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Abstract

Multilayer-lidar-used solution is popular though financial consumption is extremely expensive. In
addition, multilayer lidars are barely able to reconstruct an incremental three-dimensional (3D) spatial
mapping, due to the limited pitch-angler movement. To solve this problem, in this paper we design and
develop a device employed a low budget single-layer lidar and a stepping motor. Spatial coordinate
algorithm converts single-layer lidar data from polar coordinates to Cartesian coordinates (3D). Then
the converted point cloud data is processed in two stage. In the first stage, the converted 3D data is
coarse registered by the SAC-IA algorithm to obtain a better initial pose. In the second stage, the ICP
algorithm is used to accurately register the point cloud data to reconstruct the incremental 3D spatial
mapping. The experiments performed show that the single-layer lidar used spatial mapping by the
two-stage method senses more complete space than that of using 16-layer lidar. The quantitative
analysis of the incremental 3D spatial mapping experiments show that the accuracy (0.0998) meets
the engineering requirements. Moreover, the lower cost (40% off) is also an advantage for low budget
applications.
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1. Introduction

At present, there are two main methods of 3D mapping. One is vision based and the other is lidar

based. For example, Lijun Qi et al. shoot the same scene at different shooting positions with the

binocular vision measurement principle and build a 3D model based on the visual difference between

the two images [1]. Pire et al. proposed a classic Binocular Stereo Vision SLAM algorithm called S-

PTAM system [2]. The system follows a parallel tracking and mapping strategy, and the tracking thread

estimates the camera pose at the frame rate. However, this method requires exact intensity of light and is

susceptible to light, which leads to instability. Henry et al. proposed a method using Kinect-style depth

cameras for dense 3D modeling [3]. Their experiments showed higher accuracy for building construction

and demonstrated its feasible application for economical gaming and entertainment, but problems like
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limited lighting repetitive structures and lack of distinctive feature have not been solved. Bingjie Wang

proposed a chaotic lidar for underwater ranging and three-dimension (3D) imaging applications [4].

In 2019, a novel method using a single-layer lidar and an inertial measurement unit (IMU) was

proposed [5]. This is expected to replace the multiple-layer lidar in perceiving surrounding environment.

The cost of the design is relatively low. However, there will be unavoidable errors, and 3D mapping cannot

be completed when data from two sensors are fused. According to this limitation, in this paper, we design

an algorithm to replace IMU by using spatial coordinate transformation, so as to reduce the error caused

by data fusion. In this paper, we design an algorithm to replace IMU with space coordinate conversion

to reduce the error caused by data fusion. It further processes the point cloud data to get better results

based on the traditional ICP registration algorithm, so as to complete 360◦ all-round 3D mapping.

2. Design Approach and Experimental Methodology

2.1. Experimental Platform

In this design, the UTM-30LX single-layer lidar is fixed on the rotating shaft of the stepper motor. In

Fig. 1, we present the design of the scanning lidar. The single-layer lidar continuously rotates clockwise

in the XOY horizontal plane with the Z axis as the rotation axis; see Fig. 1 a. The α in Fig. 1 b is the

angle between two adjacent scans. The radial lines display the scanning beam of the single-layer lidar.

a) b)

Fig. 1. Mechanical structure. Fig. 2. Experimental installation.

The device is mainly composed of the single-layer lidar, a STM32 microcontroller, stepper motor, and

power supply; see Fig. 2.

The single-layer lidar has a measuring angle range of 270˚ and 1081 points per scan of data. In

Fig. 3, we show the scanned area of the lidar, and the performance parameters of the single-layer lidar

are shown in Table 1.

2.2. Spatial Coordinate Algorithm

Let n
′
(n

′
= 1081) be the points received in a lidar scan and each scan time as S1 (S1 = 25 ms). Let ρ

be the measured distance data. The time of circular rotation for single-layer lidar is S2 (S2 = 3000 ms).
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Fig. 3. Diagram of the scanned area.

Table 1. Working Parameters Used in This Work.

Performance Parameters UTM-30LX

Accuracy at 0.1 to 10 m ±30 mm

Accuracy at 10 to 30 m ±50 mm

Scan frequency 40 Hz

Voltage 12.0 V DC ±10%

Operating Temperature −10 to 50◦C

Let α be the angle that between two adjacent beams of the single-layer lidar,

α = 270◦/n
′
. (1)

Time interval of each point emitted by the single-layer lidar can be denoted as

c = S1/n
′
. (2)

The single-layer lidar rotates b within the time c,

b = 360◦ × c/S2. (3)

As shown in Fig. 1, the angle between the first beam from the lidar and the negative y axis is π/4. Thus,

the Cartesian coordinates can be calculated out by (4),
⎧⎪⎨
⎪⎩

x = 0,

y = −ρ · cos(π/4),
z = ρ · sin(π/4).

(4)

By analogy, the coordinate equation of the lidar rotation can be obtained, using the notation ρi (i =

1, 2, 3 · · · 32430) being the distance collected by the lidar so that, when ni < 182 and mi < 32430;

ni = 1, 2, 3 . . . 1081; mi = 1, 2, 3 . . . 32430, it reads
⎧⎪⎨
⎪⎩

x = ρi · cos [(45◦π/180◦) + (ni − 1) · α] · sin(mib),

y = −ρi · cos [(45◦π/180◦) + (ni − 1) · α] · cos(mib),

z = ρi · sin [(45◦π/180◦) + (ni − 1) · α] .
(5)

When 181 < ni < 542 and mi < 32430,
⎧⎪⎨
⎪⎩

x = −ρi · cos [(135◦π/180◦)− (ni − 1) · α] · sin(mib),

y = ρi · cos [(135◦π/180◦)− (ni − 1) · α] · cos(mib),

z = ρi · sin [(135◦π/180◦)− (ni − 1) · α] .
(6)

When 541 < ni < 902 and mi < 32430,
⎧⎪⎨
⎪⎩

x = −ρi · cos [(ni − 1)α− (135◦π/180◦)] · sin(mib),

y = ρi · cos [(ni − 1)α− (135◦π/180◦)] · cos(mib),

z = −ρi · sin [(ni − 1)α− (135◦π/180◦)] .
(7)
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When 901 < ni < 1082 and mi < 32430,

⎧⎪⎨
⎪⎩

x = ρi · cos [(315◦π/180◦)− (ni − 1)α] · sin(mib),

y = −ρi · cos [(315◦π/180◦)− (ni − 1)α] · cos(mib),

z = −ρi · sin [(315◦π/180◦)− (ni − 1)α] .

(8)

The ni return to the initial value when the ni = 1081. The calculation stops untilmi = 32430. By analogy,

the point cloud space Cartesian coordinates of the lidar rotating to other angles can be calculated. Let

the collected data by the single-layer lidar be logged as a frame of point cloud data when the motor

rotates 360◦.

2.3. SAC-IA Algorithm

Sample consensus initial alignment (SAC-IA) is based on the corresponding relationship between the

fast point features histograms (FPFH) to complete the initial registration. Let P be a frame of point

cloud data. It selects n sampling points from the frame of point cloud P . It makes the sampled points

have as many FPFH features as possible. The threshold d is set in advance so that the distance between

the sampling points is larger than d. Traverse the points in the other frame of point cloud data Q to

find any point cloud data with similar FPFH features in the previous frame data P . The found point

cloud has a one-to-one correspondence with the point cloud data in the point cloud P . Afterwards, the

rigid transform matrix between corresponding points can be calculated. The “sum of distance error”

function is used to judge the performance of the current registration transformation; the function is

mostly expressed by Huber penalty function,

n∑
i=1

H(li)

⎧⎪⎨
⎪⎩

1

2
l2i , |li| < ml,

1

2
ml(2|li| −ml), |li| > ml.

(9)

Here, ml is the set value, li is the distance difference of the ith frame of pairwise corresponding points

after rigid transformation. Calculate the value of “sum of distance error” function after each rigid

transformation. The transformation matrix is the final registration transformation matrix when the

value is the smallest.

2.4. ICP Registration Algorithm

The current method of point cloud registration is mostly iterative closest point [6]. The point cloud

Q is registered to the Cartesian coordinate system of the point cloud P [7]. The central idea of ICP

algorithm is the optimum registration method based on least-square method. The algorithm is to rotate

and pan the point cloud Q, find the best rotation matrix R and translation transformation T , and

optimally match the point cloud Q with the point cloud P in the same Cartesian coordinate system.

According to the above introduction, P = {p1 . . . pn} refers the point cloud P , while Q = {q1 . . . qn}
refers the point cloud Q,

ei = pi −R× qi + T. (10)
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The least-squares problem is established; here, R and T are the lowest value that can make the sum of

squares error,

min J = 1/2×
n∑

i=1

‖pi − (R× qi + T )‖2 . (11)

According to R and T , we can register the point cloud P with the point cloud Q.

2.5. Evaluation Algorithm of Incremental 3D Spatial Mapping

Equation (11) can accurately reflect the accuracy of incremental 3D spatial mapping (3D spatial map

increases with the recorded data). Since the single-layer lidar obtains point cloud data through rotation of

360◦, it can be assumed that the data of the first scan and last scan are theoretically completely coincident.

The algorithm calculates the sum of the Euclidean distance between the corresponding points in the two

frames of data and divides it by the total number of point clouds scanned once to obtain the value of the

average distance. Let S be the evaluation score and gi, the data from the first scan. Also fi is the data

from the last scan, gi is the closest point to fi, and n = 1081 is the number of point cloud data in a scan.

Then we arrive at

S =

∑n
i=0 ‖gi − fi‖

n
. (12)

3. Experiment

3.1. Experimental Platform

We reconstructed an incremental 3D spatial mapping of the hall using a single-layer lidar and a

stepper motor system and compared it with the results of the 16-layer lidar. The experimental platform

has a processor (CPU) at 3.7 GHz, 16Gb RAM, discrete graphics card with 8Gb RAM, Windows 10

operating system, and VS 2013 version configuration PCL environment.

3.2. Experimental Procedure and Results

In order to verify the results, the hall was selected as the experimental site; it is shown in Fig. 4.

According to Sec. 2.2, we can obtain the collected data by single-layer lidar. In this way, an incremental

3D spatial mapping of the whole hall can be constructed. We collect seventeen frames of date in the hall,

and the distance data is converted into Cartesian space data through the spatial coordinate algorithm.

One frame of point cloud date is shown in Fig. 5.

3.2.1. First Stage SAC-IA Registration

First of all, two frames of point cloud data were selected randomly from the collected 17 frames of

point cloud data, and two frames of data can be registered in the same Cartesian coordinate system.

When the initial position deviation of two frames data is large, and two frames data are only registered

by the ICP, it tends to cause the problem of local optimum solution. In Fig. 6, we show the problem of

local optimum solution.
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Fig. 4. RGB picture of the experimental site. Fig. 5. One frame point cloud.

Fig. 6. Coarse registration effect. Fig. 7. Fine registration effect.

Fig. 8. Registration effect.

3.2.2. Second Stage ICP Registration

In the previous section, we obtained the point cloud data after SCA-IA coarse registration. One can

see that the effect of registration is not good. Thus, ICP fine registration is carried out, and the effect

after registration is shown in Fig. 7.

3.2.3. Experimental Results

Seventeen frames of point cloud data are registered with the two-step algorithm; the results are shown

in Fig. 8, left. After removing the ground and ceiling points, the 3D spatial mapping of the hall interior

is shown in Fig. 8, right.
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Table 2. Accuracy Evaluation of Incremental 3D Spatial Mapping.

Number of Frames 1 2 3 4 5 6 7 8 9 Average

Score 0.118 0.0904 0.0936 0.0973 0.0133 0.0125 0.087 0.0926 0.0609 0.0998

Fig. 9. Registration effect after removing the ground
and ceiling points.

Nine frames of data were randomly sampled

from all the data, and the nine frames of data were

reconstructed and scored. Calculate the average

score of the reconstruction of each frame; it is con-

sidered that the average value is the final score of

the whole incremental 3D spatial mapping. Table 2

shows that the score of the reconstruction algorithm

is 0.0998; it completely meets the requirements for

environmental exploration in some scenarios.

3.2.4. 16-Layer Lidar Reconstruction

Incremental 3D Spatial Mapping

We use the same method to register the point

cloud data collected by the 16-layer lidar in the hall. The results are shown in Fig. 9.

Comparing the registration effect of a single-layer lidar and 16-layer lidar, it is not difficult to find that

the 16-layer lidar can only reconstruct part of the environment. This is caused by the small pitch angle

range of the 16-layer lidar. The single-layer lidar is better than 16-layer lidar in terms of the integrity of

the incremental 3D spatial mapping.

3.3. Comparison of Incremental 3D Spatial Mapping Details of Multilayer Lidar and
Single-Layer Lidar

In Fig. 10 a, we see that there are more drift points at the connection between the wall and the ground

reconstructed by the multilayer lidar; for example, the red point clouds are drifting point. Figure 10

demonstrates that the reconstruction effect of the single-layer lidar is significantly better than that of the

multilayer lidar.

3.4. Cost Comparison
Table 3. The Current Price Comparison of Various

Sensors.

Device Cost, USD

Single-layer lidar + stepper motor 4000

16-layer lidar 8000

32-layer lidar 40000

One can see from Table 3 that this equipment

has obvious advantages in price compared with mul-

tilayer lidar.

4. Conclusions

The method elaborated uses a structure that combines a single-layer lidar with a stepping motor, so

that the single-layer lidar rotates clockwise around the Z axis in the horizontal direction to collect data.

The spatial coordinate algorithm is used to convert the two-dimensional (2D) coordinates in the data

into 3D coordinates. Then the two-stage registration algorithm (SAC-IA and ICP) is used to splice the

transformed data to complete the incremental 3D spatial mapping of the hall.
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a)

b)

Fig. 10. Detailed comparison of 3D spatial mapping of the multilayer lidar (a) and the single-layer lidar (b).

The single-layer lidar has great advantages compared with the multilayer lidar. It has much lower

cost than that of the multilayer lidar. In addition, the angle between two adjacent layer beams of

multilayer lidar is 2◦, while the angle of that in this approach is 0.25◦, which leads to a higher density

scan. In this design, SAC-IA coarse registration and ICP exact registration are used to reconstruct the

incremental 3D spatial mapping, and the 3D spatial mapping results are quantitatively analyzed. The

analysis shows that the accuracy on 3D spatial mapping of this design can meet the requirements for

engineering 3D reconstruction.

In future work, more registration algorithms need to be tested using this method to find a better

registration accuracy and a lower time consumption. At the same time, the experimental site can be

change to outdoor. Therefore, it is imperative to improve the SAC-IA and ICP registration method to

complete the incremental 3D spatial mapping of the outdoor scene.
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