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Abstract

We study the squeezing and statistical properties of the light produced by nondegenerate three-level
lasers coupled to a vacuum reservoir, in which two different nondegenerate three-level atoms are injected
at constant rate into the cavity. Applying the pertinent master equation, we obtain the stochastic
differential equations associated with the normal ordering. Making the use of the solutions of the
resulting differential equations, the quadrature variances and the mean and variance of the photon
number sum and difference are described. We see that the mean and variance of the photon number
difference is positive; this fact indicates that the mean photon number of mode a, emitted from the
top level, is greater than that of mode b, emitted from the intermediate level of the three-level atom.
Moreover, we find that the mean and variance of the photon number difference decreases as η increases.
We observe that the squeezing is higher for large values of linear gain coefficient, and the maximum
squeezing occurs when the population of the atoms in the bottom level is slightly greater than that of
the top level.
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photon number.

1. Introduction

There has been a considerable interest in the analysis of the squeezing and statistical properties of

the light generated by three-level lasers [1–20]. A light mode to be in a squeezed state, if either the

change in plus quadrature or the change in minus quadrature is less than one, with the product of

the uncertainties in the two quadratures satisfying the uncertainty relation. Because of a smaller noise

in one quadrature component, the squeezed states of light have important applications in information

processing systems like quantum computations, photon detection, as well as in the field of high-precision

measurements [10, 20].

A three-level laser may be defined as a quantum optical system, in which the injected three-level

atoms in a cascade configuration are initially prepared in a coherent superposition of the top and bottom

levels and coupled to a vacuum reservoir via a single port mirror. When a three-level atom in a cascade

configuration makes a transition from the top to the bottom level via the intermediate level, two photons

are generated. If the two photons have the same frequency, then the three-level atom is called degenerate

three-level atom; otherwise, it is called nondegenerate one [3]. The two photons are highly correlated,

and this correlation is responsible for the production of squeezed light.

Three-level lasers, in which the crucial role is played by the coherent superposition of the top and

bottom levels of the injected atoms, have been studied by several authors [1–7]. These studies show that
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this quantum optical system can generate light in a squeezed state under certain conditions. Furthermore,

Tesfa [2] has studied the squeezing property of the cavity modes produced by a nondegenerate three-level

laser applying the solutions of stochastic differential equations. He has found that the two-mode cavity

radiation exhibits squeezing, if the atoms are initially prepared with more atoms in the bottom level than

in the upper level, and the degree of squeezing increases with the linear gain coefficient. He has shown

that the maximum intracavity squeezing is 50% below the coherent-state level.

In addition, Fesseha has studied the squeezing and statistical properties of the light produced by

a degenerate three-level laser, whose cavity contains a degenerate parametric amplifier [4]. His study

indicates that a more squeezed light could be generated by a combination of these two quantum optical

systems. On the other hand, Alebachew and Fesseha [10] have considered the same system with the

injected atoms having equal probabilities to be in the upper and lower levels and with these two levels

coupled by the pump mode emerging from the parametric amplifier. This study shows that the system

generates light in a squeezed state with a maximum intracavity squeezing of 93% below the coherent-state

level.

Fig. 1. Schematic representation of two non-
degenerate three-level lasers.

In this paper, we introduce a laser model in which bright

and squeezed light from two nondegenerate three-level atoms

is generated, where the cavity modes are coupled to a vacu-

um reservoir. The two atoms are different in preparation and

injection rate; see Fig. 1. In order to determine the squeez-

ing and statistical properties of the light produced by this

quantum optical system, we first derive c-number Langevin

equations using the pertinent master equation. Employing

the solutions of the resulting c-number Langevin equations

along with the properties of the Langevin forces, we calcu-

late the quadrature variance of the cavity mode. Applying

the same solutions, we also obtain the antinormally-ordered

characteristic function with the aid of which the Q-function

is determined. The resulting Q-function is then used to cal-

culate the mean and variance of the photon number sum and

difference of the cavity mode.

2. Stochastic Differential Equations

As it is clearly indicated in Fig. 1, the top, intermediate, and bottom levels of a three-level atom

are represented by |a〉, |b〉, and |c〉, respectively. We prefer to call the light emitted from the top level

light mode a and the one emitted from the intermediate level, light mode b. We assume the transitions

between levels |a〉 and |b〉 and between levels |b〉 and |c〉 to be dipole allowed, with direct transitions

between levels |a〉 and |c〉 to be dipole forbidden. We consider the case, for which the two cavity modes

are at resonance with the two transitions |a〉 → |b〉 and |b〉 → |c〉 having transition frequencies ωa and ωb,

respectively. The interaction of a nondegenerate three-level atom with two-mode cavity radiation can be

expressed in the interaction picture with the rotating-wave approximation (RWA) by the Hamiltonian of

the form [3]

Ĥ = ig
(
|a〉〈b|â− â†|b〉〈a|+ |b〉〈c|b̂− b̂†|c〉〈b|

)
, (1)
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where g is the coupling constant assumed to be the same for both transitions, and â and b̂ are the

annihilation operators for the cavity modes. Similarly, the Hamiltonian describing the interaction of the

cavity modes with the vacuum reservoir can be written as [20]

ĤSR(t) = i
∑
k

λk

(
â†ĉkei(ωa−ωk)t − âĉ†ke

−i(ωa−ωk)t + b̂†d̂kei(ωb−ωk)t − b̂d̂†ke
−i(ωb−ωk)t

)
, (2)

where λk is the coupling constant and ĉk and d̂k are the annihilation operators for a reservoir submode.

In this paper, we assume the state of a single three-level atom initially in the state

|ψA(0)〉 = Ca|a〉+ Cc|c〉, (3)

and hence, the density operator of a single atom is

ρ̂A(0) = ρ(0)aa |a〉〈a|+ ρ(0)ac |a〉〈c|+ ρ(0)ca |c〉〈a|+ ρ(0)cc |c〉〈c|, (4)

where

ρ(0)aa = |Ca|2 and ρ(0)cc = |Cc|2 (5)

are the initial probabilities of the atoms to be in the upper and lower levels, respectively, and

ρ(0)ac = CaC
∗
c and ρ(0)ca = CcC

∗
a (6)

represent the atomic coherence at the initial time. We note that

|ρ(0)ac |2 = ρ(0)aa ρ
(0)
cc . (7)

The master equation corresponding to Eq. (1) takes the form [4]

dρ̂(t)

dt
=

A1ρ
(0)
aa

2

(
2â†ρ̂â− ââ†ρ̂− ρ̂ââ†

)
+

A1ρ
(0)
cc

2

(
2b̂ρ̂b̂† − ρ̂b̂†b̂− b̂†b̂ρ̂

)

− A1ρ
(0)
ac

2

(
2â†ρ̂b̂† − b̂†â†ρ̂− ρ̂b̂†â†

)
− A1ρ

(0)
ca

2

(
2b̂ρ̂â− ρ̂âb̂− âb̂ρ̂

)
(8)

+
κ1

2

(
2âρ̂â† − â†âρ̂− ρ̂â†â+ 2b̂ρ̂b̂† − b̂†b̂ρ̂ρ̂b̂†b̂

)
,

where

A1 =
2g2ra
γ21

(9)

is the linear gain coefficient, κ1 is a cavity damping constant, and γ1 is the atomic decay constant, which

is considered to be the same for all the three levels. We note that Eq. (8) represents the master equation

for the cavity mode corresponding the Hamiltonian given by Eq. (1), when one type of atoms is injected

into the cavity at constant rate ra.

In view of Eq. (8), we can also write the master equation for the cavity mode, in which two different

types of atoms injected at rates ra and rb are

dρ̂(t)

dt
=

(A1 +A2)

2

{
ρ(0)aa

(
2â†ρ̂â− ââ†ρ̂− ρ̂ââ†

)
+ ρ(0)cc

(
2b̂ρ̂b̂† − ρ̂b̂†b̂− b̂†b̂ρ̂

)

− ρ(0)ac

(
2â†ρ̂b̂† − b̂†â†ρ̂− ρ̂b̂†â†

)
− ρ(0)ca

(
2b̂ρ̂â− ρ̂âb̂− âb̂ρ̂

)}
(10)

+
κ

2

(
2âρ̂â† − â†âρ̂− ρ̂â†â+ 2b̂ρ̂b̂† − b̂†b̂ρ̂− ρ̂b̂†b̂

)
,
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where

A2 =
2g22rb
γ22

and κ = κ1 + κ2. (11)

Equation (10) represents the stochastic master equation, which contains all necessary information on the

dynamics of the system.

3. C-Number Langevin Equations

We now seek to obtain the c-number Langevin equations associated with the normal ordering for the

cavity mode variables. To this end, employing the relation [5]

d

dt
〈Â〉 = Tr

(
dρ̂(t)

dt
Â

)
(12)

along with Eq. (10), we obtain that

d

dt
〈â〉 = 1

2
(Aρ(0)aa ) Tr

(
2â†ρ̂ââ− ââ†ρ̂â− ρ̂ââ†â

)
+

1

2
(Aρ(0)cc + κ) Tr

(
2b̂ρ̂b̂†â− ρ̂b̂†b̂â− b̂†b̂ρ̂â

)

− 1

2
(Aρ(0)ac ) Tr

(
2â†ρ̂b̂†â− b̂†â†ρ̂â− ρ̂b̂†â†â

)
− 1

2
(Aρ(0)ca ) Tr

(
2b̂ρ̂ââ− âb̂ρ̂â− ρ̂âb̂â

)

+
κ

2

[
Tr

(
2âρ̂â†â− â†âρ̂â− ρ̂â†ââ

)]
, (13)

where

A = A1 +A2. (14)

Applying the cyclic property of the trace operation and taking into account the bosonic commutation

relation

[â, â†] = [b̂, b̂†] = 1, (15)

the time evolution of the expectation value of the cavity mode variables is found to be

d

dt
〈â〉 = −1

2
μa〈â〉+ 1

2
ν−〈b̂†〉, d

dt
〈b̂〉 = −1

2
μc〈b̂〉+ 1

2
ν+〈â†〉, (16)

d

dt
〈â2〉 = −μa〈â2〉+ ν−〈b̂†â〉, d

dt
〈b̂2〉 = −μc〈b̂2〉+ ν+〈â†b̂〉, (17)

d

dt
〈â†â〉 = −μa〈â†â〉+ 1

2
ν−〈â†b̂†〉+ 1

2
ν∗−〈âb̂〉+Aρ(0)aa , (18)

d

dt
〈b̂†b̂〉 = −μc〈b̂†b̂〉+ 1

2
ν+〈b̂†â†〉+ 1

2
ν∗+〈âb̂〉, (19)

d

dt
〈â†b̂〉 = −1

2
(μa + μc)〈â†b̂〉+ 1

2
ν+〈â†2〉+ 1

2
ν∗−〈b̂2〉, (20)

d

dt
〈âb̂〉 = −1

2
(μa + μc)〈âb̂〉+ 1

2
ν+〈â†â〉+ 1

2
ν−〈b̂†b̂〉+ 1

2
ν+, (21)

where

μa = κ −Aρ(0)aa , μc = κ +Aρ(0)cc , ν− = −Aρ(0)ac , ν+ = +Aρ(0)ac . (22)
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We note that the operators in the above equations are in the normal order. The c-number equations

corresponding to Eqs. (16)–(21) are [2]

d

dt
〈α〉 = −1

2
μa〈α〉+ 1

2
ν−〈β∗〉, d

dt
〈β〉 = −1

2
μc〈β〉+ 1

2
ν+〈α∗〉, (23)

d

dt
〈α2〉 = −μa〈α2〉+ ν−〈β∗α〉, d

dt
〈β2〉 = −μc〈β2〉+ ν+〈α∗β〉, (24)

d

dt
〈α∗α〉 = −μa〈α∗α〉+ 1

2
ν−〈α∗β∗〉+ 1

2
ν∗−〈αβ〉+Aρ(0)aa , (25)

d

dt
〈β∗β〉 = −μc〈β∗β〉+ 1

2
ν+〈β∗α∗〉+ 1

2
ν∗+〈αβ〉, (26)

d

dt
〈α∗β〉 = −1

2
(μa + μc)〈α∗β〉+ 1

2
ν+〈α∗2〉+ 1

2
ν∗−〈β2〉, (27)

d

dt
〈αβ〉 = −1

2
(μa + μc)〈αβ〉+ 1

2
ν+〈α∗α〉+ 1

2
ν−〈β∗β〉+ 1

2
ν+. (28)

On the basis of Eqs. (23), we can write

d

dt
α(t) = −1

2
μaα(t) +

1

2
ν−β∗(t) + fα(t),

d

dt
β∗(t) = −1

2
μcβ

∗(t) +
1

2
ν∗+α(t) + f∗

β(t), (29)

where fα(t) and fβ(t) are Langevin forces, the properties of which remain to be determined, and α(t)

and β(t) are the c-number variables corresponding to the cavity mode operators â and b̂.

The formal solutions of these equations can be put in the form [20]

α(t) = α(0)e−μat/2 +

∫ t

0
dt′e−μa(t−t′)/2

[
1

2
ν−β∗(t′) + fα(t

′)
]
, (30)

β∗(t) = β∗(0)e−μct/2 +

∫ t

0
dt′e−μc(t−t′)/2

[
1

2
ν∗+α(t

′) + f∗
β(t

′)
]
. (31)

Making the use of Eqs. (23), the correlation properties of the Langevin forces can be readily put as [3]

〈fα(t)〉 = 〈fβ(t)〉 = 0, 〈fα(t′)fα(t)〉 = 0, (32)

〈fβ(t′)fβ(t)〉 = 〈f∗
α(t

′)fβ(t)〉 = 0, 〈f∗
α(t

′)fα(t)〉 = Aρ(0)aa δ(t− t′), (33)

〈f∗
β(t

′)fβ(t)〉 = 0, 〈fα(t′)fβ(t)〉 = 1

2
ν+δ(t− t′). (34)

The results described by Eqs. (32)–(34) represent the correlation properties of the Langevin forces fα(t)

and fβ(t) associated with the normal ordering.

4. Quadrature Variance of the Cavity Modes

Here, we seek to analyze the quadrature squeezing of the two-mode light in the cavity. The squeezing

properties of the two-mode light in the cavity can be described by two quadrature operators defined

by [20]

ĉ± =
√±1(ĉ† ± ĉ), where ĉ =

1√
2
(â+ b̂), (35)
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with â and b̂ representing the separate modes of cavity light emitted from the three-level atoms. The

two-mode light is said to be in a squeezed state, if either Δc2+ < 1 and Δc2− > 1 or Δc2+ > 1 and Δc21 < 1,

such that Δc+Δc− ≥ 1 [3, 20].

The variances of the quadrature operator, defined by

Δc2± = 〈ĉ2±〉 − 〈ĉ±〉2, (36)

can be expressed in terms of c-number variables associated with the normal ordering as

Δc2± = 1 + 〈α∗(t)α(t)〉+ 〈β∗(t)β(t)〉 ± 2〈β(t)α(t)〉. (37)

Using the fact that the Langevin force at time t does not affect the cavity mode variables at earlier time

and taking the cavity modes to be initially in a vacuum state, one can easily establish that

〈α(t)〉 = 〈β(t)〉 = 0, 〈α2(t)〉 = 〈β2(t)〉 = 〈β∗(t)α(t)〉 = 0, (38)

〈α∗(t)α(t)〉 = A∗
+[A+Aρ

(0)
aa + 2ν−ν∗+/2] + 2ν∗−A+ν+/2

|2λ|2(λ∗− + λ−)/2

[
1− e−(λ∗

−+λ−)t/2
]

− A∗
+[A−Aρ

(0)
aa + 2ν−ν∗+/2] + 2ν∗−A−ν+/2
|2λ|2(λ∗− + λ+)/2

[
1− e−(λ∗

−+λ+)t/2
]

− A∗−[A+Aρ
(0)
aa + 2ν−ν∗+/2] + 2ν∗−A+ν+/2

|2λ|2(λ∗
+ + λ−)/2

[
1− e−(λ∗

++λ−)t/2
]

+
A∗−[A−Aρ

(0)
aa + 2ν−ν∗+/2] + 2ν∗−A−ν+/2
|2λ|2(λ∗

+ + λ+)/2

[
1− e−(λ∗

++λ+)t/2
]
, (39)

〈β∗(t)β(t)〉 = A∗
+ − 2ν∗+ν+/2− 2ν+[A+ν

∗
+/2− 2ν∗+Aρ

(0)
aa ]

|2λ|2(λ∗
+ + λ+)/2

[
1− e−(λ∗

++λ+)t/2
]

− A∗
+ − 2ν∗+ν+/2− 2ν+[A−ν∗+/2− 2ν∗+Aρ

(0)
aa ]

|2λ|2(λ∗
+ + λ−)/2

[
1− e−(λ∗

++λ−)t/2
]

− A∗− − 2ν∗+ν+/2− 2ν+[A+ν
∗
+/2− 2ν∗+Aρ

(0)
aa ]

|2λ|2(λ∗− + λ+)/2

[
1− e−(λ∗

−+λ+)t/2
]

+
A∗− − 2ν∗+ν+/2− 2ν+[A−ν∗+/2− 2ν∗+Aρ

(0)
aa ]

|2λ|2(λ∗− + λ−)/2

[
1− e−(λ∗

−+λ−)t/2
]
, (40)
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and

〈α(t)β(t)〉 = A∗
+A+ν+/2− 2ν+[A+Aρ

(0)
aa + 2ν−ν∗+/2]

|2λ|2(λ∗
+ + λ−)/2

[
1− e−(λ∗

++λ−)t/2
]

− A∗
+A−ν+/2− 2ν+[A−Aρ

(0)
aa + 2ν−ν∗+/2]

|2λ|2(λ∗
+ + λ+)/2

[
1− e−(λ∗

++λ+)t/2
]

− A∗−A+ν+/2− 2ν+[A+Aρ
(0)
aa + 2ν−ν∗+/2]

|2λ|2(λ∗− + λ−)/2

[
1− e−(λ∗

−+λ−)t/2
]

+
A∗−A−ν+/2− 2ν+[A−Aρ

(0)
aa + 2ν−ν∗+/2]

|2λ|2(λ∗− + λ+)/2

[
1− e−(λ∗

−+λ+)t/2
]
. (41)

Now substitution of Eqs. (39)–(41) into Eq. (37) leads to

Δc2± = ± 1

|2λ|2
{
(A+ ± 2ν∗+)[(A∗

+ ± 2ν+)Aρ
(0)
aa ∓ (A∗− ∓ 2ν∗−)ν+/2]

λ− + λ∗−
(A− ∓ 2ν−)∓ (A∗

+ ± 2ν+)ν
∗
+/2

λ− + λ∗−

}[
1− e−(λ−+λ∗

−)t/2
]

± 1

|2λ|2
{
(A− ± 2ν∗+)[(A∗− ± 2ν+)Aρ

(0)
aa ∓ (A∗

+ ∓ 2ν∗−)ν+/2]
λ+ + λ∗

+

+
(A+ ∓ 2ν−)∓ (A∗− ± 2ν+)ν

∗
+/2

λ+ + λ∗
+

}[
1− e−(λ++λ∗

+)t/2
]

∓ 2

|2λ|2
{
(A− ± 2ν∗+)[(A∗

+ ± 2ν+)Aρ
(0)
aa ∓ (A∗− ∓ 2ν∗−)ν+/2]

λ+ + λ∗−

+
(A+ ∓ 2ν−)∓ (A∗

+ ± 2ν+)ν
∗
+/2

λ+ + λ∗−

}[
1− e−(λ++λ∗

−)t/2
]
. (42)

Equation (42) takes at steady state the form

Δc2± = 1 +
2

|2λ|2
{ |A+ ± 2ν∗+|2

λ− + λ∗−
+

|A− ± 2ν∗+|2
λ+ + λ∗

+

− (A∗
+ ± 2ν+)(A− ± 2ν∗+)

λ+ + λ∗−

−(A+ ± 2ν∗+)(A∗− ± 2ν+)

λ∗
+ + λ−

}
Aρ(0)aa ∓ 2

|2λ|2
{
(A+ ± 2ν∗+)(A∗− ∓ 2ν∗−)

λ− + λ∗−
+

(A∗
+ ∓ 2ν∗−)(A− ± 2ν∗+)

λ+ + λ∗
+

−(A∗− ∓ 2ν∗−)(A− ± 2ν∗+)
λ+ + λ∗−

− (A∗
+ ∓ 2ν∗−)(A+ ± 2ν∗+)

λ∗
+ + λ−

}
ν+/2∓ 2

|2λ|2
{
(A∗

+ ± 2ν+)(A− ∓ 2ν−)
λ− + λ∗−

+
(A+ ∓ 2ν−)(A∗− ± 2ν+)

λ+ + λ∗
+

− (A+ ∓ 2ν−)(A∗
+ ± 2ν+)

λ+ + λ∗−
− (A∗− ± 2ν+)(A− ∓ 2ν−)

λ∗
+ + λ−

}
ν∗+/2. (43)

In order to have a mathematically manageable analysis, we take ρac = ρca. Now, in view of this and

Eq. (7), we have

2ν± = 2ν∗± = ±A
√

1− η2, λ = λ∗ = Aη,

A± = A∗
± = A±Aη, λ± = λ∗

± =
1

2
(2κ +Aη ±Aη), ρ(0)aa =

1

2
(1− η). (44)

273



Journal of Russian Laser Research Volume 43, Number 3, May, 2022

So that with the aid Eqs. (43) and (44), we get

Δc2± = 1± A
√

1− η2(2κ +Aη +A)±A(1− η)(2κ + 2Aη +A)

2(κ +Aη)(2κ +Aη)
, (45)

where η = ρ
(0)
cc − ρ

(0)
aa describes the initial preparation of a three-level atom.

Fig. 2. Quadrature variance, Eq. (45), versus η for A =
100 and κ = 0.8.

Fig. 3. Quadrature variances, Eq. (45), versus η for
different values of the total linear gain coefficient A =
100 (the solid curve), A = 200 (the dashed curve), and
A = 300 (the dotted curve) and κ = 0.8.

Equation (45) represents the variances of the cavity mode at steady state for two nondegenerate

three-level atoms coupled to a vacuum reservoir. In Fig. 2, we plot the minus quadrature variance of the

two-mode light, Eq. (45), versus η, where the minimum value of the quadrature variance for A = 100

and κ = 0.8 is found to be Δc2− = 0.3467 and occurs at η = 0.18. This result implies that the maximum

intracavity squeezing for the above values is 65.3% below the coherent-state level. This result is greater

than the one obtained by Tesfa [2].

In Fig. 3, we represent the variances of the minus quadrature, Eq. (45), versus η for different values

of A. Here, one can see that the degree of squeezing increases with the total linear gain coefficient and

almost perfect squeezing can be obtained for large values of the linear gain coefficient and for small values

of η. Thus, we realize that better squeezing can be achieved by preparing the atoms initially in such a

way that slightly more atoms are in the lower level than in the upper level. We also see that the degree of

squeezing increases with the total linear gain coefficient, which is in a complete agreement with previous

studies [2, 4, 11].

5. Photon Statistics

In order to know about the brightness of the generated light, it is necessary to study the mean number

of photon pairs describing the two-mode cavity radiation that can be defined as [18]

n̄ = 〈ĉ†ĉ〉. (46)
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It is possible to put this expression in terms of c-number variables associated with the normal ordering,

namely,

n̄ =
1

2

[
〈α∗(t)α(t)〉+ 〈β∗(t)β(t)〉+ 〈β∗(t)α(t)〉+ 〈α∗(t)β(t)〉

]
. (47)

In view of Eq. (38), Eq. (47) is reduced to

n̄ =
1

2

[
〈α∗(t)α(t)〉+ 〈β∗(t)β(t)〉

]
; (48)

this equation represents the mean photon number pair of the system.

Fig. 4. The mean photon number, Eq. (48), versus η for different values of the total linear gain coefficient
A = 100 (the solid curve), A = 50 (the dashed curve), and A = 25 (the dotted curve) and κ = 0.8.

In Fig. 4, we plot the mean photon number of the two-mode light versus η for different values of the

total linear gain coefficient. It is very easy to see from Fig. 4 that this system generates a bright and

highly-squeezed light. We also notice that the mean number of photons is larger for small values of η, at

which the squeezing is found to be relatively higher.

6. The Q-Function

Using the solutions of the c-number Langevin equations, one can readily establish the antinormally-

ordered characteristic function defined in the Heisenberg picture for the cavity modes. With the aid of

the resulting characteristic function, we obtain the Q-function, which is then used to calculate the mean

and variance of the photon number sum and difference for the cavity modes.

The Q-function for a two-mode light can be expressed as [3]

Q(α, β, t) =
1

π2

∫
d2z

π

d2w

π
ΦA(z, w, t)e

z∗α−zα∗+w∗β−wβ∗
, (49)

with the characteristic function ΦA(z, w, t) defined in the Heisenberg picture by

ΦA(z, w, t) = Tr
[
ρ(0)e−z∗â(t)ezâ

†(t)e−w∗b̂(t)ewb̂†(t)
]
. (50)
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Employing the Baker–Hausdorff identity, we can rewrite Eq. (50) in the normal order as follows:

ΦA(z, w, t) = e−z∗z−w∗w Tr
[
ρ(0)ezâ

†(t)e−z∗â(t)ewb̂†(t)e−w∗b̂(t)
]
, (51)

so that the corresponding c-number equation is

ΦA(z, w, t) = e−z∗z−w∗w
〈
ezα

∗(t)−z∗α(t)+wβ∗(t)−w∗β(t)
〉
. (52)

We recall that

d

dt
〈α(t)〉 = −1

2
μa〈α(t)〉+ 1

2
ν−〈β∗(t)〉, d

dt
〈β(t)〉 = −1

2
μc〈β(t)〉+ 1

2
ν+〈α∗(t)〉. (53)

We see that Eqs. (53) are linear differential equations for α(t) and β(t). On account of Eqs. (53) and (38),

we observe that α(t) and β(t) are Gaussian variables with a vanishing mean. In view of this, Eq. (52)

can be rewritten as follows [20]:

ΦA(z, w, t) = e−z∗z−w∗w exp

[〈
1

2
(zα∗(t)− z∗α(t) + wβ∗(t)− w∗β(t))2

〉]
. (54)

Hence on account of Eqs. (38)–(41), the characteristic function can be put in the form

ΦA(z, w, t) = e−aαz∗z+z∗w∗b+zwb∗e−aβw
∗w, (55)

where

aα = 1 +
A(1− η)(4κ + 3Aη +A)

4(κ +Aη)(2κ +Aη)
, aβ = 1 +

A2(1− η2)

4(κ +Aη)(2κ +Aη)
, (56)

and

b =
A
√

1− η2(2κ +Aη +A)

4(κ +Aη)(2κ +Aη)
. (57)

Now inserting (55) into Eq. (49) and carrying out the integration with the help of

∫
d2z

π2
exp(−azz∗ + bz + cz∗ +Az2 +Bz∗2) =

1√
a2 − 4AB

exp

[
abc+Ac2 +Bb2

a2 − 4AB

]
, a > 0, (58)

we obtain

Q(α, β, t) =
uαuβ − v∗v

π2
exp

[− uβα
∗α+ αv∗β + α∗vβ∗ − uαβ

∗β
]
, (59)

where

uα =
aα

aαaβ − b∗b
, uβ =

aβ
aαaβ − b∗b

, v =
b

aαaβ − b∗b
. (60)

7. Mean of the Photon Number Sum and Difference

We define the operators representing the photon number sum and difference of mode a and mode b

by

n̂± = â†â± b̂†b̂. (61)
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The mean of the photon number sum and difference can be written in terms of the Q-function as follows:

n± =

∫
d2α d2β Q(α, β, t) (α∗α± β∗β − 1∓ 1) . (62)

Now applying the Q-function of Eq. (59) to Eq. (62) and performing the integration with the help of

Eq. (58), we arrive at

n± = (uαuβ − v∗v)
(

∂

r∂uβ
± ∂

∂uα
− 1∓ 1

)
×

(
1

uαuβ − v∗v

)
, (63)

from which follows

n± = na ± nb, (64)

where

na =
uα

uαuβ − v∗v
− 1 and nb =

uβ
uαuβ − v∗v

− 1 (65)

are the mean photon numbers of mode a and mode b. With the aid of Eqs. (60) and (56), we obtain

na =
A(1− η)(4κ + 3Aη +A)

4(κ +Aη)(2κ +Aη)
and nb =

A2(1− η2)

4(κ +Aη)(2κ +Aη)
. (66)

On account of Eqs. (66), the mean of the photon number sum and difference can be written as follows:

n± = A(1− η)2(2κ +Aη) + (1± 1)A(1 + η)4(κ +Aη)(2κ +Aη). (67)

This is the mean of the photon number sum and difference for the cavity modes produced by two different

nondegenerate three-level atoms coupled to a vacuum reservoir. We see from Eq. (67) that the mean of

the photon number difference is positive. This fact shows that the mean photon number of mode a is

greater than that of mode b due to the three-level laser.

8. Variances of the Photon Number Sum and Difference

The variances of the photon number sum and difference defined by

Δn2
± = 〈(â†â± b̂†b̂)2〉 − 〈â†â± b̂†b̂〉2 (68)

can be expressed as

Δn2
± = Δn2

a +Δn2
b ± 2nab, (69)

in which Δn2
a = 〈(â†â)2〉−n2

a is the photon number variance of mode a, Δn2
b = 〈(b̂†b̂)2〉−n2

b is the photon

number variance of mode b, and nab = 〈â†âb̂†b̂〉 − nanb, with na = 〈â†â〉 and nb = 〈b̂†b̂〉.
Using the commutation relation [â, â†] = 1, we can write

Δn2
a = 〈â2â†2〉 − n2

a − 3na − 2. (70)

The first term on the right side of Eq. (70) can be expressed in terms of the Q-function as [3]

〈â2â†2〉 =
∫

dα2dβ2Q(α, β, t)α∗2α2. (71)

Now applying the Q-function of Eq. (59) to Eq. (71) and performing the integration, we obtain

〈â2â†2〉 = 2(na + 1)2. (72)
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Fig. 5. The mean of the photon number difference,
Eq. (67), versus η (the solid curve) and the variances
of the photon number difference, Eq. (75), versus
η (dotted curve) for A = 100 and κ = 0.8.

Therefore, substitution of Eq. (72) into Eq. (70) yields

Δn2
a = n2

a + na. (73)

Following the same procedure, we easily obtain

Δn2
b = n2

b + nb and nab = |b|2. (74)

Hence combination of Eqs. (69), (73), and (74) results

in

Δn2
± = n2

a + na + n2
b + nb ± 2|b|2. (75)

In Fig. 5, we see that the mean and variances of the

photon number difference is positive. This indicates

that the cavity radiation exhibits a super-Poissonian

photon statistics [20].

9. Conclusions

In this paper, we studied the squeezing and statistical properties of the cavity modes produced by two

nondegenerate three-level atoms, with the cavity mode coupled to a vacuum reservoir. We obtained the c-

number Langevin equations associated with the normal ordering, using the master equation. Applying the

solutions of the resulting Langevin equations, we calculated the quadrature variances. The light produced

by the system under consideration is in a squeezing state with a maximum intracavity squeezing of 65.3%

below the coherent-state level. This result is greater than the one obtained by Tesfa [2]. We found that

the degree of squeezing increases with the total linear gain coefficient and almost perfect squeezing can

be obtained for large values of the total linear gain coefficient and for small values of η, which is in a

complete agreement with previous studies.

We determined the mean and variances of the photon number sum and difference for the cavity modes

employing the Q-function. The result shows that the mean photon number of mode a is greater than

that of mode b. Furthermore, we also observed that the photon number statistics is super-Poissonian.
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