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Abstract

We consider a three-level laser coupled to a two-mode thermal reservoir via a single port mirror.
Applying the master equation, we study the effect of decoherence on the squeezing, entanglement,
and statistical properties of a two-mode cavity light at a steady state. It turns out that the two-
mode thermal reservoir substantially degrades the degree of squeezing and entanglement. However, it
significantly enhances the mean number of the photon pairs and intensity difference.
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1. Introduction

During the past few years, the quantum analysis of light generated by three-level cascade lasers has

been studied theoretically by several authors in connection with its potential as a source of squeezed and

entangled light [1–11]. In three-level lasers, a cascade configuration of three-level atoms are continuously

injected into the cavity with a constant rate and removed after some time. When an atom decays to

the bottom level from the top level via the intermediate level, two photons are produced. These photons

are highly correlated, and the nonclassical features of the cavity light generated by this quantum optical

system are due to this correlation. The correlation arises because of the injected atomic coherence, which

can be induced either by initially preparing the three-level atoms in a coherent superposition of the top

and bottom levels [1–6] or coupling these levels by external coherent light [7, 8, 10, 11]. For instance,

Ansari [12] has considered a cascade three-level atomic system with the atomic coherence introduced by

the aforementioned two mechanisms simultaneously. He has predicted that the system shows a nearly

perfect squeezing outside of the cavity.

Entanglement, the unique characteristics of quantum mechanics, plays a key role in quantum informa-

tion processing [13–15]. Recently, the generation of macroscopic entangled states has been demonstrated

in two-mode three-level cascade lasers. For instance, using the sufficient entanglement measure set by

Duan et al. [16], macroscopic entanglement has been realized in a driven two-mode three-level laser [17],

when the atoms are ejected from the lower level. Besides, Alebachew [18] has considered a nondegene-

rate three-level cascade laser with a parametric oscillator coupled to a two-mode vacuum reservoir with

the atomic coherence introduced by the superposition of the ground and upper excited states. He has

found that the presence of the parametric oscillator enhances the degree of two-mode squeezing and

entanglement.
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In the realistic quantum system, the cascade three-level laser is coupled to the unwanted fluctuations

in the surrounding environment via the walls of the cavity. The destruction of nonclassical properties

due to an interaction with the environment is called the decoherence. Thus, the interaction between the

system and the environment degrades the two-mode squeezing and entanglement, where decoherence is

usually inevitable. The effect of decoherence can be incorporated by entangling the quantum system with

a thermal reservoir. For example, Hiroshima [19] has investigated the decoherence of two-mode squeezed

vacuum states by examining the relative entropy of entanglement for phase and amplitude damping when

it is coupled to a thermal environment.

Fig. 1. Cascade configuration of a
three-level laser coupled to a two-
mode thermal reservoir. The three-
level atoms prepared in a coherent
superposition of their ground and
upper excited states are injected at
a constant rate ra into a laser cavity.

In this work, we introduce a model that produces two-mode

squeezed and entangled as well as bright light by a three-level cascade

laser coupled to a two-mode thermal reservoir, as shown in Fig. 1.

The cascade configuration of three-level atoms initially prepared in

a coherent superposition of their ground and upper excited states

are injected into the laser cavity. The quantum properties of the

two-cavity modes generated by quantum optical systems coupled to

a two-mode squeezed vacuum reservoir have been studied by apply-

ing various methods [20, 21]. These studies show that the squeezed

vacuum reservoir enhances the degree of squeezing and entanglement

of the two-mode cavity light.

Moreover, the nonclassical properties of the cavity mode with

a parametric oscillator coupled to a vacuum reservoir have been

investigated employing stochastic differential equations [9]. It has

been shown that the parametric oscillator significantly increases the

amount of squeezing of the cavity light. Opposed to previous studies,

here we investigate the quantum-statistical features of the two-mode

cavity light produced by a three-level cascade laser coupled to a two-

mode thermal reservoir following a different approach. Applying the

master equation, we obtain the evolution equations of the expectation

values for the cavity mode variables. The steady-state solutions of these equations are then used to study

the squeezing, entanglement, and statistical properties of the two-mode cavity light.

2. Master Equation

Here, we consider a nondegenerate three-level laser coupled to a two-mode thermal reservoir. A

cascade configuration of three-level atoms initially prepared in a coherent superposition of their ground

and upper excited levels are injected at a constant rate ra and removed from the laser cavity after some

time τ . We denote the top, intermediate, and bottom levels of a three-level atom by |a〉, |b〉, and |c〉,
respectively. We assume that the cavity modes are at resonance with the transitions |a〉 → |b〉 and

|b〉 → |c〉, and with a direct transition between |a〉 and |c〉 to be dipole forbidden.

The interaction of the cavity modes with a single three-level atom can be described in the rotating

wave approximation and in the interaction picture by the Hamiltonian of the form

Ĥ = ig[â|a〉〈b| − |b〉〈a|â† + b̂|b〉〈c| − |c〉〈b|b̂†], (1)

where g is the atom–cavity coupling constant assumed to be the same for both transitions, and â and
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b̂ are the annihilation operators for the two cavity modes. The initial state of a single three-level atom

assumed to be

|ΨA(0)〉 = Ca(0)|a〉+ Cc(0)|c〉, (2)

and the corresponding initial density operator of a single atom has the form

ρ̂A(0) = ρ(0)aa |a〉〈a|+ ρ(0)ac |a〉〈c|+ ρ(0)ca |c〉〈a|+ ρ(0)cc |c〉〈c|, (3)

where

ρ(0)aa = Ca(0)C
∗
a(0), ρ(0)cc = Cc(0)C

∗
c (0) (4)

are the initial populations of the atoms at the top and bottom levels, respectively, and

ρ(0)ac = Ca(0)Cc(0) = ρ(0)∗ca (5)

represents the initial atomic coherence.

It can be readily established that the evolution equation of the density operator with the damping

of the cavity modes by a two-mode thermal reservoir in the linear and adiabatic approximation scheme,

following the procedure presented in [22], has the form

dρ̂(t)

dt
=

1

2
[Aρ(0)aa + κn̄a](2â

†ρ̂â− ρ̂ââ† − ââ†ρ̂) +
1

2
[κn̄a + κ](2âρ̂â† − â†âρ̂− ρ̂â†â)

+
1

2
[Aρ(0)cc + κn̄b + κ](2b̂ρ̂b̂† − b̂†b̂ρ̂− ρ̂b̂†b̂) +

1

2
κn̄b[2b̂

†ρ̂b̂− b̂b̂†ρ̂− ρ̂b̂b̂†]

+
1

2
Aρ̂(0)ac [âb̂ρ̂− 2b̂ρ̂â+ ρ̂âb̂] +

1

2
Aρ̂(0)ac [ρ̂b̂

†â† − 2â†ρ̂b̂† + b̂†â†ρ̂], (6)

where

A =
2g2ra
γ2

(7)

is the linear gain coefficient, κ is the cavity damping constant, γ is the atomic decay rate assumed to be

the same for levels |a〉 and |b〉, and n̄a and n̄b are the mean photon number associated with the thermal

reservoir.

3. The Solutions of the Cavity Mode Operators

Now we proceed to determine the evolution equations for the expectation values of the cavity mode

operators. Applying the relation

d

dt
〈Â〉 = Tr

(
dρ̂

dt
Â

)
, (8)
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along with Eq. (6), we find

d

dt
〈â〉 = −βa

2
〈â〉 − A

2
ρ̂(0)ac 〈b̂†〉,

d

dt
〈b̂〉 = −βb

2
〈b̂〉+ A

2
ρ̂(0)ac 〈â†〉, (9)

d

dt
〈â2〉 = −βa〈â2〉 −Aρ̂(0)ac 〈b̂†â〉,

d

dt
〈b̂2〉 = −βb〈b̂2〉+Aρ̂(0)ac 〈b̂â†〉, (10)

d

dt
〈â†â〉 = −βa〈â†â〉+ [κn̄a +Aρ̂(0)aa ]−

A

2
ρ̂(0)ac (〈âb̂〉+ 〈b̂†â†〉), (11)

d

dt
〈b̂†b̂〉 = −βb〈b̂†b̂〉+ κn̄b +

A

2
ρ̂(0)ac (〈âb̂〉+ 〈b̂†â†〉), (12)

d

dt
〈âb̂†〉 = −β〈âb̂†〉+ κ

2
(n̄a − n̄b)〈âb̂†〉+ A

2
ρ̂(0)ac (〈â2〉 − 〈b̂†2〉), (13)

d

dt
〈âb̂〉 = −β〈âb̂〉+ A

2
ρ̂(0)ac (〈â†â〉 − 〈b̂†b̂〉) + A

2
ρ̂(0)ac , (14)

where

βa = κ−Aρ̂(0)aa , βb = κ+Aρ̂(0)cc , β = κ+
A

2
(ρ̂(0)cc − ρ̂(0)aa ). (15)

The steady-state solution of each of the above equations has the form

〈â〉 = 〈b̂〉 = 0, 〈â2〉 = 〈b̂2〉 = 0, 〈âb̂†〉 = 0, (16)

〈âb̂〉 = Aρ̂
(0)
ac [κ(n̄aβb − n̄bβa) +Aρ̂

(0)
aa βb + βaβb]

2ββaβb +A2ρ̂
(0)2
ac (βa + βb)

, (17)

〈b̂†b̂〉 = A2ρ̂
(0)2
ac (κn̄a + κn̄b +Aρ̂

(0)
aa + βa)

2ββaβb +A2ρ̂
(0)2
ac (βa + βb)

+
2κn̄bββa

2ββaβb +A2ρ̂
(0)2
ac (βa + βb)

, (18)

〈â†â〉 = A2ρ̂
(0)2
ac (κn̄a + κn̄b − βb +Aρ̂

(0)
aa )

2ββaβb +A2ρ̂
(0)2
ac (βa + βb)

+
2βb(κn̄aβ +Aρ̂

(0)
aa β)

2ββaβb +A2ρ̂
(0)2
ac (βa + βb)

. (19)

4. Quadrature Variance

Here, we calculate the quadrature variances for the two-mode cavity light. To study the squeezing

properties of a two-mode light, we introduce the quadrature operators defined by

ĉ+ = ĉ+ ĉ†, ĉ− = i(ĉ† − ĉ), ĉ =
1√
2
(â+ b̂). (20)

The quadrature operators satisfy the commutation relation [ĉ+, ĉ−] = 2 i, and the corresponding uncer-

tainty relation reads Δc−Δc+ ≥ 1. We note from this result a two-mode light to be in a squeezed state

if either Δc+ < 1 or Δc− < 1. The variances of the quadrature operators are defined by

(�c±)2 = 〈ĉ2±〉 − 〈ĉ±〉2. (21)

Because of Eq. (20), this equation can be rewritten as follows:

(�c±)2 = 1 + 〈â†â〉+ 〈b̂†b̂〉+ 〈â†b̂〉+ 〈âb̂†〉 ± 1

2

(
〈â2〉+ 〈b̂2〉+ 〈â†2〉+ 〈b̂†2〉+ 2〈âb̂〉+ 2〈â†b̂†〉

)
. (22)
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With the aid of Eqs. (16) and (17), the variances take the form

Δc2± = 1 + 〈â†â〉+ 〈b̂†b̂〉 ± 2〈âb̂〉. (23)

Now we introduce a parameter η such that

ρ̂(0)aa =
1− η

2
. (24)

We consider the case where the atoms are initially in a superposition of the top and bottom level states.

Thus, one can write

ρ̂(0)aa + ρ̂(0)cc = 1. (25)

It is easy to see that

ρ̂(0)cc =
1 + η

2
, ρ̂(0)ac = ρ̂(0)ca =

1

2

√
1− η2. (26)

Since the value of ρ
(0)
aa lies between 0 and 1, we see that the values of η are in the interval −1 ≤ η ≤ 1.

We also note that for η = 0, ρ
(0)
aa = ρ

(0)
cc = ρ

(0)
ac = 1/2, which corresponds to a maximum initial atomic

coherence. However, for η = 1, ρ
(0)
aa = ρ

(0)
ac = 0 and ρ

(0)
cc = 1 corresponds to no initial atomic coherence.

Now in view of Eqs. (17)–(19) and taking into account Eqs. (15), we arrive at

Δc2± =
(A2/2)(1− η2)(1 + n̄a + n̄b)± (A2/2)

√
1− η2(n̄a + n̄b)

(2κ+Aη)(κ+Aη)

+
2(κ+Aη/2)2(n̄a + n̄b)

(2κ+Aη)(κ+Aη)
+

(κ+A/2)(1 + η)(2κ+Aη ±A
√

1− η2)

(2κ+Aη)(κ+Aη)

+
(κ+Aη/2)(A±A

√
1− η2)(n̄a − n̄b)

(2κ+Aη)(κ+Aη)
. (27)

To investigate the dependence of the maximum quadrature squeezing on the parameter η and the

linear gain coefficient A, we collect data from Eq. (27) in Table 1.

Table 1. Variation of Maximum Quadrature

Squeezing with η and Aa.

A Maximum squeezing Occurs at

50 64.2 % η = 0.19

100 67.3 % η = 0.14

500 71.5 % η = 0.07

1000 72.5 % η = 0.05

aHere, κ = 0.5 and n̄a = n̄b = 0.

In Table 1, we see that the maximum quadrature

squeezing occurs for different values of the parameter η

corresponding to different values of the linear gain coeffi-

cient A. Moreover, it is straightforward to see in Table 1

that the variation of the maximum quadrature squeezing

due to the linear gain coefficient increases with decrease

of the parameter η.

In Fig. 2 a, we note that the two-mode light exhibits

two-mode squeezing for all values of η between zero (ma-

ximum coherence) and unity (minimum coherence), and

the degree of two-mode squeezing increases with the rate

at which the atoms are injected into the cavity. It is also seen that the squeezing vanishes for maximum

and minimum values of injected atomic coherence. Moreover, as the linear gain coefficient A increases,

the value of η, at which the maximum two-mode squeezing occurs, shifts towards the maximum initial

140



Volume 42, Number 2, March, 2021 Journal of Russian Laser Research

a) b)

Fig. 2. Plots of the two-mode quadrature variance Δc2− of Eq. (27) for the two-mode cavity light at the steady
state vs η for κ = 0.5. Here, n̄a = n̄b = 0 (a) with A = 10 (the dotted curve), A = 100 (the dashed curve), and
A = 500 (the solid curve) and A = 100 (b) with n̄a = n̄b = 0.02 (the dotted curve), n̄a = n̄b = 0.1 (the dashed
curve), and n̄a = n̄b = 0.5 (the solid curve).

atomic coherence (η = 0). We then realize that a significant two-mode squeezing can be achieved for

smaller values of η and larger values of A.

To study the effect of entanglement of two-mode cavity light beams with the two-mode thermal

reservoir (decoherence) on the degree of two-mode squeezing of the two-mode light beams, in Fig. 2 b, we

present Δc2− against η for different values of the mean photon number of the two-mode thermal reservoir.

We easily see from this plot that the two-mode thermal reservoir leads to a decrease in the degree of

two-mode squeezing. For example, the minimum value of the quadrature variance described by Eq. (27)

for A = 100, κ = 0.5, and n̄a = n̄b = 0 is found to be Δc2− = 0.3270 and occurs at η = 0.1430. This

result implies that the maximum squeezing for the above value is 67.3% below the vacuum state level.

However, in the presence of the thermal noise with n̄a = n̄b = 0.1 and for the same parameters used

above, the minimum value of the quadrature variance is 0.3852 and occurs at η = 0.1560. We then note

that the maximum quadrature squeezing, in this case, is 61.48% below the shot-noise limit. Hence, with

this choice of the thermal noise, the amount of squeezing is lowered by over 5%. In Fig. 2 b, we see that,

when the mean photon number of the two-mode thermal reservoir decreases, the value of η, at which the

maximum two-mode squeezing occurs, shifts towards the value of maximum atomic coherence injected.

Moreover, one observes that, as the mean photon number of the two-mode thermal noise increases, the

two-mode squeezing disappears for values of η very close to 0 and 1.

5. Entanglement Properties of the Two-Mode Light

In this section, we seek to study the entanglement properties of the two-cavity modes. The composite

system of the two modes a and b are said to be entangled, if its state cannot be expressed as a product of

the state of the subsystems. Various entanglement measures for continuous variables have been introduced

by some authors [16, 23]. According to the inseparability criteria proposed by Duan et al. [16], the

quantum state of the system is entangled if the sum of the variances of the EPR-like operators

û = x̂a − x̂b, v̂ = p̂a + p̂b (28)
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satisfy

Δu2 +Δv2 < 2, (29)

in which

x̂k = k̂ + k̂†, p̂k =
k̂ − k̂†

i
, (30)

with k = a, b being the quadrature operators for the two cavity modes. The sum of the variances of the

EPR-like operators can then be written as

Δu2 +Δv2 = 2 + 2〈â†â〉+ 2〈b̂†b̂〉 − 4〈âb̂〉 = 2Δc2−, (31)

with Δc2− given by Eq. (23). This relation shows that the degree of two-mode squeezing and entanglement

has a direct relationship, which is in agreement with previous studies [2, 5].

Now making use of Eqs. (17)–(19) along with (15), we arrive at

Δu2 +Δv2 =

2

[
(A2/2)(1− η2)(1 + n̄a + n̄b)± (A2/2)

√
1− η2(n̄a + n̄b)

]

(2κ+Aη)(κ+Aη)

+
4(κ+A/η)2(n̄a + n̄b)

(2κ+Aη)(κ+Aη)
+

2(κ+ (A/2)(1 + η))(2κ+Aη ±A
√

1− η2)

(2κ+Aη)(κ+Aη)

+
2(κ+Aη/2)(A±A

√
1− η2)(n̄a − n̄b)

(2κ+Aη)(κ+Aη)
. (32)

Fig. 3. Plots of Δu2+Δv2 of the two-mode light in the
cavity at steady state vs η for κ = 0.5 and A = 100; here,
n̄a = n̄b = 0.5 (the dotted curve), n̄a = n̄b = 0.1 (the
dashed curve), and n̄a = n̄b = 0 (the solid curve).

Table 2. Variation of the Maximum Degree of

Entanglement with η and Ab.

A Maximum Entanglement Occurs at

50 64.2 % η = 0.19

100 67.3 % η = 0.14

500 71.5 % η = 0.07

1000 72.5 % η = 0.05

bHere, κ = 0.5 and n̄a = n̄b = 0.

It is indicated in Fig. 3 that the entanglement criterion given by Eq. (29) is satisfied for certain

values of η. As can be seen in Fig. 3, the degree of entanglement decreases with the mean photon

number of the two-mode thermal reservoir. We then realize that decoherence has an adverse effect on
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the degree of entanglement. Moreover, as the mean photon number of the two-mode thermal reservoir

increases, the entanglement disappears when the atoms are initially prepared with maximum or minimum

atomic coherence. However, as shown in Fig. 3, the maximum entanglement occurs when the atoms are

prepared with the injected atomic coherence close to the maximum possible value. The maximum degree

of entanglement and the corresponding values of η, for which the maximum entanglement occurs, are

generated from Eq. (32) and collected in Table 2.

In Table 2, we show that a higher maximum degree of entanglement occurs for smaller values of η

and larger values of A. Moreover, a comparison of Table 1 and Table 2 reveals that the maximum degree

of squeezing and entanglement are the same for the same choice of the parameters. We also note from

these two Tables that the maximum amount of entanglement and squeezing occurs close to a region with

an equal number of atoms initially prepared in the bottom and top level states.

6. Mean Number of Photon Pairs

We now seek to determine the mean number of photon pairs of two-mode cavity radiation. To this

end, based on Eq. (20), first we write that

〈ĉ†ĉ〉 = 1

2
[〈â†â〉+ 〈b̂†b̂〉]. (33)

Then it follows that

n̄ =
A2(1− η2)(2κ(n̄a + n̄b)−Aη) + 2κ(2κ+Aη)2(n̄a + n̄b)

4κ(2κ+Aη)(2κ+ 2Aη)

+
2κ(2κ+Aη)A(n̄a − n̄b)

4κ(2κ+Aη)(2κ+ 2Aη)
+

A(1− η)(2κ+A+Aη)(2κ+Aη)

4κ(2κ+Aη)(2κ+ 2Aη)
. (34)

In Fig. 4 a, we represent the plots of the mean number of the photon pairs against η for κ = 0.5,

n̄a = n̄b = 0, and different values of A. In Fig. 4 a, one can see that the mean number of the photon pairs

decreases with the parameter η. Then we infer that the mean number of the photon pairs is maximum

a) b)

Fig. 4. Plots of the mean number of the photon pairs n̄ of Eq. (34) for the two-mode cavity light at the steady
state vs η for κ = 0.5. Here, n̄a = n̄b = 0 (a) with A = 5 (the solid curve), A = 10 (the dashed curve), and
A = 15 (the dotted curve) and A = 10 (b) with n̄a = n̄b = 0.5 (the solid curve), n̄a = n̄b = 0.1 (the dashed curve),
and n̄a = n̄b = 0.02 (the dotted curve).
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at maximum injected atomic coherence and minimum without injected atomic coherence. Also one can

see that the mean number of the photon pairs increases with the rate A, at which the atoms are injected

into the cavity.

As clearly shown in Fig. 4 b, the mean number of photon pairs increases with the mean photon number

of the two-mode thermal reservoir. Hence one can infer that the thermal reservoir has a substantial effect

on the brightness of the cavity light. We also notice that the mean number of photon pairs is relatively

larger in a region, where the degree of squeezing is higher.

7. Mean of the Intensity Difference

In this section, our goal is to calculate the mean of the intensity difference. To this end, the intensity

difference can be defined as

ÎD = â†â− b̂†b̂, (35)

in which its mean can be expressed as

ID = 〈â†â〉 − 〈b̂†b̂〉. (36)

Thus, making use of Eqs. (18) and (19), we obtain

ID =
−A2(1− η2)(2κ+Aη)

4κ(2κ+Aη)(κ+Aη)
+

2κ[2κ+Aη][2κ(n̄a − n̄b) +A(n̄a + n̄b) +Aη(n̄a − n̄b)]

4κ(2κ+Aη)(κ+Aη)

+
(2κ+Aη)(A(1− η))(2κ+A+Aη)

4κ(2κ+Aη)(κ+Aη)
. (37)

Fig. 5. The mean of the intensity difference ID of
Eq. (37) for the two-mode cavity light at the steady state
vs η for κ = 0.5 and A = 10; here, n̄a = n̄b = 0.5 (the
solid curve), n̄a = n̄b = 0.1 (the dashed curve), and
n̄a = n̄b = 0.02 (the dotted curve).

In Fig. 5, we see that the mean of the intensity

difference is positive. This shows that the intensity

of light mode a is greater than that of light mode b.

Moreover, we observe, in general, that the mean of

the intensity difference decreases as the parameter

η increases. We also realize that the mean of the

intensity difference is maximum when the atoms are

initially prepared with an equal number of atoms at

the top and bottom levels.

8. Conclusions

In this paper, we studied the light generated

by a nondegenerate three-level laser coupled to a

two-mode thermal reservoir with the atomic cohe-

rence induced by the initial superposition of top and

bottom level states. We found that the two-mode

cavity light is in a squeezed state, when the atoms are initially prepared with more atoms at the bottom

level than at the top level. We also saw that the degree of squeezing increases with the rate, at which the

atoms are injected into the cavity, and the two-mode thermal reservoir has the effect of decreasing the
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degree of squeezing. Moreover, it is found the maximum quadrature squeezing of the two-mode cavity

light to be 71.5% below the vacuum state level for A = 500, κ = 0.5, and n̄a = n̄b = 0. In addition, we

demonstrated that the two cavity modes are entangled in a region, where the squeezing exists. We also

found that the degree of squeezing and entanglement are larger particularly, when there is a nearly equal

number of atoms initially in the top and bottom level states. We also showed that though decoherence

has an adverse effect on the degree of squeezing and entanglement, it increases the mean number of the

photon pairs and intensity difference.
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