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Abstract

We study tomographic probability distributions of quantum states of two free particles. We construct
the conditional tomographic probability distribution of one random variable determining any quantum
state of the system of two free particles. We obtain explicit forms of the center-of-mass tomograms for
coherent states of the system of moving free particles and discuss the generalization of the results to
the case of several free particles.

Keywords: probability representation of quantum mechanics, symplectic tomography, quanrizer and

dequantizer operators.

1. Introduction

The quantum system states are described by wave functions [1,2] and density operators acting in the

Hilbert space [3–5]. It turned out that they can be also described by standard probability distribution

functions; see [6–8]. In such probability representations of quantum states for systems with continuous

variables like photons, the methods of quantum tomography like optical tomography [9–12] and symplectic

tomography [13] are used. For multimode systems, the center-of-mass tomography was introduced [14,15];

this probability representation of quantum states was studied in [16,17].

Usually quantum states of free particles are described by de Broglie waves, and recently for free-

particle coherent states symplectic tomograms were introduced. These tomograms are conditional proba-

bility distributions of the free particle positions measured in the phase-space reference frames with scaled

and rotated axes. For two particles, these symplectic tomograms depend on two random positions mea-

sured in common phase space with two scaled and rotated axes. The center-of-mass tomograms, being

dependent only on one random position determining the quantum state and introduced in [14, 15], were

discussed for oscillator systems.

The aim of this work is to study the center-of-mass tomography for coherent and Fock states of

two free particles usually associated with systems of two-dimensional oscillators. We follow the method

of integrals of motion of free particles recently employed to consider coherent states in the probability

representation of a single particle [18]. We apply this method for coherent and Fock states of two free

particles, using the approach based on center-of-mass tomography.

This paper is organized as follows.

In Sec. 2, we present the quantizer–dequantizer formalism [19] for center-of-mass tomography of

quantum states of two free particles, calculate the center-of-mass tomograms for coherent states of two
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free particles, obtain the center-of-mass tomographic-probability distribution of one random variable for

two free particles, and present the generalization of the problem to several free-particle states. In Sec. 3,

we give our conclusions and prospectives.

2. Quantuzer–Dequantizer Operators for Center-of-Mass Tomography

of Two Particles

Let us introduce the operators called dequantizers

Û2 (X,μ1, μ2, ν1, ν2) = δ
(
X 1̂− μ1q̂1 − μ2q̂2 − ν1p̂1 − ν2p̂2

)
, (1)

where X is a random position related to the center-of-mass of the system, q̂1 (p̂1) and q̂2 (p̂2) are the

position (momentum) operators of the first and second particles, respectively.

We discuss the meaning of formula (1) considering classical particles.

In classical mechanics, the classical state is described by two variables – position q0(t) and momentum

p0(t) obeying to the Newton equation of motion.

In classical statistical mechanics, the states are described by the probability densities in the phase

space f(q, p, t) obeying to the Liouville equation; if there is no fluctuation, the function is

f(q, p, t) = δ (q − q0(t)) δ (p− p0(t)) . (2)

The symplectic tomogram reads

w(X | μ, ν, t) =
∫

δ
(
q − q0(t)

)
δ
(
p− p0(t)

)
f(q, p, t) dq dp = δ (X − μq0(t)− νp0(t)) , (3)

corresponding to the Radon transform [20] of the probability density f(q, p, t) in the phase space descri-

bing the state in classical statistical mechanics. The inverse Radon transform maps the tomogram, which

is the conditional probability distribution of position X measured in an ensemble of reference frames in

the phase space labeled by real parameters μ = s cos θ and ν = s−1 sin θ, where θ is rotation angle of the

initial axes of the position and momentum in the particle’s phase space and s is the scaling parameter of

these axes.

There exists the following expression for the probability density given by the inverse Radon transform:

f(q, p, t) =
1

(2π)2

∫
ei(X−μq−νp)w(X | μ, ν, t) dX dμdν. (4)

This relation shows that the state of classical particle can be described by tomographic map (3) since

there exists an invertible map of the probability distribution of two random variables q and p onto the

conditional probability distribution of one random variable X given by the Radon transform. For two

particles, there exist two possibilities to construct such maps. The first possibility is given by the following

formula available for symplectic tomogram:

w (X1, X2 | μ1, μ2, ν1, ν2, t) =

∫
f (q1, p1, q2, p2, t)

⎧⎨
⎩

2∏
j=1

δ (Xj − μjqj − νjpj) dqj dpj

⎫⎬
⎭ . (5)
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The second possibility is provided by the formula corresponding to the new notion of state in classical

mechanics – the state of two classical particles can be described by the center-of-mass tomogram discussed

in quantum mechanics [14–17]. The center-of-mass tomogram of two classical particles reads

w (X | μ1, ν1, μ2, ν2, t) =

∫
f (q1, p1, q2, p2, t) δ (X − μ1q1 − ν1p1 − μ2q2 − ν2p2) dq1 dp1 dq2 dp2. (6)

If one considers the function

w (X | μ1, ν1, μ2, ν2, t) = Tr
[
ρ̂(t)Û2 (X,μ1, μ2, ν1, ν2)

]
(7)

for quantum-mechanical system of two particles with dequantizer given by Eq. (1), this function is center-

of-mass tomogram of the quantum state of a system of two particles; the density operator of this state is

determined by quantizer

D̂2 (X,μ1, ν1, μ2, ν2) =
1

(2π)2
ei(X1̂−μ1q̂1−μ2q̂2−ν1p̂1−ν2p̂2), (8)

in view of the relation

ρ̂(t) =

∫
w2 (X | μ1, ν1, μ2, ν2, t) D̂2 (X,μ1, ν1, μ2, ν2) dX dμ1dν1 dμ2 dν2. (9)

This means that the center-of-mass tomogram, being the conditional probability distribution of one

random variable X which depends on extra parameters μ1, μ2, ν1, and ν2, completely determines the

quantum state.

For coherent states of two free particles, the center-of-mass tomogram at t = 0 reads

w2 (X | μ1, ν1, μ2, ν2, 0) = Tr
[
Û2 (X,μ1, ν1, μ2, ν2) ρ̂(0)

]

=
1√

Tr (μ2
1 + μ2

2 + ν21 + ν22)
exp

[
− (X − 〈X〉)2
μ2
1 + μ2

2 + ν21 + ν22

]
, (10)

where 〈X〉 = √
2
[
μ1(Reα1) + μ2(Reα2) + ν1(Imα1) + ν2(Imα2)

]
and ρ̂(0) =| α1〉 | α2〉〈α1 | 〈α2 | is the

coherent-state density operator. The tomogram of coherent states of two free particles at time t is

w2 (X | μ1, ν1, μ2, ν2, t) = Tr
[
û(t)ρ̂(0)û†(t)Û2 (X,μ1, ν1, μ2, ν2)

]
, (11)

where the evolution operator of two-free-particle system reads

û(t) = exp
[−it

(
p̂21 + p̂22

)
/2

]
; (12)

this means that, according to results of [18], one has the evolution of tomogram (10) of the same form

but with replacement of parameters

w2 (X | μ1, ν1, μ2, ν2, t) → w2 (X | μ1, ν1 + μ1t, μ2, ν2 + μ2t, 0) . (13)

For N free particles in the coherent state | ψ�α〉 =| α1〉 | α2〉 · · · | αN 〉, the evolution of tomogram is

given by the Gaussian probability distribution,

wN (X | 	μ, 	ν, t) = 1√
π
∑N

j=1

[
μ2
j + (νj + μjt)

2
] exp

⎡
⎣− (X − X̄)2∑N

j=1

[
μ2
j + (νj + μjt)

2
]
⎤
⎦ , (14)
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where

X̄ =
√
2

N∑
j=1

(μj Reαj + νj Imαj) . (15)

Introducing two vectors 	μ = (μ1, . . . , μN ) and 	ν = (ν1, . . . , νN ), we have the dequantizer operator, which

reads

ÛN (X, 	μ, 	ν) = δ

⎡
⎣X −

N∑
j=1

(μj q̂j + νj p̂j)

⎤
⎦ . (16)

Center-of-mass tomograms of Fock states of two as well as N particles can be also obtained, in view

of the approach elaborated.

3. Conclusions

To conclude, we point out the main results of our work.

We introduced the notion of tomography of classical particle state and applied this notion to the

particle motion obeying to the Newton law. There are various possibilities to introduce classical state

tomograms of several particles, employing either symplectic tomography or center-of-mass tomography.

We discussed free motion of quantum free particles and introduced the center-of-mass tomograms of two

(and N) free particles, in view of the method where tomograms for oscillators with frequencies equal to

zero are considered.

Thus, for N free particles of arbitrary masses, we elaborated the description of states of free particle

systems by the conditional probability distribution of only one random variable. An analogous consi-

deration can be provided for photon systems in quantum optics, where coherent states of several photons

can be described by tomographic-probability distributions of vibrating electric and magnetic fields.

We pointed out that the suggested construction of quantum states of free particles is related to the

old problem of quantum mechanics, namely, to find the possibility to use the probability distribution

instead of the wave function or the density matrix. Thus problem is solved, in view of the method of

quantizer–dequantuzer operators on the example of free-particle motion.

We obtained the evolution of center-of mass tomograms of coherent states of two and N particles

given by the Gaussian probability distribution Eq. (11) and the corresponding quantizer and dequantizer

operators. The method can be extended to the description of the evolution of photon states. It is worth

mentioning that the center-of-mass tomogram was also introduced for systems of classical particle states.

In the literature [21–23], the problem of photons interacting with axions was discussed. One can apply

the approach developed here to study the properties of photon–axion systems and their evolution

Also the center-of-mass tomograms of free-particle states can be connected with Lie algebras of the

SU(N) groups, using the approach elaborated in [24]; it will be studied in the future publication.
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