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Abstract

We focus our study on the quantum correlations of coupled photon pairs produced in an open atomic
laser system, where quantum coherence is brought about by the superposition of a coherent atomic
state and a coherent classical field. Quantum properties produced by photon–photon correlations are
a long sought-after goal in quantum information science and technology, because photons combine
at room temperature with high speed and long coherence times. The openness of the system under
consideration allows quantum decoherence due to temperature and phase fluctuations to influence the
quantum correlations generated. The competition between these quantum coherence and quantum
decoherence leads to temporal quantum correlations, which we analyze using the time evolution of the
density operator. Strong quantum correlations can be achieved by choosing an appropriate amplitude
of the classical fields, treating temperature and phase fluctuations, and increasing the atomic injection
rate over time. We also show that quantum entanglement is short-lived, quantum steering slowly
decreases, but quantum discord increases with increasing heat bath temperature and atomic phase
fluctuations. In this study, we explore the behavior of quantum correlations in an open atomic laser
system and investigate the dynamics of entanglement, discord, and steering in this system and examine
how they evolve over time.

Keywords: coherence, decoherence, photon pairs, quantum correlation.

1. Introduction

Quantum information and communication (QIC) began in the 20th century, when scientists deve-

loped quantum mechanics to explain physical phenomena that classical mechanics could not [1]. The

field of quantum information theory is also an interdisciplinary field that overlaps with many fields, such

as precision measurement, computer science, mathematics, information theory, engineering, materials

science, and cryptography, among others. It is the result of applying the laws of quantum mechanics to

govern the underlying information carrier for information processing tasks. Quantum uncertainty and

quantum superposition are quantum mechanical principles that lie at the heart of quantum information
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and communication applications [2]. Quantum uncertainty is not due to inaccurate measurement capa-

bility or loss/lack of information on the measurement processes, but is a fundamental feature inherent

in nature itself between complementary quantum observables [3]. In addition, quantum superposition,

often referred to as quantum coherence of two states, plays a fundamental role in quantum information

and communication protocols. Quantum coherence is a nonlocal and nonclassical correlation of two or

more quantum states [3–5]. It is responsible for quantum features, such as quantum discord, quantum

entanglement, and quantum steering. These quantum correlations are the basis for quantum information

and communication applications [6]. That is, the realization of QIC depends on methods to induce,

quantify, and maintain the strength of quantum correlations captured in them.

In some circumstances, the presence of one quantum feature in a quantum system may indicate

the presence or absence of additional quantum features in that system. For instance, quantum discord

does not always require quantum entanglement to measure the strength of quantum correlations [7, 8].

Therefore, it is indeed highly interesting to study and compare these quantum features in an open quan-

tum system that interacts with its environment. Quantum features generated from strongly coupled

photon pairs have proven useful, powerful and suitable for QIC, in view of the fact that photons com-

bine with high speed and long coherence times at room temperature [9, 10]. To this end, constructing

a scheme that would produce strongly coupled photon pairs has become a major topic among current

QIC research [11–18]. Ofer Kfir has explored photon coupling phenomena that unified strong coupling

predictions with known electron–photon interactions to harness electron beams for quantum communi-

cation [13]. Researchers have explored photon coupling in the light driven and emitted by two highly

interacting two-level emitters [14]. The study showed that frequency-dependent strong photon correla-

tions can occur for QIC applications. In addition, a strongly correlated photon transport is observed in

waveguides operating in the weak coupling region [15]. These photon correlations arise through an in-

terplay of nonlinearity and coupling to a loss reservoir that creates a strong effective interaction between

transmitted photons. Numerous theoretical and experimental investigations with two-photon atomic

lasers [16], optical parametric oscillators [17], and parametric down converters [18] were also carried out.

Existing innovations have achieved remarkable control of quantum features generated by coupled

photons. Much emphasis should also be given to the role of quantum decoherence, since quantum

systems can perfectly maintain quantum coherence if they are completely isolated. This requirement is

only ideal and is one of the daunting challenges in building perfectly isolated quantum devices, since loss

of quantum coherence can occur through interaction with external environments. The phase fluctuation

is also another source of coherence loss that should be closely controlled, even if not avoided. Therefore,

generating and maintaining strong quantum coherence between quantum particles is one of the central

goals of quantum information and communication protocols [19, 20]. To this end, atomic lasers have

recently been shown to be active quantum systems with invaluable applications in quantum information

processing [21].

In this work, we consider quantum coherence evolving between pairs of photons in an open atomic

laser system. A coherent inducing classical field and a coherent superposition of atomic states are used to

generate quantum coherence in the system. The atomic phase fluctuations and heat bath temperatures

can also generate quantum decoherence in a quantum system. By adjusting the appropriate system

parameters, such as the mean excitation of the heat bath, the atomic phase fluctuations, the number of

atoms per unit time, and the classical field, we evaluate the quantum properties, using the standard master

equation approach. This study provides valuable insight into the delicate nature of quantum correlations

in an open atomic laser system. Understanding the dynamics and sudden death of these correlations is
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critical for developing strategies to effectively preserve and manipulate quantum information. Moreover,

in this paper, we contribute to the broader field of quantum information science, paving the way for

future investigations into quantum correlations in complex open systems.

2. Model and Hamiltonian of the System

The quantum Hamiltonian terms describing the interaction of the atomic laser system with elec-

tromagnetic fields are derived using the rotating wave and electric dipole approximation. The total

Hamiltonian in the interaction picture reads [22, 23]

Ĥ =
∑

m=1,2,3

ωm|m〉〈m|+ ω21ô
†
1ô1 + ω32ô

†
2ô2 + ĤI . (1)

Here, the first term is atomic energy level with frequecies ω1, ω2, and ω3, the second and third terms

are photon energies with the annihilation operators ô1 and ô2 and resonance frequencies ω21 = ω2 − ω1

and ω32 = ω3 − ω2, and the last term ĤI is the interaction Hamiltonian between the atoms and cavity

photons and classical field. The interaction Hamiltonian can be obtained using the unitary operator

Û = exp(−iĤ0t), where Ĥ0 =
∑

m=1,2,3 ωm|m〉〈m|+ ω21ô
†
1ô1 + ω32ô

†
2ô2; it is [23, 24]

ĤI = ig

[
ô†1|2〉〈1|+ ô†2|3〉〈2| − |1〉〈2|ô1 − |2〉〈3|ô2] + i

ξ

2
[|3〉〈1| − |1〉〈3|

]
, (2)

where g is the coupling constant between the atom and cavity mode; it is assumed the same for both

transitions, and ξ defines the amplitude of the classical field that couples the top and bottom states of

the atoms in the cavity. It should be resonant with the frequency ω = ω32 + ω21; see Fig. 1.

We are interested to consider an atom, which is initially in a state

|ψ(0)〉 = C1(0)|1〉+ e−iφC3(0)|3〉, (3)

where φ is an arbitrary phase difference between the two states. It is reasonable to assume that φ is

the sum of a mean value φ0 and a small deviation δφ, φ = φ0 + δφ. The arbitrary phase difference can

also be considered as a Gaussian random process with a phase dispersion δφ = 0 and a phase fluctuation
δφ2

2
= θ [24,25]. Therefore, θ is generally designated simply as a phase fluctuation. Taking into account

Fig. 1. Schematic representation of an atomic laser system
coupled to a reservoir. Here, ra is the number of atoms per
unit time introduced into the cavity, where κ is the photon
attenuation rate. It is clearly indicated that the atomic energy
states are represented by |3〉, |2〉, and |1〉. The photon modes
ô1 and ô2 are resonant to the atomic state dipole transitions
coming from |3〉 → |2〉 and |2〉 → |1〉. However, they are off-
resonant to the dipole-forbidden transitions from |3〉 to |1〉, and
vice versa. The cavity radiation modes are at resonance with
the transition |3〉 → |2〉 and |2〉 → |1〉 having frequencies ω =
ω32 + ω21.
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the phase fluctuation, the initial density operator for a single atom can now be expressible in the following

form:

ρ(0) = ρ
(0)
11 |1〉〈1|+ ρ

(0)
13 e

−θ|1〉〈3|+ ρ
(0)
31 e

−θ|3〉〈1|+ ρ
(0)
33 |3〉〈3|, (4)

where ρ
(0)
11 = |C1(0)|2 and ρ

(0)
33 = |C3(0)|2 are the probability for the atom to be in states |1〉 and |3〉, and

ρ
(0)
13 = C1(0)C

∗
3 (0) and ρ

(0)
31 = C3(0)C

∗
1 (0) represent the atomic state superposition at the initial time.

We also note that |ρ(0)13 |2 = |ρ(0)31 |2 = ρ
(0)
11 ρ

(0)
33 .

Employing the linear and adiabatic approximation schemes in the good cavity limit, we can find the

evolution equation of the density operator for the cavity modes. The full descriptions of the evolution

of the coupled atom–radiation system can be found in [16]. The cavity states, with the initial vacuum

state, are calculated after tracing out the atomic variables; they are

d

dt
ρ̂(t) =

AI

2H

[
2ô†1ρ̂ô1 − ρ̂ô1ô

†
1 − ô1ô

†
1ρ̂
]
+

AJ

2H

[
(2ô2ρ̂ô

†
2 − ρ̂ô†2ô2 − ô†2ô2ρ̂

]
+
AK

2H

[
ô†1ρ̂ô

†
1 − ρ̂ô†2ô

†
1 + ô2ρ̂ô1 − ô1ρ̂ô2

]
+

AL

2H

[
ô†1ρ̂ô

†
2 − ô†2ô

†
1ρ̂+ ô2ρ̂ô1 − ρ̂ô1ô2

]
, (5)

where we use ρ = ρ(t) for simplicity. In the above equation, A =
2g2ra
γ2

is an effective number of atoms

per unit time, and γ is the spontaneous decay rate, which is taken to be the same for both transitions.

The rest parameters are functions of the atomic coherence and populations given by

H = (1 + (ξ/γ)2)

[
1 +

(ξ/γ)2

4

]
, I = ρ

(0)
11

[
1 +

(ξ/γ)2

4

]
− ρ

(0)
13

3ξ/γ

2
+ ρ

(0)
33

3(ξ/γ)2

4
,

J = ρ
(0)
11

3

4
(ξ/γ)2 + ρ

(0)
13

3ξ/γ

2
+ ρ

(0)
33

[
1 +

(ξ/γ)2

4

]
,

K = −ρ
(0)
11

ξ/γ

2

[
1− (ξ/γ)2

2

]
− ρ

(0)
13

[
1− (ξ/γ)2

2

]
+ ρ

(0)
33 ξ/γ

[
1 +

(ξ/γ)2

4

]
,

and L = −ρ
(0)
11

ξ

γ

[
1 +

(ξ/γ)2

4

]
− ρ

(0)
13

[
1− (ξ/γ)2

2

]
+ ρ

(0)
33

ξ/γ

2

[
1− (ξ/γ)2

2

]
.

We note that Eq. (5) along with the coefficients Eqs. (6)–(8) represent the cavity state without the effect

of an external environment. When the effect of thermal environment is included, the time evolution of

the density operator for the two-mode photons coupled to a two-mode heat bath becomes [26]

dρ̂

dt
=

κ

2
(N̄th + 1)

[
2ô1ρ̂ô

†
1 − ô†1ô1ρ̂− ρ̂ô†1ô1

]
+

1

2
κN̄th

[
2ô†2ρ̂ô2 − ô2ô

†
2ρ− ρ̂ô2ô

†
2

]
+
1

2

[
AI

H
+ κN̄th

] [
2ô†1ρ̂ô1 − ô1ô

†
1ρ̂− ρ̂ô1ô

†
1

]
+

1

2

(
AJ

H
+ κ(N̄th + 1)

)[
2ô2ρ̂ô

†
2 − ô†2ô2ρ̂− ρ̂ô†2ô2

]

−AK

2H

[
ô1ô2ρ̂− ô†1ρ̂ô

†
2 + ρ̂ô†2ô

†
1 − ô2ρ̂ô1

]
− AL

2H

[
ô†2ô

†
1ρ̂− ô†1ρ̂ô

†
2 + ρ̂ô1ô2 − ô2ρ̂ô1

]
. (6)

We use Eq. (6) to study the dynamics of the quantum system. The gain of the cavity light for mode

ô1 and the loss for mode ô2 are considered in terms proportional to I and J , respectively. Quantum

coherence is built up in the system due to the presence of the terms proportional to K and L. In view
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of Eq. (6), we can obtain the time evolution of photon annihilation operators; they are

d

dt
ô1(t) = −μ1

2
ô1(t) +

ν1
2
ô†2(t) + ô

(in)
1 (t), (7)

d

dt
ô†2(t) = −μ2

2
ô†2(t)−

ν2
2
ô1(t) + (ô

(in)
2 )∗(t), (8)

where μ1 = κ − AI/H, μ2 = κ − AI/H, ν1 = AK/H, ν2 = AL/H and ô
(in)
1 (t), and (ô

(in)
2 )∗(t) are

reservoir input noise operators. With the help of Eqs. (7) and (8), the relevant expectation values of

these operators become

〈ô(in)1 (t)〉 = 〈o1(t)ô(in)1 (t)〉 = 0, (9)

〈ô(in)2 (t)ô
(in)
2 (t′)〉 = 〈(ô(in)1 )∗(t)ô(in)2 (t′)〉 = 0, (10)

〈o∗1(t)ô(in)1 (t)〉+ 〈o1(t)(ô(in)1 )∗(t)〉 = AI

H
+ κN̄th, (11)

〈o∗2(t)ô(in)2 (t)〉+ 〈o2(t)(ô(in)2 )∗(t)〉 = κN̄th, (12)

〈o2(t)ô(in)1 (t)〉+ 〈o1(t)ô(in)2 (t)〉 = −AL

H
. (13)

Using these correlation properties of noise operators, we get the full expressions of the cavity mode

operators at any time t.

To do so, first we have to specify the initial atomic states prior to their injection into the laser cavity.

In Eq. (4), one can see that the probabilities of atoms to be found in the states |1〉 and |3〉 can be related

to each other through a new parameter defined by η = ρ011 − ρ033. From the fact that the sum of these

probabilities is equal to one, we can obtain ρ011 =
1 + η

2
, ρ033 =

1− η

2
, and thus ρ013 = ρ031 =

1

2

√
1− η2.

The minimum and maximum of parameter η correspond to ρ033 = 1 and ρ011 = 1, respectively. In this

case, there is no quantum coherence induced by atomic state superposition, but coherence induced via a

classical field still exists. Here, the eligible η values lie in between −1 ≤ η ≤ 1, which is the case of lasing

without the population inversion. This amounts to fixing the probability amplitudes to 0 ≤ ρ011 ≤ 50%

and 50% ≤ ρ033 ≤ 100%. Now we rewrite Eqs. (7) and (8), using Eqs. (9)–(13), as follows:

d

dt
ô1(t) = −ξ+ô1(t)− η+ô

†
2(t) + ô

(in)
1 (t), (14)

d

dt
ô†2(t) = −ξ−ô

†
2(t)− η−ô1(t) + (ô

(in)
2 )∗(t), (15)

in which ξ+ =
1

2

(
κ− AI

H

)
, ξ− =

1

2

(
κ+

AJ

H

)
, η+ = −1

2

AK

H
, and η− =

1

2

AL

H
.

The solutions of coupled differential equations (14), (15), with the help of correlation properties of

noise operators Eqs. (9)–(13), can be written as

ô1(t+ τ) = A+(τ)ô1(t) +B+(τ)ô
†
2(t) + F+(t+ τ) +W+(t+ τ), (16)

ô2(t+ τ) = A−(τ)ô2(t) +B−(τ)ô
†
1(t) + F−(t+ τ) +W−(t+ τ), (17)
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where

A±(τ) =
1

2

[
(1± p)e−λ−τ + (1∓ p)e−λ+τ

]
, (18)

B±(τ) =
q±
2

[
e−λ+τ − e−λ−τ

]
, (19)

F+(t+ τ) =
1

2

∫ τ

0

[
(1 + p)e−λ−(τ−τ ′) + (1− p)e−λ+(τ−τ ′)

]
ô
(in)
1 (t+ τ ′) dτ ′, (20)

F−(t+ τ) =
1

2

∫ τ

0

[
(1− p)e−λ−(τ−τ ′) + (1 + p)e−λ+(τ−τ ′)

]
ô
(in)
2 (t+ τ ′) dτ ′, (21)

W+(t+ τ) =
q+
2

∫ τ

0

[
e−λ+(τ−τ ′) − e−λ−(τ−τ ′)

]
(ô

(in)
2 )∗(t+ τ ′) dτ ′, (22)

W−(t+ τ) =
q−
2

∫ τ

0

[
e−λ+(τ−τ ′) − e−λ−(τ−τ ′)

]
(ô

(in)
1 )∗(t+ τ ′) dτ ′, (23)

in which

p =
(ξ− − ξ+)√

(ξ+ − ξ−)2 + 4η+η−
, (24)

q± =
η±√

(ξ+ − ξ−)2 + 4η+η−
. (25)

λ+ =
1

2

[
(ξ+ + ξ−) +

√
(ξ+ − ξ−)2 + 4η+η−

]
, (26)

λ− =
1

2

[
(ξ+ + ξ−)−

√
(ξ+ − ξ−)2 + 4η+η−

]
. (27)

Our calculations entirely depend on Eqs. (16) and (17) and the associated coefficients. For instance, the

mean photon numbers of mode 1 and mode 2 are given by n1(t) = 〈ô†1(t)ô1(t)〉 and n2(t) = 〈ô†2(t)ô2(t)〉,
while n12(t) = 〈ô(t)ô2(t)〉 is the mean number of the cross correlation of the two modes. We solve

them, usubg Eqs. (16) and (17). Moreover, the mean photon numbers n1(t), n2(t), and n12(t) are very

important for the analysis of quantum correlations given in the next sections.

3. Quantum Correlations

3.1. Quantum Steering

Quantum steering has become of great research interest due to its asymmetric nature and device

independent behavior. A Gaussian state, ρ̂ = ρ(ô1, ô2) for two-mode photons can be described by a

symplectic matrix. whose elements are given by [8, 27]

Gij =
1

2
〈x̂ix̂j + x̂j x̂i〉 − 〈x̂i〉〈x̂j〉, (28)

in which i, j = 1, 2, 3, 4. The quadrature operators are defined as x̂1 = ô1 + ô†1, x̂2 = i(ô†1 − ô1),

x̂3 = ô2 + ô†2, and x̂4 = i(ô†2 − ô2). In view of these definitions, the only non-vanishing terms in the
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extended covariance matrix are

G =

(
G1 G12

GT
12 G2

)
=

⎛
⎜⎜⎜⎜⎝
m11(t) 0 m13(t) 0

0 m22(t) 0 m24(t)

m∗
13(t) 0 m33(t) 0

0 m∗
24(t) 0 m44(t)

⎞
⎟⎟⎟⎟⎠ , (29)

where m11(t) = m22(t) =
√
det(G1) = 2n1(t) + 1, m33(t) = m44(t) =

√
det(G2) = 2n2(t) + 1, and

the real off-diagonal entries are m13(t) = −m24(t) =
√− det(G12) = 2n12(t). Here, n1(t) and n2(t)

represent the mean photon numbers of mode 1 and mode 2, while n12(t) is the mean number of the cross

correlation of the two modes defined in the previous section. Note that all matrix elements of Eq. (29) are

real; hence, one can easily observe that it is a symplectic matrix. This is a sound argument supporting

the Gaussian character of the two-mode electromagnetic state.

One can also easily verify that

det (G) = [m11(t)m33(t) +m13(t)m24(t)]
2 . (30)

On the other hand, the corresponding symplectic eigenvalues of the covariance matrix described in

Eq. (29) are given by

s± =

√
a±√

a2 − 4 det(G)

2
, (31)

where a = det (G1) + det (G2) + 2 det (G12), and s± are invariant quantities.

According to the formulations of Gaussian quantum steering [27], the necessary and sufficient condi-

tion for two-mode Gaussian quantum steerability from ô1 → ô2 is

S ô1→ô2 = Δx3|1Δx4|2 < 1, (32)

where the conditional variances are defined by [Δx3|1]2 = [Δ(x3−gxx1)]
2 and [Δx4|2]2 = [Δ(x4+gpx2)]

2,

with gx and gp being optimization factors, which are real constants adjustable to minimize quantum

fluctuations of the quadrature operators [27, 28], from which one can obtain

S ô1→ô2 =

√[
m11(t)− m2

13(t)

m33(t)

] [
m11(t)− m2

24(t)

m33(t)

]
, (33)

where gx =
m13(t)

m33(t)
and gp = −m24(t)

m33(t)
[28].

One could also easily swap the roles of G1 and G2 to obtain the measurement of Gaussian quantum

steering S ô2→ô1 . Quantum steering is exhibited in the quantum system when either or both S ô1→ô2 and

S ô2→ô1 are smaller than unity.

In order to investigate S ô1→ô2 and S ô2→ô1 , we plot S ô1→ô2 and S ô2→ô1 versus the dimensionless

parameter γt by varying the relevant system parameters. An in-depth analysis of quantum steering and

its comparison with other quantum features can be made using 2D plots as follows below.

In Figs. 2 and 3 a, we plot the Gaussian quantum steering between the light modes ô1 and ô2 against

the dimension parameter γt and quantum coherence
ξ

γ
. According to [27], the steerability from mode ô1
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to mode ô2 is strong, when the quantum noise is minimized. However, there is no quantum steering if

S ô1→ô2 ≥ 1. In this regard, we show that initially there is no quantum steering between light modes, at

which time S ô1→ô2 = 1. With increasing dimensionless parameter γt, the quantum steering between the

two light modes is strengthened. This means that quantum coherence provides sufficient time to generate

steerable quantum correlations between the light modes, as can be seen below.

Fig. 2. Time evolution of quantum steering Sô1→ô2

against the dimensionless parameter γt and ξ/γ for
ra = 10 kHz, κ = 0.5 kHz, g = 0.8γ, θ = 0.00, η = 0.1
and N̄th = 0.5.

In Figs. 2–4, we plot quantum steering S ô1→ô2

versus the dimensionless parameter γt by vary-

ing parameters of atomic injection with time, heat

bath, and phase fluctuation.

Quantum steering from mode ô1 to mode ô2
becomes weaker with increasing quantum decoher-

ence, while it becomes stronger with increasing

atomic injection rate. We observe that the quantum

steering of ô1 → ô2 increases rapidly over time until

it reaches a peak value that remains under thermal

decoherence for a long period of time, but decreases

slightly over time under phase fluctuations. This

is pretty unlike the behavior of quantum entangle-

ment, whose peak strength is short-lived and suffers

sudden death in the long time scale. That is, quan-

tum steering is stronger than entanglement under

the influence of quantum decoherence.

a) b)

Fig. 3. Time evolution of quantum steering Sô1→ô2 against the dimensionless parameter γt for ra = 5 kHz,
κ = 0.5 kHz, η = 0.1, g = 0.8γ, ξ = 0.1γ, θ = 0.01, and different value of N̄th = 0.00 (the solid curve), 0.25 (the
dotted curve), and 0.50 (the dashed curve) (a) and N̄th = 0.50, κ = 0.5 kHz, η = 0.1, g = 0.8γ, ξ = 0.1γ, θ = 0.01,
ra = 5 (the solid curve), 15 (the dotted curve), and 25 kHz (the dashed curve) (b).

3.2. Quantum Entanglement

In this section, we investigate quantum entanglement of the coupled photon pairs. In general, a pair

of quantum-mechanical particles is in entangled state if and only if their individual states cannot be

496



Volume 44, Number 5, September, 2023 Journal of Russian Laser Research

Fig. 4. Time evolution of quantum steering Sô1→ô2

against the dimensionless parameter γt for N̄th = 0.1,
κ = 0.5 kHz, ξ = 0.1γ, η = 0.1, g = 0.8γ, ra = 2 kHz,
and different value of θ = 0.00 (the solid curve), 0.0125
(the dotted curve), and 0.015 (the dashed curve).

expressed as a product of the states of its separate constituents [5]. Thus, we can write

ρ̂ �=
∑
i

Piρ̂
(1)
i ⊗ ρ̂

(2)
i , (34)

where Pi ≥ 0 and
∑

i Pi = 1 represents the normalization condition for the combined density state of the

composite system.

Though numerous criteria of entanglement measures have been developed and currently available in

the literature, here we apply the criterion set by Duan et al. [29]. This criterion is highly interesting due

to its direct utilization to quantify quantum squeezing.

Based on this criterion, a quantum state of the system is entangled if the sum of the variances of the

EPR-type operators x̂ and p̂ satisfies the condition

Δx2 +Δp2

2
< 1, (35)

in which x̂ = x̂a− x̂b, and p̂ = p̂a+ p̂b. Here, x̂a =
1√
2
(ô†1+ ô1), x̂b =

1√
2
(ô†2+ ô2) and p̂a =

i√
2
(ô†1− ô1),

p̂b =
i√
2
(ô†2 − ô2) are the quadrature operators of the cavity-mode photons.

We are now able to determine the variances of x̂ and p̂. As for the variance of x̂, Δx2 = 〈x2〉 − 〈x〉2,
the first term can be described as

〈x2〉 = 1

2

[
2 + 2〈ô†1ô1〉+ 2〈ô†2ô2〉 −

(
〈ô1ô2〉+ 〈ô†1ô†2〉+ 〈ô2ô1〉+ 〈ô†2ô†1〉

)]
. (36)

It is not difficult to find the solution of Eq. (36), it reads

〈x2〉 = 1

2

[
2 + 2〈ô†1ô1〉+ 2〈ô†2ô2〉 − 4〈ô1ô2〉

]
. (37)

Moreover, it is straightforward to see that

〈x〉2 = 0. (38)

With the help of Eqs. (37) and (38), the variance of x̂ becomes

Δx2 = 〈x2〉 = 1 + 〈ô†1ô1〉+ 〈ô†2ô2〉 − 2〈ô1ô2〉. (39)
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Following the same procedure, it is possible to verify that

Δp2 = 1 + 〈ô†1ô1〉+ 〈ô†2ô2〉 − 2〈ô1ô2〉. (40)

Thus, we find the sum of the variances of x̂ and p̂ as follows:

Δx2 +Δp2

2
= 1 + n1(t) + n2(t)− 2n12(t). (41)

In order to investigate the entanglement of the two-mode radiation with this criterion, we plot
Δx2 +Δp2

2
for the same system parameters as used in the previous section. The quantum system exhibits 100%

entangled and is non-entangled, when the sum of fluctuations in the position-like and momentum-like

operators reduces to zero,
Δx2 +Δp2

2
= 0, and greater than one,

Δx2 +Δp2

2
> 1, respectively.

The dependence of
Δx2 +Δp2

2
on time, coherent classical field, and coherent superposition can be

inferred from Figs. 5 and 6.

Fig. 5. Time evolution of quantum entanglement
Δx2 +Δp2

2
against the dimensionless parameter γt and

η of the photon pairs for ra = 10 kHz, κ = 0.5 kHz,
g = 0.8γ, ξ = 0.1γ, θ = 0.00, and N̄th = 0.5.

Fig. 6. Time evolution of quantum entanglement
Δx2 +Δp2

2
against the dimensionless parameter γt and

ξ/γ of the photon pairs for ra = 10 kHz, κ = 0.5 kHz,
η = 0.1, g = 0.8γ, θ = 0.00, and N̄th = 0.5.

Despite the presence of a large amount of the heat-bath parameters, the considered optical system

demonstrates quite robust quantum entanglement according to Duan et al. [29] inseparability criterion

mentioned in Table 1.

Table 1. Conditions for Entangled and Non-Entangled Light According to the Duan Criterion [23].

Entangled (100%) Entangled (0 – 100%) Non-Entangled (0%)

Δx2 +Δp2

2
= 1 1 <

Δx2 +Δp2

2
< 0

Δx2 +Δp2

2
> 1
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We show that the quantum coherence resources the quantum entanglement, which highly varies with

parameters describing the quantum coherence. Photon pairs are non-entangled in the absence of atomic

state superposition even if the parameter of the coherent classical field is nonzero ξ/γ > 0. In other

words, the classical field is efficiently used up to induce quantum coherence of non-classical features,

when sufficient numbers of atoms are available in the excited energy state. Pumping electrons in atoms

to the excited state would be an additional task for the classical field, when none of them are initially

in the excited state. For example, photon pairs are non-entangled for η = 1, though a classical field of

ξ =
γ

10
is used to couple them; see Fig. 5. To get more insight on the roles of specific system parameters,

we use 2D plots that are well suited to study dynamics of quantum entanglement.

a) b)

Fig. 7. Time evolution of quantum entanglement
Δx2 +Δp2

2
of the photon pairs against the dimensionless

parameter γt for ra = 10 kHz, κ = 0.5 kHz, η = 0.1, g = 0.8γ, ξ = 0.1γ, θ = 0.01, N̄th = 0.00 (the solid curve),
0.25 (the dotted curve), and 0.50 (the dashed curve) (a) and N̄th = 0.50, κ = 0.5 kHz, η = 0.1, g = 0.8γ, ξ = 0.1γ,
θ = 0.01, ra = 5 (the solid curve), 15 (the dotted curve), and 25 kHz (the dashed curve) (b).

Fig. 8. Time evolution of quantum entanglement
(Δx2 +Δp2)/2 of the photon pairs against the dimen-
sionless parameter γt for N̄th = 0.5, κ = 0.5 kHz,
η = 0.1, g = 0.8γ, ξ = 0.1γ, and values of θ = 0.00
(the solid curve), 0.0125 (the dashed curve), 0.015 (the
dotted curve), at ra = 5 kHz.

In Figs. 7 and 8, we demonstrate the dynam-

ics of quantum entanglement by alternatively vary-

ing other parameters. We show that photon pairs

are initially not in the entangled state. At the

early states of the dynamical processes, entangle-

ment quickly increases with time until it achieves

a certain maximum strength. After that, it slowly

decreases with time. The entanglement degree ob-

tained here and shown in Fig. 7 b at γt = 15 is

higher than the previously reported amount of en-

tanglement under the steady-state condition. This

should indicate that quantum coherence maximally

couple the photon pairs before the optical system

reaches a steady state condition. The maximum

achievable strength of quantum entanglement en-

hances with increased rate of atomic injection.

Distinct from the quantum discord, quantum
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entanglement wipes out with increased decoherence originated from the heat-bath temperature and

atomic phase fluctuations; see Figs. 7 b and 8. The influence of the quantum decoherence increases

as time passes by. In the long time scale, quantum decoherence would get a chance to increase their

impacts, by instigating other factors within the system. In such a case, the quantum coherence will

become smaller competitive and finally fade away.

3.3. Quantum Discord

In classical system, it is possible to obtain all information on the system without disturbing it.

However, this is not the case in quantum mechanics, since measurements can, in general, modify quantum

systems. Owing to this fact, the two equivalent expressions of mutual information in classical information

theory are not the same for quantum systems. The difference between these equivalent quantities is used

to define quantum discord Dô1 , which is a quantum correlation beyond entanglement and is given by

Dô1 = I(ρ̂)−max∏j
B

[J(ρ̂)], (42)

where ρ̂ = ρ(ô1, ô2) represents the density operator of the combined system, and

I(ρ̂) = S(ô1) + S(ô2)− S(ρ̂) (43)

is the quantum mutual information that provides a measure of the total correlations within a bi-

partite system. In this descriptions, S(ô1) and S(ô2) represent the von Neumann entropy of each

modes, while S(ρ̂) is the joint von Neumann entropy of the bipartite system. On the other hand,

J(ρ̂) represents the classical mutual information that captures the classical correlations given by [30]

J(ρ̂) = S(ô1)−S
(
ρ̂ (ô1, ô2)

∣∣∏j
ô2

)
. Here, the term S

(
ρ̂ (ô1, ô2)

∣∣∏j
ô2

)
indicates that the conditional von

Neumann entropy of modes ô1 and ô2, with
∏j

ô2
= |jô2〉〈jô2 | being a set of local projective measurements

on light mode ô2. An optimization condition should be imposed on J(ρ̂) to avoid the dependence of

quantum discord on the measurements [31]; this reads

max∏j
B

[J(ρ̂)] = S(ô1)−min∏j
B

[
S
(
ρ̂(ô1, ô2)

∣∣∣ j∏
ô2

)]
. (44)

The optimization process of measurements of mutual information highly complicates the quantification of

quantum discord in general. The continuous variable Gaussian quantum discord for two-mode radiation

described by a covariance matrix G is given by [31,32]

Dô1 = I [m33(t)]− I(s−)− I(s+) + I(
√
�), (45)

where

� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2(m13)
4 + [(m33)

2 − 1][det(G)− (m11)
2] + 2|m2

13|
√
(m13)4 + [(m33)2 − 1][det(G)− (m11)2]

[(m33)2 − 1]2
if c ≥ 0,

(m11m33)
2 − (m13)

4 + det(G)−√
(m13)8 + [det(G)− (m11m33)2]2 − 2(m13)4[det(G) + (m11m33]2)

2(m33)2
if c < 0,
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with c =
[
(m11)

2 + 1
] [

det(G) + (m33)
2
] − [

det(G)− (m11m33)
2
]2
. Also, we note that, for any variable

x, the function I(x) is defined by I(x) =

(
1 + x

2

)
log2

(
1 + x

2

)
−

(
1− x

2

)
log2

(
1− x

2

)
. In these

equations, we have not shown the time dependence to save environment.

The quantum discord for the other mode ô2 can be easily obtained by swapping the role of m11(t)

and m33(t); this reads

Dô2 = I(m11(t))− I(s−)− I(s+) + I(
√
�′), (46)

where

�′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2(m13)
4 + [(m11)

2 − 1][det(G)− (m33)
2] + 2|m2

13|
√
(m13)4 + [(m11)2 − 1][det(G)− (m33)2]

[(m11)2 − 1]2
if c ≥ 0,

(m11m33)
2 − (m13)

4 + det(G)−√
(m13)8 + [det(G)− (m11m33)2]2 − 2(m13)4[det(G) + (m11m33]2)

2(m11)2
if c < 0.

In order to investigate the time evolution of the quantum discord, we plotDô1 versus the dimensionless

parameter γt, by alternatively varying other parameters of systems. According to the definition of

quantum discord, the two-mode radiation fields are entangled for Dô1(Dô2) > 1, and the two-mode fields

can either be in a separable or entangled states for 0 ≤ Dô1(Dô2) < 1.

In Fig. 9 a, we demonstrate the time evolution of quantum discord associated to the individual light

modes. It is common knowledge that quantum discord is an asymmetric quantum correlation; this

point is clearly indicated in the figure, especially in the long time scale. However, significant difference

between Dô1 and Dô2 is not observed for γt = [0, 20], and the general profile of both curves follows the

same dynamical behavior. After passing the overlapping point around γt = 20, at which Dô1 starts

deviating from Dô2 , we observe that mode ô1 captures stronger quantum correlation than mode ô1, since

Dô1 > Dô2 > 1. This result is in line with the definition of the continuous-variable quantum discord,

one of the quantifiers of quantum correlations. The fact that both Dô1 and Dô2 demonstrate the same

dynamical behavior and the former is stronger than the latter provides the possibility to use Dô1 for

making sufficient analysis of quantum discord generated in the quantum system.

In Fig. 9 b, we demonstrate the time evolution of the continuous-variable Gaussian quantum discord

Dô1 under different system parameters. We see that Dô1 vanishes at t = 0, and later Dô1 quickly

a) b)

Fig. 9. Time evolution of quantum discord Dô1 (the solid curve) and Dô2 (the dashed curve) for N̄th = 0.5,
κ = 0.5 kHz, η = 0.1, g = 0.8γ, ξ = 0.1γ, θ = 0.00, and ra = 10 kHz (a) and Dô1 for N̄th = 0.5, κ = 0.5 kHz,
η = 0.1, g = 0.8γ, ξ = 0.1γ, θ = 0.00, and ra = 5 (the solid curve), 15 (the dotted curve), and 25 kHz (the dashed
curve) (b).
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increases for a short time scale and slowly increases, when the effect of the other system parameters

begins to contribute to the dynamical behavior. This clearly shows absence of quantum discord and

entanglement-based correlations in the system at the initial stage of system dynamics. In later stages of

the process, light matter interaction can take place within the cavity mirrors to initiate fast generation of

strongly coupled photon pairs, which is a resource for the observed quantum discord. Moreover, increase

in the considered system parameters improves the strength quantum discord.

4. Conclusions

In this work, we studied in details the survival and sudden death of quantum correlations in an open

atomic laser system, using the master equation in the good-cavity limit with the linear and adiabatic

approximations. We calculated the temporal evolution of the first and second moments of the cavity mode

variables, using the master equation; different amounts of interest were attained with the aid of these

findings. Quantum coherence in the system were induced by a coherent inducing classical field and atomic

state superpositions, and their strength was tested in the face of quantum decoherence, due to heat-bath

temperatures and atomic phase fluctuations. We studied the dynamics of quantum correlations, using the

standard master equation and considering different working conditions. Using various system parameters,

including the atomic injection rate and the quantum coherence that arise when atoms in the laser system

interact with photon pairs on sufficient time scales, and with near-maximum atomic state superpositions

η = 0.1, a significant amount of quantum correlation was generated. In particular, quantum steering

vanishes in the regime of strong coupling, where remarkable quantum discord and entanglement are

observed for the same system parameters. This is due to the fact that the classical field is efficiently

used to induce quantum coherence, only when there is a sufficient number of atoms in the excited energy

state, while pumping atoms from the ground state to the excited state would be an additional task for

the field, if none of them is initially in the excited state. In contrast to quantum discord, which increases

with quantum decoherence, quantum entanglement and quantum steering disappear with increasing

decoherence, due to the temperature of the heat bath and atomic phase fluctuations. The strength

of quantum steering is maintained over a long period of time in the presence of thermal decoherence,

but decreases slightly with time in the presence of phase fluctuations. However, the peaks of quantum

entanglement are short-lived and suffer sudden death on the long time scale due to quantum decoherence.

Generally, we observed that the quantum correlations in the atomic laser system were strong and well

preserved. However, as time progressed, the open nature of the system led to the gradual decay of these

correlations. Environmental noise and interactions with the surrounding environment were identified

as major factors contributing to this decay. Surprisingly, the study also revealed the occurrence of

sudden death of quantum correlations under specific conditions. We found that, after a certain time, the

correlations could vanish abruptly, resulting in a complete loss of quantum coherence in the system. This

sudden death phenomenon has significant implications for the preservation and manipulation of quantum

information in practical applications.
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