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Abstract

We present a new numerical algorithm for the simulation of dispersive media. This model named ADE-
TLM is based on the transmission line modeling method with the symmetrical condensed node (SCN-
TLM) and novel voltage sources and exploits the polarization current density J along with the voltage
electric as well as the average approximation. We extend the proposed algorithm to media with
dispersions described by multiple second-order Lorentz poles; the obtained results of the reflection and
transmission coefficients are compared with analytical solutions.
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1. Introduction

Since the introduction of the symmetrical condensed node (SCN) for the numerical solution of the

Maxwell equations in 1987 by Johns [1], the transmission line modeling (TLM) method has been widely

used to treat the problems of the electromagnetic wave propagations in dispersive media. This time-

domain method makes the analogy between the electromagnetic field components and the electrical

quantities. Several TLM-based algorithms for the analysis of dispersive media have been reported in

the literature. One approach is including the Z-transform technique [2], which was applied to linear

frequency-dependent isotropic materials and extended to anisotropic materials. Other approaches include

the constant recursive convolution (CRC) technique [3], and its improved CDRC-TLM [4] and PLCDRC-

TLM [5], which are applied to magnetized plasma. The other approach includes JE-TLM [6], which is

applied to isotropic plasma by exploiting the dependence of the current density J and the electric field E.

The auxiliary differential equation (ADE-TLM) has been used to model linear dispersive media ex-

ploiting the relationship between polarization and the electric field [7] and to model dispersive chiral

media [8] by exploiting electric and magnetic current densities. The ADE method has the advantage

that it is attractive for modeling nonlinear dispersive media. Compared to RC and PLRC schemes,

which have been exploited in [9, 10], the ADE scheme requires the same or less memory [11]. However,

we use aforementioned ADE-TLM algorithm based on the SCN-TLM with 12 principal ports to model

the free space and 3 additional ports used as voltage sources to model the properties of Lorentz media,

i.e., to model Lorentz dispersive media by applying the ADE to the polarization current density, not to

the polarization density. We confirm this approach by comparing the reflection and transmission coeffi-

cients with analytical solutions, which are compared with simulation that involves single-pole dispersion

in [9, 12] and the cases involving a multi-term dispersion in [10,13,14].
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2. ADE-TLM Method and Formulation

For the second-order Lorentz medium, the Maxwell equations related to the polarization current

density are given as follows:

∇×E = −μ0
∂H

∂t
, (1)

∇×H = ε0ε∞
∂E

∂t
+ J , (2)

where E andH are the electric and magnetic field strengths, J =
p∑

p=1
Jp is the polarization current density,

ε0 is permittivity of vacuum, and μ0 is magnetic permeability of vacuum. The relative permittivity of

the Lorentz medium with multi-term dispersion can be described as [15]

ε(ω) = ε∞ + (εs − ε∞)

p∑
p=1

Gpw
2
p

w2
p + 2jwδp − w2

, (3)

where ε∞ is the static permittivity, ωp is the pth Lorentz characteristic resonant frequency, and δp is the

pth damping factor, with the condition that
p∑

p=1
Gp = 1.

A polarization current density due to a single pole in the frequency domain reads [11]

J̃p = (εs − ε∞) w2
pε0Gp

(
jw

w2
p + 2jwδp − w2

)
Ẽ . (4)

Multiplying both sides of Eq. (4) by (w2
p + 2jwδp −w2) and transforming to the time domain, we arrive

at

w2
pJp + 2δL

∂Jp

∂t
+

∂2

Jp
∂t2 = (εs − ε∞)w2

pε0Gp
∂E

∂t
. (5)

Applying the finite difference time to Eq. (5), the linear polarization current density centered at step

n+ 1 can be expressed as follows:

Jn+1
p = αpJ

n
p + ξpJ

n−1
p + γp

En+1 −En−1

2Δt
, (6)

where

αp =
2− w2

L(Δt)2

1 + δLΔt
, ξp =

δLΔt− 1

1 + δLΔt
, γp =

Gpε0(εs − ε∞)w2
L(Δt)2

1 + δLΔt
. (7)

The temporal discretization of Eq. (2) centered at step n+ 1/2 provides

En+1 = En +
Δt

ε0
(∇×Hn+1/2 − Jn+1/2). (8)

The polarization current centered at step n+ 1/2 can be obtained from Eq. (6) by

Jn+1/2 =
1

2
(Jn+1 + Jn) . (9)

238



Volume 42, Number 2, March, 2021 Journal of Russian Laser Research

For a uniform mesh, the TLM method transforms the electric field to voltage, using this equivalence

En =
Vn

Δl
. (10)

In view of Eq. (10), Eq. (6) and Eq. (8) can be rewritten, respectively, as follows:

Jn+1
p = αpJ

n
p + ξpJ

n−1
p + γp

Vn+1 −Vn−1

2ΔlΔt
, (11)

Vn+1 = Vn +
ΔlΔt

ε0

(
∇×Hn+1/2 − Jn+1/2

)
. (12)

To make ADE-TLMmore efficient, we need to update Eq. (11), using the average approximation described

in [16]; we obtain

Vn =
Vn+1 +Vn−1

2
. (13)

Substituting Eq. (13) into Eq. (11), we arrive at

Jn+1
p = αpJ

n
p + ξpJ

n−1
p + γp

Vn −Vn−1

ΔlΔt
. (14)

Applying the SCN-TLM model [17] to Eq. (1), we find

⎛
⎜⎝

∇×H
n+1/2
x

∇×H
n+1/2
y

∇×H
n+1/2
z

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎝

ε0
2 Δt Δl

[
(V i

1 + V i
2 + V i

9 + V i
12)

n+1 − (V r
1 + V r

2 + V r
9 + V r

12)
n
]

ε0
2 Δt Δl

[
(V i

3 + V i
4 + V i

8 + V i
11)

n+1 − (V r
3 + V r

4 + V r
8 + V r

11)
n
]

ε0
2 Δt Δl

[
(V i

5 + V i
6 + V i

7 + V i
10)

n+1 − (V r
5 + V r

6 + V r
7 + V r

10)
n
]

⎞
⎟⎟⎟⎟⎠ . (15)

Here, ⎛
⎜⎝

V r
1 + V r

2 + V r
9 + V r

12

V r
3 + V r

4 + V r
8 + V r

11

V r
5 + V r

6 + V r
7 + V r

10

⎞
⎟⎠

n

=

⎛
⎜⎝

V i
1 + V i

2 + V i
9 + V i

12

V i
3 + V i

4 + V i
8 + V i

11

V i
5 + V i

6 + V i
7 + V i

10

⎞
⎟⎠

n

+

⎛
⎜⎝

Vsx

Vsy

Vsz

⎞
⎟⎠

n

. (16)

Substituting Eq. (15) into Eq. (12), exploiting Eq. (16), and using the symmetrical condensed node (SCN-

TLM), we express the total electric as follows:

⎛
⎜⎝

V n+1
x

V n+1
y

V n+1
z

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

2

4 + Yox
2

4 + Yoy
2

4 + Yoz

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

[
V i
1 + V i

2 + V i
9 + V i

12 + 1/2 Vsx

]n+1

[
V i
3 + V i

4 + V i
8 + V i

11 + 1/2 Vsy

]n+1

[
V i
5 + V i

6 + V i
7 + V i

10 + 1/2 Vsz

]n+1

⎞
⎟⎠ . (17)

The normalized admittances Yox, Yoy, and Yoz read

You = 4(ε∞ − 1). (18)
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The voltage sources Vsx, Vsy, and Vsz are

V n+1
su = −V n

su − ΔlΔt

2 ε0

p∑
p=1

(Jn+1
pu + Jn

pu), (19)

where u ∈ {x, y, z}.
The complete procedure of ADE-TLM in the second-order Lorentz medium goes like this:

Starting with stored values of V n−1, V n, Jn
p , and Jn−1

p .

We first update Jn+1
p made by Eq. (14), then the obtained values of Jn+1

p are inserted in the voltage

sources using Eq. (19).

The V n+1 described in Eq. (17) is updated from normalized admittance and voltage sources in view

of Eqs. (18) and (19), respectively.

Finally, the stored values of V n+1 is used to simulate the reflected pulses, employing the scattering

matrix, and to simulate the propagation to adjacent node, employing the connexion matrix.

3. Numerical Result

In order to demonstrate the accuracy of the ADE-TLM approach, we consider three examples, calcu-

late the reflection and transmission coefficients, and compare to analytical solutions. For all cases, a plane

Gaussian wave is normally incident from air onto a dispersive Lorentz medium. First, for a dispersive

medium described with a single second-order Lorentz pole, the network is divided into (1, 1, 1000)Δl, with

the spatial thickness Δl = 250 μm. The one second-order Lorentz pole occupies cells from 50 to 1000, and

the constants determining the complex permittivity for the medium are given as w0 = 2π · 20 · 109 rad/s,

εs = 3.0, ε∞ = 1.5, and δLorentz = 0.1 w0. The reflection coefficient of air Lorentz is simulated, using the

fast Fourier transform (FFT) of the time history of the reflected pulse and the FFT of the time history

of the incident pulse at the interface (at cell 49Δl).

We calculate the analytical solution of the reflection coefficient, using the following expression:

|Γ(ω)| =
∣∣∣∣∣
√
ε0 −

√
ε∗(ω)

√
ε0 +

√
ε∗(ω)

∣∣∣∣∣ , (20)

where ε∗(ω) is the complex permittivity.

As shown in Fig. 1, the result of simulation of the reflection coefficient at the interface, using the

ADE-TLM algorithm and analytical solution, agree very well [9, 10].

Second, for a dispersive medium described with two second-order Lorentz poles, the network is divided

into (1, 1, 1500)Δl, with the spatial thickness Δl = 37.5 μm; the left 500 lattices are for the air, and other

1000 lattices are occupied by Lorentz medium. The constants determining the complex permittivity for

the medium are εs = 3.0, ε∞ = 1.5, w1 = 2π · 20 · 109 rad/s, δ1 = 0.1 w1, w2 = 2π · 50 · 109 rad/s,

δ2 = 0.1 w2, G1 = 0.4, and G2 = 0.6. The reflection air – Lorentz coefficient is simulated, using the FFT

of the time history of the reflected pulse and the FFT of the time history of the incident pulse at the

interface (at cell 499Δl).

In Fig. 2, we show the simulation result of the reflection coefficient at the interface; one can see that

the result of ADE-TLM and analytical solution given by Eq. (20) agree very well [10, 13].
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Fig. 1. Comparison of the reflection coefficient for
the single Lorentzian dispersion case by the algorithm
proposed (the solid curve) and the analytical solu-
tion (points).

Fig. 2. Comparison of the reflection coefficient for multi-
pole dispersion case by the algorithm proposed (the solid
curve) and the analytical solution (points).

Finally, for a dispersive medium described with Lorentz slab, the network is divided into (1, 1, 800)Δl,

with the spatial step Δl = 75.0 μm, and the Lorentz slab occupying cells 300 through 500 and keeping

two second-order Lorentz poles, the same last constants which determine the complex permittivity.

We simulated the reflection coefficient of Lorentz slab using the FFT of the time history of the reflected

pulse and the FFT of the time history of the incident pulse at the interface (at cell 299Δl). We simulated

the transmission coefficient of Lorentz slab, using the FFT of the time history of the transmitted pulse and

the FFT of the time history of the incident pulse behind the Lorentz slab (at cell 501Δl). We calculated

the analytical solutions of reflection and transmission coefficients using the following expressions [15]:

Γ =
Γ12 + Γ23e

−j2βpd

1 + Γ12Γ23e−j2βpd
, T =

T12T23e
−jβpd

1 + Γ12Γ23e−j2βpd
, (21)

where d is the thickness of the Lorentz media, and βp is the phase constant in the Lorentz media.

In Fig. 3, we show that the ADE-TLM results and the analytical solution for Lorentz slab are in

excellent agreement [14].

a) b)

Fig. 3. Comparison of the reflection (a) and transmission (b) coefficients for the Lorentz-slab case by the algorithm
proposed (the solid curve) and analytical solutions (points).
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4. Summary

In this paper, we developed a novel transmission line modeling (TLM) for the second-order Lorentz

dispersive medium, called the ADE-TLM. This approach exploits the relationship between the polariza-

tion current density, the voltage electric, and the average approximation. In this model, we introduced

voltage sources modeling linear properties and normalized admittance concept. For extension to multi-

term dispersion by a simple addition of the current density terms related to electric field, the ADE-TLM

appears simpler to implement, and its accuracy is verified by calculating the reflection and transmission

coefficients. Compared to RC and PLRC schemes, the ADE scheme needs the same or less number of

unknowns to be stored.
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