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Abstract

This paper was stimulated by the experimental studies of solid-state lasers initiated by N. G. Basov∗

and carried out at the Laboratory of Luminescence of the P. N. Lebedev Physical Institute under
the direction of M. D. Galanin and A. M. Leontovich in the 1960-ies. Here, the classical parabolic
equation method is extended in order to calculate complex eigenfrequencies of optical oscillations in a
dielectric-filled open resonator. Accurate estimates confirm a high quality factor of ruby lasers. The
developed approach can be used to find complex eigenfrequencies of other dielectric optical objects in
laser systems of current interest.
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1. Introduction

In the late 1950-ies, after the invention of the maser [1,2], the idea of a “maser at optical frequencies”

was vigorously discussed in the radio-physical and optical communities of the United States of America

and the USSR [3–5], and the laser race began. Despite the realization of the ruby maser [6], ruby was

not considered promising for making lasers [7]. However, in April 1960, T. H. Maiman reported a change

in the ground-state population of Cr3+ ions in ruby under optical pumping; the corresponding article

in the Physical Review Letters was published in June 1960 [8]. In April 1960, N. G. Basov addressed

M. D. Galanin from the Luminescence Laboratory of the P. N. Lebedev Physical Institute of the USSR

Academy of Sciences in Moscow with a proposal to create a ruby laser. On May 16, 1960, T. H. Maiman

succeeded to obtain the laser action in ruby. On July 7, he spoke about this event at the press release

in New York, and the next day, eye-catching headlines appeared in many newspapers [7]. Then, after

Physical Review Letters refused to publish “one more paper on masers,” a short note “Stimulated Optical

Radiation in Ruby” appeared in Nature on August 6, 1960 [9]. In the USSR, the first ruby laser

was launched on June 12, 1961 at the S. I. Vavilov Optical State Institute in Leningrad, but this was
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not reported in open sources and no further research was conducted [10]. On September 18, 1961,

M. D. Galanin, A. M. Leontovich, and Z. A. Chizhikova obtained the laser generation at the Luminescence

Laboratory of the Lebedev Physical Institute and started comprehensive experimental studies of laser

radiation properties [11,12]. One of the authors (M.N.P) participated in these studies as a student and,

then, as a PhD student of the Moscow Institute of Physics and Technology [13, 14]. The second author

(A.V.P.), studying computational aspects of wave theory, provided an analytical tool for an accurate

estimation of the quality factor of a laser resonator.

At that time, although many works were devoted to the theoretical study of electromagnetic oscilla-

tions in resonators; see, e.g., [15], open resonators containing a dielectric core have not been sufficiently

studied. Usually, calculations of geometrical optics were performed, but they could not give diffraction

losses for high-Q modes, which owed their existence to the effect of total internal reflection. This applies

even to the simplest resonator in the form of a rectangular prism with ideally reflecting mirrors at the

ends. Apparently, there was the only published work [16] at that time, where the diffraction losses of

“locked” or “trapped” oscillations in such resonator were calculated and a dielectric prism or a cylinder

with refractive index value n close to unity was considered. In our work [17], the eigenfrequencies and

damping of optical oscillations in a dielectric open cavity were calculated, using the parabolic equation

method proposed earlier by M. A. Leontovich [18] and developed by G. D. Malyuzhinets and V. A. Fock

for the problems of underwater acoustics and radio wave propagation [19,20]. This method was used by

L. A. Vainshtein in order to calculate the complex eigenfrequencies of electromagnetic oscillations in an

empty open resonator [21].

In our work, briefly reported at the International Symposium on Electromagnetic Wave Theory (Tbi-

lisi, the USSR, 1971) [22] and marked by the internationally renowned expert J. B. Keller, the parabolic

equation method was generalized to describe the transverse diffusion of an inhomogeneous wave prop-

agating along the boundary of the dielectric core. The condition justifying transition to the parabolic

equation is the smallness of the wavelength, compared with the dimensions of the resonator. Only the

natural condition that the system has resonance properties is imposed on the value of the refractive

index. Under this assumption, approximate formulas were derived for the complex frequencies and the

spatial distribution of the eigenmodes of the resonator. In this paper, we outline the idea of the deriva-

tion, present the final expressions, and analyze the effect of the ruby core on the quality factor of an

open resonator. We hope that the approach presented here will be useful in the study of other modern

dielectric optical systems.

2. Methods

This analytical study was stimulated by the experimental work of A. M. Leontovich’s group, which

confirmed the previously predicted high quality factor of the ruby laser. Physical considerations explain

small radiation losses in the solid-state laser by the effect of total internal reflection concentrating the

optical wave field in the resonator core. Our goal was to turn these qualitative considerations into reliable

quantitative estimates.

From the mathematical point of view, this work was a modest part of the ambitious international

program, declared, among others, by J. B. Keller and L. B. Felsen in the USA [23,24] and by V. A. Fock,

S. L. Sobolev, and G. D. Malyuzhinets in the USSR [19,20,25] and aimed at the development of efficient

computational methods for the problems of diffraction and wave propagation in open regions and natu-

ral environments. One of the authors (A.V.P.), being a postgraduate student of Prof. Malyuzhinets,
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contributed to the development of a numerical implementation of the parabolic wave equation [26, 27].

Further development included numerous applications to the problems of optics, quantum mechanics, and

radio wave propagation [28–33]. The application of open resonators in microwave communication and

optical sensing techniques is beyond the scope of this publication, we cite only a few references [34–37].

3. Results and Discussion

Fig. 1. Geometry of the dielectric open resonator.

The problem of calculating the electromagnetic

eigenmodes requires the solution of Maxwell’s equa-

tions and is generally very difficult. Considering a

dielectric open resonator, we introduce a transla-

tional symmetry in a transverse direction along the

z axis; see Fig. 1. This reduces the vector problem

to the solution of two independent scalar Helmholtz

equations for the transverse components Ez and

Hz of the electric and magnetic fields, respectively.

This simplification, together with the assumption of

a quasi-longitudinal vector k, makes it possible to

obtain analytical expressions for the eigenfrequen-

cies and oscillation damping. The solution of this model problem gives a correct understanding of the

diffraction losses in a dielectric open resonator.

Let an infinite prism |x| < l and |y| < a be filled with a dielectric with permeabilities ε and μ such

that n =
√
εμ ≥ 1. The ends |x| = l are covered with perfectly reflecting mirrors, and the faces |y| = a

directly border with vacuum; see Fig. 1. We look for two-dimensional (independent of z coordinate)

electromagnetic oscillations with a complex frequency ω = kc in the dielectric and the surrounding space.

Two types of oscillations are possible; for the first one,

�E = (0, 0, E), �H =

(
1

ikμ

∂E

∂y
,− 1

ikμ

∂E

∂x
, 0

)
, �E = (0, 0, E0), �H =

(
1

ik

∂E0

∂y
,− 1

ik

∂E0

∂x
, 0

)
(1)

inside the dielectric core and in the outer space, respectively.

Similarly, for the second mode,

�H = (0, 0, H), �E =

(
− 1

ikε

∂H

∂y
,
1

ikε

∂H

∂x
, 0

)
, �H = (0, 0, H0), �E =

(
− 1

ik

∂H0

∂y
,
1

ik

∂H0

∂x
, 0

)
. (2)

The functions E(x, y) and E0(x, y) are the solutions of the scalar wave equations

∂2E

∂x2
+

∂2E

∂y2
+ k2n2E = 0,

∂2E0

∂x2
+

∂2E0

∂y2
+ k2E0 = 0 (3)

satisfying the Malyuzhinets “extinguishing principle” [38] (boundedness for Im k > 0) and the boundary

conditions

E = E0,
1

μ

∂E

∂y
=

∂E0

∂y
for |y| = a, |x| < l,

(4)
E = 0 for |x| = l, |y| < a.
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The functions H(x, y) and H0(x, y) satisfy the following equations, similar to Eqs. (3), with the

boundary conditions

H = H0,
1

ε

∂H

∂y
=

∂H0

∂y
for |y| = a, |x| < l,

(5)
∂H

∂x
=

∂H0

∂x
= 0 for |x| = l, |y| < a.

Our task consists in determining the complex values of the wave number k, for which one of the

problems (4) or (5) has a nontrivial solution†.
Consider oscillations of the first type. The highest Q factor have those of them that are propagating

at small angles to the x axis inside the dielectric core; therefore, in the Ansatz,

E(x, y) = exp (iknx)u(x, y)± exp (−iknx)u(−x, y), (6)

the wave amplitude u(x, y) is a slowly varying function of the variable x. The electric field in vacuum, near

the faces |y| = a, is close to inhomogeneous plane waves with the same propagation velocity. Separating

out rapidly oscillating factors, we represent it in the form

E0(x, y) = exp (iknx)u0(x, y)± exp (−iknx)u0(−x, y). (7)

We substitute Egs. (6) and (7) into the wave equations (3), neglect the second derivatives in the x

variable, and obtain for u(x, y) the standard parabolic equation [18]

2 ikn
∂u

∂x
+

∂2u

∂y2
= 0, x > −l, |y| < a, (8)

while for u0(x, y), a modified parabolic equation

2 ikn
∂u0
∂x

+
∂2u0
∂y2

− k2 (n2 − 1)u0 = 0, x > −l, |y| > a, (9)

describing the transversal diffusion [19] on the background of exponential extinguishing of the EM wave

in the direction of the y axis. The boundary conditions (4) are transferred to the wave amplitudes,

u(x,±a) = u0(x,±a),
1

μ

∂u

∂y
(x,±a) =

∂u0
∂y

(x,±a), (10)

and from the “total reflection” condition, it follows

u(l, y) = ∓ exp(−2iknx)u(−l, y). (11)

The order of signs here is the same as in Eq. (6). The condition of absence of a field source outside the

resonator yields an “initial” condition u0(−l, y) = 0 and the requirement of the wave field boundedness

for Im k ≥ 0, cf. [19].

†It would be more natural to consider k to be real, and the refractive index n to be complex. The advantage of our
formulation lies in the possibility of a formal transition to the case of empty open cavity.
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We look for the function u(x, y) in the form of a Fourier series,

u(x, y) = exp(−iknx)

∞∑
s=−∞

Asws(y) exp
(
i
πsx

2l

)
. (12)

The condition (11) is satisfied, if the summation for the upper sign is carried out over odd powers of

s, and for the lower one over even powers of s. Substitution in Eq. (8) yields for ws(y) an ordinary

differential equation,

w′′
s + 2kn

(
kn− πs

2l

)
ws = 0, (13)

with elementary solutions

ws(y) =
cos

sin
λsy, λ2

s = 2kn
(
kn− πs

2l

)
. (14)

An analytical solution of Eq. (9) bounded for Im k ≥ 0, coinciding at y = ±a with the boundary

values u(x,±a) and satisfying the initial condition u0(−l, y) = 0, can be found by the Laplace transform

in the form

u0(x, y) =
1

2

∞∑
s=−∞

Asws(±a) exp

(
−i

λ2
s

2kn
x

)

×
{
exp

[
(|y| − a)

√
2knσs

]
Φ

[
(|y| − a)

√
kn

2(x+ l)
+ i
√
σs(x+ l)

]

+exp
[
(a− |y|)

√
2knσs

]
Φ

[
(|y| − a)

√
kn

2(x+ l)
− i
√

σs(x+ l)

]}
, (15)

where σs =
k(n2 − 1)

2n
− λ2

s

2kn
and Φ(z) is Fresnel integral Φ(z) =

2√
π
exp(−iπ/4)

∞∫
z

exp(iα2) dα.

By calculating the boundary value of the normal derivative

∂u0
∂y

(x,±a) = ∓ 2√
π
exp(−iπ/4)

∞∑
−∞

Asws(±a) exp

(
−i

λ2
s

2kn
x

)

×

⎧⎪⎪⎨
⎪⎪⎩i
√

2knσs

√
σs(x+l)∫
0

exp(−iα2)dα+

√
kn

2(x+ l)
exp[−iα2σs(x+ l)]

⎫⎪⎪⎬
⎪⎪⎭ (16)

equal, in virtue of the boundary condition (10), to

1

μ

∂u

∂y
(x,±a) =

∞∑
s=−∞

Asw
′
s(±a) exp

(
−i

λ2
s

2kn
x

)
, (17)

369



Journal of Russian Laser Research Volume 44, Number 4, July, 2023

we obtain an infinite set of algebraic equations for coefficients As,

As

⎧⎪⎨
⎪⎩
exp(−iπ/4)

μ

√
πl

kn
w′
s(a) + ws(a)

⎡
⎢⎣exp(−2iσsl) +

1 + 4iσsl√
2σsl

√
2σsl∫
0

exp(−iα2)dα

⎤
⎥⎦
⎫⎪⎬
⎪⎭

= −
∑
p �=s

Ap
wp(a)

(σp − σs)l

⎡
⎢⎢⎣√2σpl

√
2σpl∫
0

exp(−iα2)dα−
√

2σsl

√
2σsl∫
0

exp(−iα2)dα

⎤
⎥⎥⎦ . (18)

A nontrivial solution of these equations determines the eigenfunctions of our boundary problem, and the

condition of its re-solvability serves as a characteristic equation for the eigenvalues k.
If one of the coefficients (marked below as Aq) is large compared to the others, then, to the first

approximation, Eqs. (18) split into two separate equations as follows:

exp(−iπ/4)

μ

√
πl

kn
w′

s(a) + ws(a)

⎡
⎢⎣exp(−2iσsl) +

1 + 4iσsl√
2σsl

√
2σsl∫
0

exp(−iα2) dα

⎤
⎥⎦ = 0 , (19)

As

Aq
= −wq(a)

√
2σql

√
2σql∫
0

exp(−iα2) dα−
√
2σsl

√
2σsl∫
0

exp(−iα2) dα

(σq − σs)l

⎧⎪⎨
⎪⎩

exp(−iπ/4)

μ

√
πl

kn
w′

s(a) + ws(a)

⎡
⎢⎣exp(−2iσsl) +

1 + 4iσsl√
2σsl

√
2σsl∫
0

exp(−iα2) dα

⎤
⎥⎦
⎫⎪⎬
⎪⎭

(20)

determining the eigenvalues σq and the coefficients As.

Let us find an approximate solution of the characteristic equation (19). Of our interest are just those

oscillations, for which the value of λqa is of the order of unity – only under this condition the use of the

parabolic equation (8) is justified. In our case kα � 1, it is possible, if

k = kq + κ, kq = πq/2nl, κ = λ2
q/2kn

2 � λ2
q/2kqn

2. (21)

Here, q is a large integer number, and the correction κa � 1. Under this condition, it follows that

σq � kq(n
2 − 1)/2n, and Eqs. (14) and (19) yield

cos

sin
(λqa) = ±B(τ)

μM
λqa

sin

cos
(λqa), (22)

where

B(τ) =

√
2σql

√
2σql∫
0

exp(−iα2) dα−
√

2σsl

√
2σsl∫
0

exp(−iα2) dα

exp(−iτ2) +
1 + 2iτ2

τ

τ∫
0

exp(−iα2) dα

, (23)
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M = Mq =
√

2kqna2/l � 1, and τ = τq =
√

2σql �
√

kql(n2 − 1)/n. As quantity M is a large parameter

and function B(τ) is bounded, an approximate formula for λq reads

λq,m =
πm

2a
(1− δ), δ = δq,m =

B(τ)

μM
� 1. (24)

In the first case, m is an odd number, and in the second case, it is an even integer number.

From these calculations, Eq. (21) provides a complex-valued correction to the wave number,

k = kq + κq,m, kq =
πq

2nl
, κq,m � 1

8 kq

(πm
na

)2 [
1− 2

B(τq)

μMq

]
. (25)

The oscillations having different polarization can be studied in a similar way. If we look for the solution

to the boundary problem (9)–(10) in the following form:

H(x, y) = exp (iknx) v(x, y)∓ exp (−iknx) v(−x, y), (26)

then for the slowly varying magnetic field amplitude v(x, y), we obtain the same formulas as for u(x, y),

just substituting ε instead of μ. The derived formulas show that the properties of a dielectric open

resonator essentially depend on the dimensionless parameter τ ∼ τq =
√

kql(n2 − 1)/n.

For τ � 1, the function B(τ) is close to the limiting value B(0) = (1 + i)
√
π/2, and Eq. (26) takes

the form

κq,m � 1

8kq

(πm
a

)2(
1− eiπ/4

√
πl

kqa2

)
(27)

equivalent to the Vainshtein formula for an empty open resonator [15, 21] obtained by the method of

parabolic equation.

For τ � 1, after substituting the Fresnel integrals with their asymptotic values in (25), we arrive at

κq,m � 1

8kq

(πm
na

)2(
1− 2

μkqa
√
n2 − 1

− i
π

μk2qal(n
2 − 1)3/2

)
. (28)

Fig. 2. Complex admittance B(τ) as a function of pa-

rameter τ �
√
kl
n2 − 1

n
.

In the intermedium region, one should use the exact

formula (23).

In Fig. 2, we present the real and imaginary

parts of the function B(τ) allowing one to calcu-

late the eigenfrequencies and oscillation damping

for τ ∼ 1.

The analysis of Eq. (20) shows that, for s 	= q,

the coefficients As are small compared to Aq. Ne-

vertheless, neglecting them (corresponding to igno-

ring the effect of mutual transformation of the nor-

mal waves reflecting from the end face) is not en-

tirely correct. The comparison with more accurate

results of Vainshtein [15, 21], obtained by rigorous

solution of Maxwell’s equations, shows that for-

mula (28) gives a somewhat overestimated diffrac-

tion loss. These results can be refined by substi-

tuting the approximate values of As into Eqs. (18);

however, it would be difficult to obtain explicit formulas for the eigenvalues in this way.
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The characteristic value l0 � n/k(n2−1) corresponding to τ = 1 can be interpreted as the distance at

which, due to the effect of total internal reflection, a propagation mode concentrated inside the dielectric

core is formed. If l < l0, the presence of dielectric does not essentially influence the diffraction phenomena

in the resonator. For l > l0, a sharp decrease of diffraction loss takes place. For τ � 1, the quality factor

of the dielectric resonator reads

Q = − |k|
Im k

=
4k2qa

3l (n2 − 1)3/2

π2m2
=
√

π/2 τ3Q0, (29)

where Q0 is the quality of the equivalent empty resonator, with the same dimensions 2nl × 2na.

Consider a practical example.

In a typical case for small solid-state lasers, the dimensions of the resonator are as follows: half-length

l = 5 cm and core radius a = 0.5 cm; see Fig. 1; ruby refraction index n = 1.7. With these parameters,

the fundamental mode numbers are m = 1 and q ∼ 5 · 105; also, the quality factor reaches the values of

the order of Q = 1019, which is by eight orders of magnitude greater then Q0 = 1011 characteristic for an

empty resonator. Equation (29) agrees with the early results obtained by Buts and Kurilko [16] under

the additional assumption n2 − 1 � 1. It gives a qualitative estimate of the ruby laser quality factor

observed in the first experiments performed at the P. N. Lebedev Physical Institute [12,13]. To obtain a

precise quantitative estimate of the Q factor, the factors such as material absorption, mirror leakage, and

pump excitation should be taken into account. This can be done by adding small complex corrections to

the mirror reflectivity and core dielectric constant [15].

4. Conclusions

The accurate analysis presented here formally confirms the experimentally proven advantage of solid-

core open resonators, in the sense of small diffraction losses. The developed analytical approach can be

applied to a number of realistic open structures with rotational symmetry, such as a cylindrical dielectric

rod with circular translucent mirrors.
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