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Abstract

We present a theory on harmonic generation by relativistic plasma resonance mechanism in an inho-
mogeneous laser plasma. We find a transverse component of the resonance–enhanced electric field and
electron velocities near the plasma critical density and calculate the nonlinear current as the source
of the harmonic generation in vacuum. We obtain the power-law spectra of the radiation field and
discuss their characteristics depending on the laser-plasma parameters.
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1. Introduction

Harmonic generation in an inhomogeneous plasma is interesting as a method for obtaining high-

frequency secondary radiation and as a laser-produced plasma diagnostic method. The harmonic gen-

eration of a low-intensity radiation propagating in an inhomogeneous plasma was investigated in [1, 2],

in view of perturbation theory. The plasma resonance effect [3], which is the resonant enhancement of

the potential electric field near the plasma critical density, where the laser frequency ω0 coincides with

the plasma frequency ωL, was considered as the mechanism of generation. Within that framework, an

exponential decrease in the harmonic amplitude with increase in the harmonic number was obtained. The

authors of [4] went beyond the perturbation theory by taking into account the nonlinearity of electron

motion, but neglecting the relativistic effects. By applying the renormalization group transformation

approach [5], they calculated the amplitudes of harmonics of the electromagnetic wave incident on a

inhomogeneous plasma. They also found that the intensity of harmonics decreases much more slowly

with increasing harmonic number than was predicted by the weakly nonlinear theory. An adequate gen-

eralization of the nonlinear theory on the harmonic generation at high laser intensities, when relativistic

effects near the plasma resonance becomes essential, is still lacking. In [6] it was shown that the resonance

plasma field amplification can lead to an electric field strength up to the relativistic values even if the

laser field intensity is lower than the relativistic one. Such a strong nonlinear resonance qualitatively

changes the harmonic generation process, significantly reinforcing the higher harmonics.
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In this study, we present the theory of harmonic generation by relativistic plasma resonance in an

inhomogeneous plasma. A stationary analytical solution of the nonlinear equations governing the spa-

tiotemporal structure of the transverse components of the electric field and electron velocity in the vicinity

of the plasma resonance are calculated [3] via the renormgroup symmetry method. Application of the

formalism of renormalization group transformations allowed us to take into account the nonlinearity

of electron motion, including the relativistic effects, near plasma critical density. Then the harmonic

amplitudes in vacuum are calculated.

2. Basic Equations and Their Solution

We consider a p-polarized electromagnetic wave described by the electric and magnetic field E,B with

frequency ω0 that is incident on the inhomogeneous plasma with linear density profile at angle θ,

E =
1

2
{E0x(x), E0y(x), 0} exp (ikyy − iω0t) + c.c.,

B =
1

2
{0, 0, B0(x)} exp (ikyy − iω0t) + c.c.,

ky = (ω0/c) sin θ, n0(x) = (1 + x/L)nc, nc =
mω0

2

4πe2
,

(1)

where L is the characteristic inhomogeneity scale length of the smooth ω0L/c � 1 linear plasma density

profile. To describe harmonic generation process, we use the following basic system of cold relativistic

electron plasma collisionless hydrodynamics equations and Maxwell equations:

∂tp+ (v∂r)p = e

(
E+

1

c
[vB]

)
, ∂tne + div(nev) = 0,

rotE = −1

c
∂tB, rotB =

1

c
∂tE+

4π

c
enev, divE = 4π(ene + eini),

divB = 0, p ≡ mvγ =
mv√

1− v2/c2
.

(2)

Here m and e are the electron mass and charge, ne, v, and p are the density, velocity, and momentum

of plasma electrons, respectively, E and B are the electric and magnetic fields in the plasma, and c

is the speed of light in vacuum. Immobile ions of given density ni correspond to the electron plasma

approximation used in this work.

Through the expansion of fields and velocities (2) in series of the incident wave harmonics (1) and

assuming a hierarchy of the electromagnetic field and electron velocities near plasma resonance region [4],

we obtain the following equations for magnetic field harmonics with nonlinear current J as a source of

harmonic generation:

∂xxRn − ∂xεn
εn

∂xRn +
(nω0

c

)2 (
εn − sin2 θ

)
Rn = −4π

c

{ a

4π
rot �Jn

}
z
, n ≥ 2,

�Jn =

{
v∂xP − iω0

n
v∂x(γv)− ω2

0

a
(γ − 1)v, u∂xP − iω0

n
v∂x(γu)− ω2

0

a
(γ − 1)u, 0

}
,

{
v, u, P,Q,R

}
=

∞∑
−∞

{
v, u, P,Q,R

}
n
exp[−in(ω0t− kyy)].

(3)

430



Volume 40, Number 5, September, 2019 Journal of Russian Laser Research

Here a = −2e|B1(0)| sin θ/mω2
0L is a dimensionless constant proportional to the magnetic field amplitude

|B1(0)| at the plasma resonance point x = 0 in the linear approximation, B1(0) = |B1(0)| exp(i argB1(0))

is the complex amplitude of the first Fourier component of the magnetic field at the point x = 0 in the

linear approximation v = vx/a, u = vy/a are the normalized values of the electron velocity components,

γ = 1/
√

1− (a2/c2)(v2 + u2), P = eEx/ma, Q = eEy/ma, R = eBz/ma are the normalized values

of the electric (Ex, Ey) and (Bz) magnetic field components, respectively, εn = 1 − (ω2
L)/(n

2ω2
0) is a

plasma complex dielectric permittivity at the frequency nω0, and ωL ≡ ωL(x) = (4π|eei|ni/m)1/2 is the

Langmuir frequency. In the limit of a weakly inhomogeneous plasma in which the region of localization

of the plasma resonance field is much smaller than the characteristic plasma inhomogeneity scale length

L, we set ωL = ω0. From Eq. (3) it follows that to calculate the nth harmonic of the magnetic field in

vacuum, it is necessary to know the structure of the electric field and the electron velocity in the plasma

resonance region.

It was previously shown [6] that the longitudinal component of the electric field and electron velocity

near relativistic plasma resonance are described by the following pair of first-order partial nonlinear

differential equations

∂tv + av∂xv = P (1− βv2)3/2, ∂tP + av∂xP = −ω0
2v, (4)

which has a solution in the form

P0 = − A

1 + l2
(l cosχ+ sinχ), v0 = − A

1 + l2
(l sinχ− cosχ), x0 = l +

A

1 + l2
(l cosχ+ sinχ),

v1 = ±1

b

[
1− 1

(1 + b2v20/2)
2

]1/2
, τ = χ−

(√
4 +

β

1 + l2
E(ϕ; k)− 2√

4 + β/(1 + l2)
F(ϕ; k)− ϕ

)
.

(5)

Here x0 = x/Δ, v1 = (a/ω0Δ)v and P0 = (a/ω2
0Δ)P are normalized functions,

ϕ = − arcsin
l cosχ+ sinχ√

1 + l2
, k =

√
β/(1 + l2)

4 + β/(1 + l2)
, β = A2b2, A =

aL2

Δ2
, b =

ω0Δ

c
,

and Δ is the plasma resonance width, wich is determined by either the electron thermal motion with

velocity VT or a low collision frequency ν between plasma particles,

Δ = max
{
νL/ω0; (3V

2
T L/ω

2
0)

1/3
}
. (6)

Following the reasoning presented in [6], we define the equations for the transverse component of the

electric field Q and electron velocities u as follows:

∂tu+ av∂xu−Q = 0, ω0∂xQ+ ky∂tP = 0. (7)

To find the solution of the system (7), we use the renormgroup symmetry method and follow the scheme

outlined in [6]; omitting details, we give the solution

u0 = Ab sin θ

[
1

2
ln

(
b2e2ς sin2 θ

4
(1 + l2)

)
cosχ− arccot (l) sinχ

]
,

Q0 = Ab sin θ

[
−1

2
ln

(
b2e2ς sin2 θ

4
(1 + l2)

)
sinχ− arccot (l) cosχ

]
,

(8)
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where u0 = (a/ω0Δ)u, Q0 = (a/ω2
0Δ)Q, and ς = 0.5772156 is the Euler constant. Note that the nonlinear

dependence of the electric field P,Q and velocity v, u on the coordinate x and “time” τ = ω0t is implicitly

determined through the parametric variables χ and l, while the electric field P and velocity v play the

role of parametric variables in the expression for τ . Dimensionless parameters A and b corresponds to

contributions of the electron nonrelativistic and relativistic nonlinearities, respectievly [6].

Figure 1 shows the time dependences of the transverse components of the plasma electric field and

electron velocity at the resonance point x = 0 for the incidence angle θ = 11◦, for different values of the
dimensionless amplitude A, and fixed b = 1. As we can see, plasma-oscillation wave breaking occurs when

the amplitude of the plasma wave exceeds a certain threshold value. This is evident from the figure for

A = 0.73. The growth of the amplitude leads to the stationary plasma wave profile steepening up to the

threshold value, when the derivative ∂xQ becomes infinite, and the hydrodynamic model fails. Knowing

the structure of the electric field and the electron velocity of the plasma resonance, which are defined by

the nonlinear current J as the radiation source and solving Eq. (3), we can calculate the amplitudes of

the magnetic field harmonics in vacuum.

The solution of the inhomogeneous equation (3) is constructed in a standard way via fundamen-

tal solutions of the homogeneous equation. Assuming that the magnetic field has the form Bn =

C−
n exp

[
−i

ω0

c
(x+∞) cos θ

]
at x → −∞, we write the magnetic field harmonic amplitude in vacuum

with number n, kn(x) ≡ nω0

c

√
εn(x)− sin2 θ, as follows:

C−
n =

imeΔ
2ω3

0 exp
(
in argR1(0)− inπ + i

∫ 0

−∞
kn(x) dx

)
4πec(cos2 θ − 1/n2)1/2(1− 1/n2)1/2 cos1/2 θ

[
exp

{
i4n3Lω0

3c
(cos2 θ − 1/n2)3/2

}
I−n + iI+n

]
, (9)

I±n =

∞∫
−∞

dl

2π∫
0

dχ exp
[
inτ(χ, l)± inbx0(χ, l)

√
cos2 θ − 1/n2

]

×
{[

∂χ

(
P0 − i

n
γv1

)
∂lτ − ∂l

(
P0 − i

n
γv1

)
∂χτ − (

∂lτ∂χx0 − ∂lx0∂χτ
)
(γ − 1)

]
v1 sin θ

±
√

cos2 θ − 1/n2

[(
u0∂χP0 − i

n
v1∂χ(γu0)

)
∂lτ −

(
u0∂lP0 − i

n
v1∂l(γu0)

)
∂χτ

−(
∂lτ∂χx0 − ∂lx0∂χτ

)
(γ − 1)u0

]}
. (10)

3. Radiation Field Spectra

To investigate the spectral composition of radiation, let us make the transition to the physical pa-

rameters of the laser–plasma system: laser radiation incidence angle θ, laser intensity q0, W/cm2, and

inhomogeneity scale length L[λ] (choosing laser wavelength λ = 1.06 μm) of the plasma with temperature

T , keV. Then the dimensionless parameter a is determined by the expression that connects the magnetic

field amplitude in the plasma resonance point with the incident wave amplitude through the reflection

coefficient R1 in the linear theory [7],

a =

∣∣∣∣cB2
0e

2

πm2

| cos θ|
ω5
0L

3
(1−R2

1)

∣∣∣∣
1/2

. (11)
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Fig. 1. Time dependences of the electric field (a) and electron velocity (b) transverse components at point x = 0
for b = 1 and different values of the parameter A.

Figure 2 shows the dependences of the harmonic intensities qn on the number n at fixed incidence angle

θ = 11◦ and plasma temperature T = 2 keV for different laser intensities q0, for two plasma inhomogeneity

scales L = 100λ (a) and L = 20λ (b). The value q0 = 1017 W/cm2 is close to the limiting one at which

the wave breaking near plasma resonance occurs for given values θ, L, and T . Curves 1, 2, and 3 in

Fig. 2 a correspond to the cases shown in Fig. 1. Comparison of the spectra shows that, with pump field

amplitude growth, there are two effects in the spectrum structure changes that can be distinguished —

flattening the spectral curve and modulating it, which reaches a maximum near wave breaking of the

resonance plasma field. The predominance of an effect depends on the laser–plasma system parameters.

Fig. 2. Magnetic field spectra distributions calculated for different laser fluxes: q0 = 1016 W/cm2 (1),
5 · 1016 W/cm2 (2), and 1017 W/cm2 (3) for T = 2 keV at L = 100λ (a) and L = 20λ (b).

Comparing the spectral curves near wave breaking (curve 3) for different plasma inhomogeneity scales,

we see that, in the case of a sharper gradient (L = 20), nonlinearity leads to a change in the slope of

the curve, but, for a smoother gradient (L = 100), along with slight flattening, significant modulation

are noticeable. We emphasize that these effects are direct consequences of plasma-oscillation modulation

near the critical density, which was demonstrated in [6]. Figure 2 b also demonstrates that, in the case

of sharper gradients near the plasma wave breaking threshold, the emission spectra are characterized by

a power law that decreases with increasing number n but faster than 1/n.
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4. Summary

We constructed an analytical solution to the system of equations that describe the harmonic gener-

ation process through the relativistic plasma resonance mechanism. Using the renormgroup symmetry

algorithm [6], we calculated the transverse components of the electric field and electron velocity in the

vicinity of the critical plasma density. The nonlinear current as the source of the harmonic generation in

vacuum and the harmonic amplitudes are found. The relativistic nonlinearity of the plasma wave leads

to phase modulation of the electron oscillations, which leads to flattening of the spectral curve and its

modulation. Also we showed that with fixed pump field intensity the efficiency of the higher harmonic

generation increases with decreasing plasma inhomogeneity scale. This property is demonstrated for the

plasma inhomogeneity scale L = 20λ close to the limit laser intensity, at which wave breaking in the

plasma resonance occurs when smooth power-law emission spectra can be generated.
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