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Abstract

We analyze the dynamics of N -qubit systems in the measurement space under the action of symmetric
Hamiltonians. We show that the evolution of the discrete distribution function, representing the global
properties of multipartite states, becomes quasicontinuous in the macroscopic limit N � 1. The short-
time dynamics can be approximately described as a propagation along “classical” trajectories in the
measurement space.
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1. Introduction

The phase-space methods are a natural framework for studying semiclassical dynamics of macroscopic

quantum systems. For quantum systems with a continuous dynamical symmetry, the density matrix ρ

is mapped into a quasidistribution function Wρ(Ω) defined on the corresponding classical phase-space

M, Ω ∈ M; see, e.g. [1] and references therein. The evolution of Wρ(Ω, t) is then governed by the so-

called Moyal differential) equation [2], which usually has a complicated form and contains higher-order

derivatives on the phase-space coordinates.

The main tool for the analysis of quantum–classical transition consists in expanding the exact evolu-

tion equation in powers of a small semiclassical parameter. The leading order of such a procedure usually

leads to the reduction of the Moyal bracket between Wρ(Ω, t) and the corresponding phase-space symbol

of the Hamiltonian to the Poisson brackets between them.

The situation becomes significantly more involved in the case of discrete symmetries, which are ap-

propriate to use for a nonredundant description of finite-dimensional systems as, for instance, a finite

number of qudits. For p, a prime number, a faithful phase-space mapping exists for pN ; N = 1, 2, . . .

dimensional systems [3–9], yet the dynamics of the corresponding quasidistributions are described by

extremely complicated finite-difference operators [10, 11]. In fact, the main drawback in the description

of the evolution in a discrete phase space is the absence of a natural ordering of the coordinates, and

their reordering (permutations) may significantly change the shape of the distribution [18,19]. As a con-

sequence, a typical “picture” of the evolution in discrete representation consists in an irregular sequence

of jumps of almost randomly distributed peaks [10,11]. Thus, even if discrete quasidistributions contain

full information on the corresponding N -qudit system but, unfortunately, they are not very convenient

for representation purposes [18, 19].

In macroscopic quantum systems, only correlation functions of collective observables can frequently

be efficiently assessed, both theoretically and experimentally [12, 13]. Such permutationally invariant
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functions, containing only partial information on the whole system, describe their global properties and

can be “gathered” in a single discrete quasidistribution, the so-called projected Q̃-function [14–16]. This

distribution function “lives” in a three-dimensional macroscopic measurement space M and comprises

complete and nonredundant information on all collective observables. The nonredundancy implies the

possibility of reconstructing the Q̃-distribution by collecting only a finite number of measured data.

In this paper, we analyze the dynamics of the discrete Q̃-function generated by permutationally

invariant Hamiltonians, focusing on the particular case of N -qubit systems. We show that the evolution

in the measurement space becomes smooth (quasicontinuous) in the macroscopic limit, N � 1, and

obtain approximate evolution equations for some simple Hamiltonians describing both interacting and

noninteracting qubits. A fundamental difference of our treatment from the standard SU(2) approach [17]

consists in describing the dynamics of arbitrary, not necessarily symmetric, initial multipartite states, in

a nonredundant way.

2. Preliminaries: Q̃-Distribution in the Measurement Space

Operators acting in N -qubit Hilbert space H2N = H⊗N
2 can be put in the one-to-one correspondence

with discrete distributions in the 2N×2N phase space, where each point is labeled by a pair of Z2-strings

(α, β) and α = (a1, . . . , aN ) and β = (b1, . . . , bN ) and ai, bi ∈ Z2. In particular, one can introduce analogs

of the Husimi Q-function and Glauber–Sudarshan P -function according to the maps [18–23],

f̂ ⇔
⎧⎨⎩ Qf (α, β) = Tr

[
Δ̂(−1)(α, β)f̂

]
,

Pf (α, β) = Tr
[
Δ̂(1)(α, β)f̂

]
,

(1)

where Δ̂(1)(α, β) and Δ̂(−1)(α, β) are dual kernels,

Δ̂(−1)(α, β) = |α, β〉〈α, β|, |α, β〉 = ⊗ΠN
i=1σ̂

(i)ai
z σ̂(i)bi

x |n0〉i, (2)

σ̂z = |0〉〈0| − |1〉〈1|, σ̂x = |0〉〈1|+ |1〉〈0|, (3)

Tr
[
Δ̂(1)(α, β)Δ̂(−1)(α′, β′)

]
= 2Nδαα′δββ′ , (4)

and the fiducial single-qubit states |n0〉i are fixed by n0 = (1, 1, 1)/
√
3 [24], so that the product |n0〉1,

. . . |n0〉N is a spin coherent state,

N⊗
i=1

|n0〉i =
∣∣∣∣∣ξ =

√
3− 1√
2

eiπ/4

〉
. (5)

The average value of any N -qubit operator is computed as a convolution

〈f̂〉 =
∑
α,β

Pf (α, β)Qρ(α, β), (6)

where Qρ(α, β) is the symbol of the density matrix ρ̂.

The kernels (2)–(4) satisfy the symmetry condition,

PΔ̂(±1)(α, β)P† =Δ̂(±1) (πα, πβ) ,
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where P is the permutation operator and πα is a permutation of the string α corresponding to P. Thus,

the P -symbol of any collective observable ŝ, invariant under permutations,

ŝ = P†ŝP, (7)

depends only on the symmetric functions of pairs (α, β), the so-called weights,

(α, β) ⇒ h =
(
h (α) , h(α+ β), h(β)

)
, (8)

where h(α) is the length of the string α,

0 ≤ h(α) =

N∑
i=1

ai = h (πα) ≤ N, (9)

i.e., the kernel Δ̂(1)(α, β) maps collective operators (7) into functions of weights (8),

Ps(α, β) = Tr
[
Δ̂(1)(α, β)ŝ

]
|h(α)=m,h(α+β)=n,h(β)=k ≡ Ps(m), m ≡ (m,n, k). (10)

Then, expression (6) for average values of collective operators (7) can be rewritten in the following form:

〈 ŝ 〉 =
∑
m

Ps(m)Q̃ρ(m), (11)

where

Q̃ρ(m) =
∑
α,β

Qρ(α, β)δh(α),mδh(β),nδh(α+β),k, m = (m,n, k), (12)

and m,n = 0, . . . , N , while k runs in steps of two from k = |m− n| to min(m+ n,N, 2N −m− n).

In other words, the Q̃-function (12) is a map of the density operator into a discrete function in a

three-dimensional N ×N ×N measurement space M of weights h contained inside a tetrahedron with

the vertices (0, 0, 0), (N, 0, N), (0, N,N), and (N,N, 0) [14]. As it follows from (11), the Q̃-function

contains all necessary information required for the determination of any collective property of a N -qubit

system. Thus, the Q̃-function can be considered as a collective distribution corresponding to an arbitrary

N -qubit state. The Q̃-function can be plotted as a collection of spheres, whose size is proportional to

the density of the distribution at a given point (m,n, k) ∈ M. In the macroscopic limit, N � 1, the

Q̃-functions tend to acquire smooth shapes and provide an intuitive representation of N -qubit states as

seen by collective observables.

In addition, since Q̃S·n(m) ∼ N/2− h · n, where n is a unit three-dimensional vector and

Ŝx,y,z =

N∑
i=1

σ̂(i)
x,y,z (13)

is a collective spin operator, the directions in the measurement space M can be associated with vectors

in the real configuration space, i.e.,

(m,n, k) ⇔ (x, z, y). (14)
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It is important to stress that the mapping

ρ̂ → Q̃ρ(m) = Tr
(
ρ̂Δ̂(−1)(m)

)
, (15)

Δ̂(−1)(m) =
∑
α,β

Δ̂(−1)(α, β) δh(α),m δh(β), n δh(α+β), k (16)

is not one-to-one (actually, it is a specific averaging), and thus Q̃ρ(m) does not contain the whole

microscopic information on the system.

3. The Evolution in the Measurement Space

The Schrödinger equation can be, in principle, exactly mapped onto the evolution equation for discrete

distribution functions (1), which solution, Qρ(α, β|t), would contain full information on the dynamics of

N -qubit systems for an arbitrary Hamiltonian. Unfortunately, the corresponding equations are extremely

complicated and can hardly be used in practice for studying the discrete phase-space evolution [10, 11].

On the other hand, the structure of the map (15) allows one to obtain the evolution equation for Q̃ρ (m|t)
in the case of symmetric Hamiltonians. Such equations are suitable for describing the global dynamics

of both symmetric and nonsymmetric initial states. Here, we analyze the evolution of Q̃ρ(m) under the

action of linear and quadratic spin Hamiltonians.

3.1. The Linear Evolution

For the simplest linear Hamiltonian

Ĥ =

N∑
j=1

σ̂(j)
z = Ŝz, (17)

the evolution equation in the measurement space takes the following form; see Appendix A:

∂tQ̃ρ(m,n, k) =
1

2
(2N + 2−m− n− k)

[
Q̃ρ(m,n− 1, k − 1)− Q̃ρ(m− 1, n− 1, k)

]
+
1

2
(2 + n+ k −m)

[
Q̃ρ(m− 1, n+ 1, k)− Q̃ρ(m,n+ 1, k + 1)

]
+
1

2
(2− n+m+ k)

[
Q̃ρ(m,n− 1, k + 1)− Q̃ρ(m+ 1, n− 1, k)

]
+
1

2
(2 +m+ n− k)

[
Q̃ρ(m+ 1, n+ 1, k)− Q̃ρ(m,n+ 1, k − 1)

]
. (18)

One can exactly solve the above equation, but it is more instructive to analyze its continuous limit.

Restricting the expansion of the finite difference operators to the first-order derivatives with respect to

the corresponding variables, we arrive at the following intuitively clear equation:

∂tQ̃ρ(m,n, k) ≈ (N − 2 k)
∂

∂m
Q̃ρ (m,n, k)− (N − 2m)

∂

∂k
Q̃ρ(m,n, k).

The above equation describes a solid rotation of an initial distribution with respect to the center of the

tetrahedron (N/2, N/2, N/2) in the plane (m, k),
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a) b) c)

Fig. 1. The evolution of Q̃ρ-function for the initial GHZ state (22) under the action of Hamiltonian Ĥ = Ŝz at
t = 0 (a), t = 0.5 (b), and t = 0.9 (c); N = 18.

Q̃ρ (m,n, k|t) ≈ Q̃ρ (m(t), n, k(t)|t = 0) , (19)

m(t) = (m−N/2) cos 2 t+ (N/2− k) sin 2 t+N/2, (20)

k(t) = (k −N/2) cos 2 t+ (m−N/2) sin 2 t+N/2, (21)

which is in a direct correspondence with the association (14). The above solution resembles the familiar

Liuovilian approximation, common in the standard semiclassical treatment of the phase-space evolution

for quantum systems with continuous dynamical symmetries [1, 17]. In such approximation, the phase-

space elements move along the classical trajectories, preserving their respective volumes. The existence

of the continuous limit of the evolution equation (18) indicates that the dynamics in the measurement

space becomes smooth in the macroscopic limit N � 1.

It can be appreciated from Fig. 1 that the distribution corresponding to the initial (symmetric)

GHZ state in the x basis,

|GHZ〉x =
|0 . . . 0〉x + |1 . . . 1〉x√

2
, σ̂(j)

x |0〉(j)x = |0〉(j)x , σ̂(j)
x |1〉(j)x = −|1〉(j)x , (22)

approximately rotates around the axis n (z) that passes through the center of the tetrahedron.

A similar behavior (see Fig. 2) can be observed in the evolution of the following factorized nonsym-

metric initial state in the x basis:

|ψ〉 = |0 . . . 0︸ ︷︷ ︸
k

1 . . . 1︸ ︷︷ ︸〉x
N−k

. (23)

In comparison, in Fig. 3, we plot the evolution of Qρ(α, β|t) corresponding to the initial GHZ state (22)

generated by the Hamiltonian (17) in the whole 2N×2N discrete phase space.

3.2. The Nonlinear Evolution

The quadratic Hamiltonian

Ĥ = Ŝ2
z =

N∑
j �=k

σ̂(j)
z σ̂(k)

z +N (24)

64



Volume 43, Number 1, January, 2022 Journal of Russian Laser Research

a) b) c)

Fig. 2. The evolution of Q̃ρ-function for the initial nonsymmetric factorized state (23), k = 4, under the action of

Hamiltonian Ĥ = Ŝz at t = 0 (a), t = 1 (b), and t = 2 (c); N = 18.

a) b) c)

Fig. 3. The evolution of full discrete Q(α, β) distribution (1) for the initial GHZ state (22) under the action of
Hamiltonian Ĥ = Ŝz at t = 0 (a), t = 0.5 (b), and t = 0.9 (c); N = 6.

generates spin–spin correlations for a wide class of initial N -qubit states. The corresponding evolution

equation for Q̃ρ (m|t) is significantly more involved than for the linear Hamiltonian (17); see Eq. (41) in

Appendix B, the first-order approximation to this equation in the continuous limit reads

∂tQ̃ρ(m,n, k) ≈ 2
√
3u(n, k,m)

∂

∂m
Q̃ρ(m,n, k)− 2

√
3u(m,n, k)

∂

∂k
Q̃ρ(m,n, k), (25)

where u(m,n, k) = (N − 2m)(N − 2n) +N − 2 k. Its solution

Q̃ρ (m,n, k|t) ≈ Q̃ρ (m(t), n, k(t)|t = 0) (26)

m(t) =
N

2
+

2
√
3u(n, k,m)

Ω(n)
sin (Ω(n)t)− N − 2m

2
cos (Ω(n)t) , (27)

k(t) =
N

2
− 2

√
3u(m,n, k)

Ω(n)
sin (Ω(n)t)− N − 2 k

2
cos (Ω(n)t) , (28)

where Ω(n) = 4
√
3
√

(N − 2n)2 − 1, describes rotations with the position-dependent frequency and

amplitudes, allowing to visualize the short-time deformations of the initial distribution. In practice,

the solution (26) is valid for times ∼N−1/2 as a consequence of neglecting the higher derivatives in the
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a) b) c)

Fig. 4. The evolution of Q̃ρ-function for the initial GHZ state (22) under the action of Hamiltonian Ĥ = Ŝ2
z at

t = 0 (a), t = 0.04 (b), and t = 0.09; N = 18 (c).

a) b) c)

Fig. 5. The evolution of Q̃ρ-function for the initial nonsymmetric state (23); k = 4, under the action of Hamiltonian

Ĥ = Ŝ2
z at t = 0 (a), t = 0.2 (b), and t = 0.4; N = 18 (c).

expansion of the exact finite-difference equation (41). Thus, Eqs. (27)–(28) can be approximated as

m(t) ≈ m+ 2
√
3h(n, k,m)t, (29)

k(t) ≈ k − 2
√
3h(m,n, k)t, (30)

which is quite similar to the semiclassical dynamics of quasidistributions over the sphere S2 [17] generated

by (24).

In Figs. 4 and 5, we plot Q̃ρ (m,n, k|t) for states (22) and (23) for different times, where the initial

diffusion described by the semiclassical approximation (26) is followed by a splitting of each maxima,

i.e., generation of Schrödinger-like cat states [25]. The splitting of the distribution corresponding to the

GHZ state occurs at times t ∼ π/32 due to the approximate permutational symmetry of the corresponding

Q̃ρ(m,n, k). The Q̃ρ(t)-function of state (23) splits into two pieces at t ∼ π/8, as expected [25].
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4. Conclusions

The analysis of the evolution in the measurement space provides a useful insight into the global pro-

perties of multipartite dynamics. The time-evolved Q̃ (m|t)-function represents the complete “collective

dynamics” and not only the evolution of a particular observable. The framework provided here allows

one, in particular, to visualize the evolution of nonsymmetric states in the macroscopic limit N � 1 as

a quasicontinuous motion in the (discrete) measurement space M. In addition, the short-time dynamics

can be described in a “semiclassical” approximation, where every point of the initial discrete distribution

propagates along a “classical” trajectory in M. Such a behavior of Q̃ρ (m|t)-functions resembles the

dynamics of continuous distributions (on classical manifolds) and is fundamentally different from that

of the distribution functions (1) in the full 2N×2N discrete phase space. It is worth noting that it

is possible to obtain a closed form of the (discrete) evolution equation for Q̃ρ (m|t)-function only for

symmetric Hamiltonians.
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5. Appendix A

The explicit form of the kernel (16) is [14]

Δ̂(−1)(m) =
1

2N

∑
γ,δ,α,β

χ(αδ + βγ + γδ)〈ẐγX̂δ〉ẐγX̂δδh,m, (31)

δh,m = δh(α),mδh(β),nδh(α+β),k, 〈ẐγX̂δ〉 = 〈ξ|ẐγX̂δ|ξ〉, (32)

where Ẑα = σ̂a1
z ⊗ . . .⊗ σ̂aN

z ; α = (a1, . . . , aN ) and X̂β = σ̂b1
x ⊗ . . .⊗ σ̂bN

x ; β = (b1, . . . , bN ), with aj , bj ∈ Z2

operators acting in the standard way in the computational basis {|κ〉 = |k1, . . . , kN 〉, ki ∈ Z2} in H2N

= H⊗N
2 [5],

Ẑα|κ〉 = (−1)ακ|κ〉, X̂β |κ〉 = |κ+ β〉, (33)

the multiplication and sum are mode 2 operations, ακ = a1k1 + · · · + aNkN ∈ Z2 and κ + β = (b1 +

k1, . . . , bN + kN ). It is convenient to consider the indices that label both states and operators acting in

H2N with elements of the finite field F2N .

The right multiplication of the collective operator Ŝz =
∑N

p=1 Ẑσp , where {σp, p = 1, . . . , N} are

elements of a self-dual basis in F2N , on the kernel (31) is transformed in the following way:

Δ̂(−1)(m)Ŝz =
1

2N

∑
γ,δ,α,β

∑
p

χ [αδ + βγ + (γ + σp)δ] 〈ẐγX̂δ〉Ẑγ+σpX̂δδh,m

=
1

2N

∑
γ,δ,α,β

∑
p

χ(αδ + βγ + γδ + βσp)〈Ẑγ+σpX̂δ〉ẐγX̂δδh,m (34)

=
1

2N

∑
γ,δ,α,β

∑
p

χ(αδ + βγ + γδ + βσp)〈ẐγX̂δ〉,
[
(3)γp

(i
√
3)δp√
3

(
−1

3

)γpδp
]
ẐγX̂δδh,m
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=
1

2N
√
3

∑
γ,δ,α,β

χ(αδ + βγ + γδ)〈ẐγX̂δ〉ẐγX̂δ

∑
p

(−1)βpδh,m (35)

+
1− i

√
3

2
√
3

1

2N

∑
γ,δ,α,β

χ(αδ + βγ + γδ)〈ẐγX̂δ〉ẐγX̂δ

×
∑
p

(−1)βpδh(α),mδh(β+σp),nδh(α+β+σp),k (36)

+
1

2N
√
3

∑
γ,δ,α,β

χ(αδ + βγ + γδ)〈ẐγX̂δ〉ẐγX̂δ

×
∑
p

(−1)βpδh(α+σp),mδh(β),nδh(α+β+σp),k (37)

+
1 + i

√
3

2
√
3

1

2N

∑
γ,δ,α,β

χ(αδ + βγ + γδ)〈ξ|ZγXδ|ξ〉ẐγX̂δ

×
∑
p

(−1)βpδh(α+σp),mδh(β+σp),nδh(α+β),k. (38)

Here, δp and γp denote the expansion coefficients of elements δ, γ ∈ F2N over a self-dual basis {σp, p =

1, . . . , N}; γ =
∑

p γpσp.

The sum in (35) can be easily computed,∑
p

(−1)βpδh(α),mδh(β),nδh(α+β),k = (N − 2h(β))δh(α),mδh(β),nδh(α+β),k.

The sum in (36) is transformed as follows:∑
p

(−1)βpδh(α),mδh(β+σp),nδh(α+β+σp),k =
∑
p

(1− 2βp)δh(α),mδh(β)+1−2βp,nδh(α+β)+1−2(αp+βp−2αpβp),k

(39)

=
∑
p

(1− αp)(1− βp)(1− 2βp)δh(α),mδh(β)+1,nδh(α+β)+1,k

+
∑
p

αp(1− βp)(1− 2βp)δh(α),mδh(β)+1,nδh(α+β)−1,k +
∑
p

(1− αp)βp(1− 2βp)δh(α),mδh(β)−1,nδh(α+β)−1,k

+
∑
p

αpβp(1− 2βp)δh(α),mδh(β)−1,nδh(α+β)+1,k

= Nδh(α)+1,mδh(β),nδh(α+β)+1,k +
1

2
h(α)δh(α)−1,mδh(β),nδh(α+β)−1,k −

1

2
h(α)δh(α)+1,mδh(β),nδh(α+β)+1,k

−1

2
h(β)δh(α)+1,mδh(β),nδh(α+β)−1,k −

1

2
h(β)δh(α)+1,mδh(β),nδh(α+β)+1,k −

1

2
h(α)δh(α)−1,mδh(β),nδh(α+β)+1,k

+
1

2
h(α)δh(α)+1,mδh(β),nδh(α+β)−1,k − 1

2
h(β)δh(α)−1,mδh(β),nδh(α+β)−1,k −

1

2
h(β)δh(α)−1,mδh(β),nδh(α+β)+1,k

+
1

2
h(α+ β)δh(α)−1,mδh(β),nδh(α+β)−1,k +

1

2
h(α+ β)δh(α)−1,mδh(β),nδh(α+β)+1,k

−1

2
h(α+ β)δh(α)+1,mδh(β),nδh(α+β)−1,k −

1

2
h(α+ β)δh(α)+1,mδh(β),nδh(α+β)+1,k.
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Computing in a similar way the sum in (37)–(38) and repeating the procedure for the left multiplication

ŜzΔ̂
(−1)(m), we arrive at the following form of the commutator:

[Δ̂(−1)(m), Ŝz]

=
i

2
(2N −m− n− k + 2)(Δ̂m,n−1,k−1 − Δ̂m−1,n−1,k) +

i

2
(n+ k −m+ 2)(Δ̂m−1,n+1,k − Δ̂m,n+1,k+1)

+
i

2
(m+ n− k + 2)(Δ̂m+1,n+1,k − Δ̂m,n+1,k−1) +

i

2
(m+ k − n+ 2)(Δ̂m,n−1,k+1 − Δ̂m+1,n−1,k). (40)

Observe that, in the case of nonsymmetric Hamiltonians, the sums over the elements of the basis in F2N

appearing in (36)–(37) would not be functions of the weights (9). Thus, multiplication of nonsymmetric

operators on the mapping kernel (31) is not reduced to the operations over its indices, as in (40).

6. Appendix B

Proceeding in a similar way as in the case of the linear Hamiltonian, we obtain the following equation

for Ĥ = Ŝ2
z :

∂tQ̃ρ(m,n, k) =
2∑

a,b,c=−2

gmnk(a, b, c)Q̃ρ(m+ a, n+ b, k + c), (41)

where

gm,n,k(−2,−2, 0) = −
√
3

12
(2N − n+ 4−m− k)(2N −m− n+ 2− k),

gm,n,k(−2,−1,−1) = 2gm,n,k(−2,−2, 0), gm,n,k(−2, 1, 1) = 2gm,N−n,N−k(−2,−2, 0),

gm,n,k(−1,−1,−2) = −2gm,n,k(−2,−2, 0), gm,n,k(0,−2,−2) = −gm,n,k(−2,−2, 0),

gm,n,k(0,−2, 2) = −gN−m,n,N−k(−2,−2, 0), gm,n,k(2, 1,−1) = −2gN−m,N−n,k(−2,−2, 0),

gm,n,k(−2, 2, 0) = gm,N−n,N−k(−2,−2, 0), gm,n,k(−1, 1, 2) = −2gm,N−n,N−k(−2,−2, 0),

gm,n,k(0, 2,−2) = gN−m,N−n,k(−2,−2, 0), gm,n,k(0, 2, 2) = −gm,N−n,N−k(−2,−2, 0),

gm,n,k(1,−1, 2) = −2gm,n,k(−2,−2, 0), gm,n,k(1, 1,−2) = 2gN−m,N−n,k(−2,−2, 0),

gm,n,k(2,−2, 0) = gN−m,n,N−k(−2,−2, 0), gm,n,k(2,−1, 1) = 2gN−m,n,N−k(−2,−2, 0),

gm,n,k(2, 2, 0) = −gN−m,N−n,k(−2,−2, 0),

gm,n,k(−2,−1, 1) =

√
3

6
(2N −m− n+ 2− k)(n+ 2 + k −m),

gm,n,k(−2, 0, 0) = gm,n,k(−2,−1, 1), gm,n,k(−2, 1,−1) = gm,n,k(−2,−1, 1),

gm,n,k(−1,−1, 2) = −gN−k,n,N−m(−2,−1, 1), gm,n,k(−1, 1,−2) = −gk,n,m(−2,−1, 1),

gm,n,k(2,−1,−1) = gN−m,n,N−k(−2,−1, 1), gm,n,k(0, 0,−2) = −gk,n,m(−2,−1, 1),

gm,n,k(0, 0, 2) = −gN−k,n,N−m(−2,−1, 1), gm,n,k(1,−1,−2) = −gk,n,m(−2,−1, 1),

gm,n,k(1, 1, 2) = −gN−k,n,N−m(−2,−1, 1), gm,n,k(2, 0, 0) = gN−m,n,N−k(−2,−1, 1),

gm,n,k(2, 1, 1) = gN−m,n,N−k(−2,−1, 1),
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gm,n,k(−1,−1, 0) = −
√
3

3
(N −m− n+ 1)(2N −m− n+ 2− k),

gm,n,k(−1, 1, 0) = gm,N−n,N−k(−1,−1, 0), gm,n,k(0,−1,−1) = −gk,n,m(−1,−1, 0),

gm,n,k(0,−1, 1) = −gN−k,n,N−m(−1,−1, 0), gm,n,k(0, 1,−1) = −gk,N−n,N−m(−1,−1, 0),

gm,n,k(0, 1, 1) = −gN−k,N−n,m(−1,−1, 0), gm,n,k(1,−1, 0) = gN−m,n,N−k(−1,−1, 0),

gm,n,k(1, 1, 0) = gN−m,N−n,k(−1,−1, 0), gm,n,k(0, 0, 0) = −2
√
3

3
(N − k −m)(k −m).
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