 3D object detection

methods are more conducive to deploying LiDAR in real car.

Point-based LiDAR 3D object detection methods generally detect sampling point by point. A widely

adopted technique in point-based detectors is the farthest point sampling (FPS) introduced in Point-

Net++. FPS selects points sequentially from the original point set, ensuring comprehensive coverage.

In PointRCNN [7], FPS is employed to progressively down-sample the input LiDAR point cloud and

generate 3D proposals from the down-sampled points. Furthermore, STD [8] introduces PointsPool as a

method for extracting Region of Interest (RoI) features, while 3DSSD [9] employs a novel sampling stra-
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tegy on the original LiDAR point cloud. Although point-based methods require a lot of time for LiDAR

point cloud sampling and grouping, they exhibit higher accuracy compared to voxel-based methods.

3. Methodology

Our PCSD network uses the same voxel backbone as Second, the input raw LiDAR point cloud data

is first subjected to Occlusion-resistant Data Augmentation and voxelised, using 3D sparse convolution,

and then passed through the Region Proposal Network (RPN) to generate initial bounding box proposals.

Then, the second stage further refines the bounding box by voxel features and point cloud sparse features.

In Fig. 1, we show an overview of the PCSD framework.

Fig. 1. PCSD framework. Here, the orange dashed box represents the voxel point center-of-mass localization
section, and the green dashed box represents point sparse analysis RoI Grid Pooling. Also, FFN is a feed-forward
network.

3.1. Point Cloud Data Augmentation

We propose an Occlusion-resistant Data Augmentation Algorithm (OA) to improve 3D object detec-

tors. It is notoriously difficult for conventional 3D detectors to detect objects when they are occluded.

Therefore, in order to reduce the negative impact of object occlusion, we use the OA point cloud data

enhancement method to simulate the occluded object, and then apply the HPR-based method to flexibly

construct complete objects and randomly position and rotate the object to increase the diversity of the

object.

Hidden Point Removal (HPR): Mi is a group of random points, and we determine whether each of

these points M(i, t) is observable at LiDAR viewpoint C or not. The HPR method is to set C as the

sphere at the center of the sphere, with radius R, and large enough. Using a spherical flip, each point

M(i, t) inside the sphere is reflected to the image outside the sphere along the ray from C to M(i, t) by
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the following equation:

M̂i,t = Mi,t + 2 (R− ‖Mi,t‖)
Mi,t

‖Mi,t‖
, (1)

where |M(i, t)| is the distance from the circle center C to the pointM(i, t). If we define M̂i = {M̂i,t}Tt = 1,

then the visibility of M(i, t) depends on whether it lies on a convex hull of M̂i ∪ {C}. Strictly speaking,

we select the visible point C by adjusting each class of R. Due to the efficient convex hull operation,

HPR is particularly fast in its computational speed, while meeting the accuracy requirements of LiDAR

data enhancement.

3.2. Voxel Point Center of Mass Localization

PCSD inputs are LiDAR point cloud data, which are defined as being points cloud {pi = {xpi , fpi} |
i = 1, . . . , Np}, where xpi

∈ R
3 are spatial coordinates, fpi ∈ R

F are additional features, and Np is the

number of points in the point cloud. Assume that Ul = {Ul
k = {hUl

k
, fUl

k
} | k = 1, . . . , Nl} is nonempty

in the lth voxel layer collection of voxels, where hUl
k
is the voxel index, fUl

k
is the feature vector, and Nl

is the number of nonempty voxels. First, by computing the voxel index hUl
k
from the spatial coordinates

xi and the voxel grid dimension, the points within the same voxel are grouped into a set N (Ul
k). Then

calculate the center of mass CUl
k
of the voxel point as

CUl
k
=

1

|N (Ul
k)|

∑
Xpi∈N (Ul

k)

Xpi . (2)

Fig. 2. Centroids (black) are mapped into their respec-
tive voxel grid indices.

In Fig. 2, we illustrate the coexistence of voxel

point primes and sparse voxel features, both of

which are linked to a shared voxel index. To achieve

this association, the intermediate hash table utilizes

the voxel index hUl
k
to connect the center of mass

CUl
k
with Ul

k.

Let Cl+1
k = {CUl

j
| Kl+1(hUl

j
) = hUl+1

k
} rep-

resent the collection of voxel point primes, where

Kl+1 denotes the convolution block responsible for mapping the voxel index hUl
j
to hUl+1

k
. By employing

weighted averaging of the grouped voxel point primes, we can effectively calculate the subsequent layer

of primes,

CUl+1
k

=
1

|N (Ul+1
k )|

∑
C

Ul
j
∈Cl+1

k

|N (Ul
j)|CUl

j
, (3)

where

|N (Ul+1
k )| =

∑
C

Ul
j
∈Cl+1

k

|N (Ul
j)|. (4)

From this point of view, the voxel-point-centroid positioning module can be applied to large-scale point

cloud processing.
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3.3. Point Sparse Analysis RoI Grid Pooling

Point Sparse Analysis RoI Grid Pooling is an enhancement of RoI Grid Pooling. Initially, a random

set of grid points denoted as Gb = {g1, . . . , gU3} is selected to sample each bounding box proposal b.

Here, N (gj) denotes the assembly of voxel point centroids enclosed within a spherical region centered

at gj , with radius R. This sparsity analysis RoI grid pooling enables the encoding of the estimated

probability densities as additional features within the sphere query, thereby facilitating more implicit

feature (Ψl
gj
) representation,

Ψl
gj

=

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣

fUl
k

CUl
k
− gj

p(CUl
k
|gj)

⎤⎥⎥⎦
�

, ∀CUl
k
∈ N (gj)

⎫⎪⎪⎬⎪⎪⎭ . (5)

As shown in Fig. 3, CUl
k
− gj is the relative offset between the center of mass and the voxel point and

the sparsity probability p(CUl
k
| gj); they are all coded as additional features.

Fig. 3. Relative offset (a) and probability sparsity (b)
of points. Here, high-sparsity probabilities are shown
in blue, and low-sparsity ones are shown in red.

The sparsity probability of grid points reads

p
(
CUl

k

∣∣∣gj) ≈ 1

|N (gi)|σ3
ΣC

Ul
i
∈N (gi)w

(
CUl

k
,CUl

i

)
,

(6)

where σ represents the window width, and ω

is

W(CUl
k
,CUl

i
) =

3∏
d=1

w

(
CUl

k
−CUl

i,d

σ

)
. (7)

In each XY Z dimension d, there exists an indepen-

dent kernel ω. Following the incorporation of these

features, the multi-scale grouping (MSG) module of

PointNet is used to generate a specific feature vector Tl
gj , where maxpool indicates that the maximum

value is taken to reduce the parameter effect, and FFN is a feed-forward neural network,

Tl
gj = maxpool

(
FFN(Ψl

gj )
)
. (8)

The final feature is expressed as the sum of features of different voxel layers,

Tgj = [T1
gj , . . . ,T

L
gj ]. (9)

We introduce a novel position encoding method (see Fig. 4) for point sparsity analysis within LiDAR

point cloud TGb = {Tgi | |N (gi)| > 0, ∀gi ∈ Gb} represented as performing a self-attention operation

Fig. 4. The point cloud sparsity-aware RoI grid pooling for performing a self-attention operation on grid point
features.
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between features. This is accomplished, using standard encoder layers and residual connections, akin

to the nonlocal neural network blocks. These operations enable the module to capture and incorporate

spatial relationships and dependences between the grid points effectively,

T̃gi = Tgi(TGb) +Tgi , (10)

where Tgi is the encoder output of Tgi , and T̃gi is the feature of output grid points. The empty dot

feature |N (gi)| = 0 is not affected by the self-focus module and retains its original feature encoding.

Point Sparsity Position Coding involves utilizing the positions of local grid points and the point count

within the bounding box to encode the position information within the self-attentive module.

Finally, we set the same confidence level and regression target as Second.

4. Experiment

4.1. Data Set and Training Details

We train the PCSD network on the KITTI dataset [10]; this data set is the most commonly used data

set for 3D target detection algorithms, which contains 7481 training samples and 7518 test samples; we

use the standard average precision (AP) on easy, moderate, and hard. The KITTI data set was produced

from a Velodyne 64-line LiDAR acquisition with 64 laser lines, each channel being a separate laser beam

with a vertical angular resolution of 0.4◦, a horizontal angular resolution of 0.08◦ – 0.35◦, a vertical field

of view (FOV) of 26.8◦, a horizontal FOV of 360◦, a measurement range of 0.5 – 100 m, and a point

cloud data volume of 220w points/s. The optimum distance of LIDAR is 50 – 60 m; when it exceeds this

distance, the number of scanned points will become smaller, which will affect the detection results. The

PCSD uses the Adam optimizer for training. The initial learning rate is 0.01, and then updated using a

single-period strategy combined with cosine. Our network model was trained on a single server, which

consisted of Ubuntu 18.04 operating system, a single NVIDIA 1080 Ti GPU, training 100 epochs with a

batch size of 2, and took about 6 days of time cost. Some detailed processing, we set the non-maximum

suppression (NMS) threshold to 0.1 on the KITTI data set. This threshold is used to remove redundant

frames, ensuring that the final bounding box prediction is accurate and precise.

4.2. Analysis of the Detection Results

4.2.1. Data Set Results

In Table 1, one can see that, in the 3D AP-R40 benchmark, our network is improved compared with

PointPillars [11], PointRCNN [12], PV-RCNN [13], and CT3D networks in the categories of pedestrians

and cyclists, at least + 4%. The results prove the superiority and applicability of our network, which

improves the accuracy of small object detection, ensures road safety, and promotes the use of LiDAR in

car.

In Fig. 5, we show the Second network visual detection results of our network along with the base

network. We can see that there are missed detections due to the low car classification detection accuracy

of the Second network and due to the low classification accuracy in the cyclist classification, which leads

to detecting the cyclist as a pedestrian. However, our detection accuracy is ahead of it and the network

is more stable, so the PCSD network can accurately locate and detect objects without false detection.
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Table 1. 3D Detection Results for Categories Using AP-R40 on the KITTI Val Set.a

Method Car 3D Pedestrian 3D Cyclist 3D

(IoU = 0.7) (IoU = 0.5) (IoU = 0.5)

Second 90.55 81.61 78.61 55.94 51.14 46.16 82.96 66.74 62.78

Second-iou 86.77 79.23 77.17 36.45 33.57 31.16 83.18 63.75 60.23

PointPillars 87.75 78.39 75.18 57.30 51.41 46.87 81.56 62.80 58.83

PointRCNN 91.73 80.67 78.16 63.12 55.32 48.36 89.21 71.17 66.94

PointRCNN-IoU 91.98 80.83 78.44 62.59 55.36 48.85 89.17 72.42 67.96

PV-RCNN 92.10 84.36 82.48 62.71 54.49 49.87 89.10 70.38 66.01

CT3D 92.34 84.97 82.91 61.05 55.57 51.10 89.01 71.88 67.91

Ours 91.58 81.92 82.02 69.66 64.02 59.24 92.41 75.61 72.43

aBold represents the highest detection accuracy.

a) b) c)
Fig. 5. The visualization results on the KITTI test set. The left-hand side is the image from the KITTI data
set (a), the middle is the detection result of the Second (b), and the right=hand side is the detection result of
PCSD (c). The red circles indicate where our network is superior.

4.2.2. Ablation Experiments

We perform a detailed ablation study on PCSD, using the Second network as the basis for all models.

Training for 100 epochs using the KITTI data set goes as follows:

1. Remove OA. Starting with no preprocessing operations on the original point cloud, the training
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is directly performed.

2. Remove the PA module. This module can get the original point cloud sparse features and further

refine the regression frame. When this module is removed, the regression frame is determined only

by voxel characteristics.

Table 2. The 3D Results of Ablation Study Based on KITTI.a

Import Import Car 3D Pedestrian 3D Cyclist 3D

OA PA (IoU = 0.7) (IoU = 0.5) (IoU = 0.5)

× × 90.55 81.61 78.61 55.94 51.14 46.16 82.96 66.74 62.78
√ × 90.30 81.10 78.04 57.35 51.02 46.65 89.10 70.38 66.01

× √ 90.96 71.61 68.10 63.09 55.56 50.72 92.97 74.87 71.22
√ √ 91.58 81.92 82.02 69.66 64.02 59.24 92.41 75.61 72.43

aBold represents the highest detection accuracy.

Table 3. The BEV Results of Ablation Study Based on KITTI. a

Method Car 3D Pedestrian 3D Cyclist 3D

(IoU = 0.7) (IoU = 0.5) (IoU = 0.5)

Second 90.55 81.61 78.61 55.94 51.14 46.16 82.96 66.74 62.78

Second-iou 86.77 79.23 77.17 36.45 33.57 31.16 83.18 63.75 60.23

PointPillars 87.75 78.39 75.18 57.30 51.41 46.87 81.56 62.80 58.83

PointRCNN 91.73 80.67 78.16 63.12 55.32 48.36 89.21 71.17 66.94

PointRCNN-IoU 91.98 80.83 78.44 62.59 55.36 48.85 89.17 72.42 67.96

PV-RCNN 92.10 84.36 82.48 62.71 54.49 49.87 89.10 70.38 66.01

CT3D 92.34 84.97 82.91 61.05 55.57 51.10 89.01 71.88 67.91

Ours 91.58 81.92 82.02 69.66 64.02 59.24 92.41 75.61 72.43

aBold represents the highest detection accuracy.

In Tables 2 and 3, one can see that (1) The PA module has the greatest impact on the network,

because we encode point cloud sparsity features into initial box proposals and further refine the proposals

to improve classification accuracy. Using PA improves the network by +4.82% and +7.27% in pedestrian

and cyclist 3D classification accuracies, respectively. (2) The second one is the OA data enhancement

algorithm, because it provides multi-view, real pictures for classified objects, increasing the diversity of

objects, thereby improving the accuracy of object classification. Using OA, the network improves the 3D

classification accuracy of pedestrians and cyclists by +0.59% and +2.93%, respectively. (3) Both OA

and PA achieved significant improvements in 3D and BEV detection of pedestrians and cyclists, proving

the necessity of adding these two modules. From the ablation experiments, we can see that each module

plays an important role. They complement each other to achieve the best detection performance of the

network.

Different from the current 2D object detection, urban-oriented autonomous driving technology re-
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quires higher 3D object detection accuracy. It needs to detect surrounding objects quickly and accurately

in a real environment. Therefore, we should also pay more attention to the BEV indicators in the KITTI

data set.

Fig. 6. 3D (a) and BEV (b) results of detections on the bench-
mark. Here, also the mean average precision (MAP) of the 3
classifications is used and presented in the form of a bar chart.

As shown in Fig. 6, PCSD achieves the

highest MAP values in terms of pedestrian

and bicycle classification accuracy, both on

3D and BEV benchmarks; therefore, we con-

sider the proposed method useful and neces-

sary.

5. Conclusions

In this paper, we introduced a new two-

stage network – PCSD. It is a structured net-

work designed to improve small object detec-

tion accuracy. According to the experimental

results, we proved that our method is novel,

efficient, and useful. Compared with base-

line Second network, car and pedestrian and

cyclist detection results are significantly im-

proved on the 3D benchmark, improving by

1.58%, 13.22%, and 9.33%, respectively. On the BEV benchmark, the car and pedestrian and cyclist de-

tection results are significantly improved, improving by 0.97%, 10.52%, and 6.69%, respectively. Accord-

ing to the experimental results, our PCSD network has high detection accuracy, which greatly improves

the detection accuracy of small objects; thus, ensuring the road safety. It also boosts the use of LiDAR

in self-driving cars. For situations where car detection accuracy is less improved, in our future work, we

will consider the use of a new method to refine the proposal of the initial bounding box to improve the

detection accuracy. We hope that these novel perspectives can provide new ideas for the development of

object detection.
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