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Abstract

Similarly to electromagnetic waves, plasma waves can also carry an orbital angular momentum. A
key distinction from electromagnetic waves is that plasma waves are intrinsically coupled to electrons
and may deposit their momentum with electrons, resulting in their secular motion and generation of
quasistatic magnetic fields. In this paper, we present an analysis of kinetic plasma waves carrying an
orbital angular momentum in the paraxial approximation by considering the energy and momentum
exchange between the wave and electrons and the average electron motion induced by plasma wave
damping.
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1. Introduction

The kinetic theory of plasma waves and their interaction with charged particles were the favorite

research subjects of Viktor Pavlovich Silin. He dedicated many seminal papers to the properties of plasma

waves, plasma wave turbulence, and their applications for plasma heating and particle acceleration under

various conditions. In this paper, we consider a relatively new type of plasma waves that carry an orbital

angular momentum. These are collective electron oscillations propagating along a symmetry axis z and

spatially limited in the radial direction. A particularity of these waves consists in their capacity to carry,

in addition to the axial momentum, an orbital angular momentum, that is, the plasma wave electric field

having an azimuthal component, which is a periodic function of the azimuthal angle θ in the cylindrical

coordinate system.

Electromagnetic waves carrying an orbital angular momentum (OAM) were introduced by Allen et

al. [1] and rapidly found various applications in optics for compact information storage and nanoscale

imaging and manipulation [2]. Such waves have a form of radially limited beams described by Laguerre–

Gaussian functions, which are eigenmodes of the paraxial optics equation in the cylindrical coordinates.

Recent publications show that the interference of two such electromagnetic beams in plasma may ex-

cite plasma oscillations, transfer to electrons a part of their orbital momentum, and create quasistatic

magnetic fields [3–6].
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Plasma waves carrying an orbital momentum have also been described within the Laguerre–Gaussian

framework in the hydrodynamic approximation [7]. However, the hydrodynamic model cannot describe

such processes as the Landau damping, particle acceleration, and magnetic field generation. A kinetic de-

scription is required, but it is more complicated as transverse motion of electrons results in mode coupling.

A kinetic theory of plasma waves in the cylindrical geometry has been developed by Mendonça [8], who

however neglected coupling of angular modes. Recently we developed a consistent theory of kinetic OAM

plasma waves [6]. We accounted for mode coupling in the paraxial approximation by considering the

ratio of the plasma wavelength λ = 2π/k to the wave radial width wb as a small parameter, 1/kwb � 1.

We showed that the presence of an orbital angular momentum and corresponding radial structure of the

plasma wave change its dispersion and damping.

In this paper, we briefly recall the formal theory of OAM plasma waves and present a physical

interpretation of the resonant wave–particle interaction, which results in the transfer of energy and

momentum between the wave and the particles. In particular, the resonantly-accelerated electrons carry

an angular momentum, and the corresponding azimuthal electric current produces a quasistatic axial

magnetic field. The analytical expressions are illustrated and confirmed with intense three-dimensional

numerical simulations.

2. Dispersion Equation for the Plasma Wave in a Cylindrical

Geometry

An electric field E of the electromagnetic wave propagating in plasma along the z-axis can be repre-

sented in the paraxial approximation as follows:

E = e Re{E0(τ) exp(−iωt+ ikz)U(z, r, θ)},

where e is the constant polarization unitary vector, ω is the wave frequency, k = ω/c is the axial wave

number, τ = t − z/vg is the copropagating time, E0(τ) is the amplitude slowly changing in time, vg is

the group velocity, and the scalar function U describes the waveform in the transverse plane. The latter

is a solution of the paraxial wave equation

(2ik∂z +∇2
⊥)U = 0,

where we neglect the second derivative in z assuming the paraxial condition kwb � 1. In the cylindrical ge-

ometry, the function U can be developed in a series of eigenmodes, which are the Laguerre–Gaussian (LG)

functions [1],

U(z, r, θ) =
∑
p,l

cp,lFp,l(X) exp (ilθ + iϕp,l + iXz/2zR) . (1)

Here, X = r2/w2
b is the normalized radial coordinate, wb(z) = wb,0

√
1 + z2/z2R is the beam width, wb,0 is

the beam waist at the focal point, zR = kw2
b,0 is the Rayleigh length, ϕp,l(z) = −(2p+ |l|+1) arctan(z/zR)

is the Gouy phase, f(z) = z + z2R/z is the wavefront curvature, and cp,l are coefficients slowly depending

on time. The radial wave number p ≥ 0 is an integer that numerates radial modes. The integer l could

be positive or negative, and it numerates the orbital angular momentum (OAM).
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The radial eigenfunction Fp,l is the Laguerre–Gauss (LG) mode,

Fp,l(X) =

√
p!

(|l|+ p)!
X |l|/2L|l|

p (X) e−X/2,

where L
|l|
p (X) is a generalized, or associated, Laguerre polynomial of degrees p and l. The set of functions

Fp,l are orthogonal and normalized according to the following relation:

∫ ∞

0
dX Fp,l(X)Fp′,l(X) = δp,p′ ,

where δp,p′ is the Kronecker symbol.

A small amplitude plasma wave in a constant density plasma can be also described in the LG for-

malism. The electrostatic potential Φ and the electron distribution function fe satisfy the Poisson and

Vlasov equations, respectively. For a monochromatic plasma wave, with frequency ω and wave number

k, in the paraxial approximation, 1/kwb,0 � 1, the solution is expanded in a series of LG functions as

follow:

Φ = Re
∑
p,l

φp,lFp,l(X) exp (−iωt+ ikz + ilθ + iϕp,l + iXz/2zR) , (2)

δfe = Re
∑
p,l,m

f
(m)
p,l (vz, v⊥)Fp,l(X) exp (−iωt+ ikz + ilθ − imθv + iϕp,l + iXz/2zR) , (3)

where δfe is deviation of the electron distribution function from a Maxwellian distribution function fe0
with density ne,0 and temperature Te, and θv is the angle of the electron velocity with the reference

direction in the transverse plane. The Poisson equation is linear; thus, it provides relations between the

coefficients of the same mode,

φp,l = − e

ε0k2

∫
dv fp,l(v).

The situation is more complicated with the Vlasov equation, which cannot be separated in a set of

independent equations because the gradient operators vz∂z and v⊥ · ∇⊥ couple the modes with different

orbital momenta and radial structure. The use of a small parameter 1/kwb � 1 allowed us [6] to

account for coupling of the mode p, l to close neighbors with orbital momentum l± 1 and radial number

p±1. Excluding then the first-order terms, the following expression for the electron distribution function

averaged over the azimuthal angle has been obtained:

f
(0)
p,l =

[
−1 +

ω (ω − kvz)

(ω − kvz)2 +Q
(l)
p,pv2⊥/w

2
b

]
eφp,l∂εfe0. (4)

The denominator in the second term in the square brackets of this equation accounts for the shift of the

resonance condition ω = kvz due to the transverse structure of the plasma wave with the coefficient

Q(l)
p,p = −

(
1 +

z2

z2R

) (
p+

|l|+ 1

2

)
.
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By substituting expression (4) for the electron distribution function in the Poisson equation, the

dispersion equation for the twisted plasma wave can be obtained. In the case |z| < zR considered in what

follows, it reads

ε(ω, k) = 1 +
e2

ε0k2

∫
dv

[
−1 +

ω (ω − kvz)

(ω − kvz)2 − (2p+ |l|+ 1)v2⊥/2w
2
b,0

]
∂εfe0 = 0. (5)

The solution to this equation in the limit ω � kvth, where vth =
√

Te/me is the electron thermal velocity,

can be found using a standard expansion procedure. The real part of the dispersion equation (5) gives

the following expression for the plasma wave dispersion:

ω ≈ ωpe

(
1 +

3

2
k2λ2

De +
2p+ |l|+ 1

2k2w2
b,0

)
, (6)

where ωpe =
√

e2ne0/meε0 is the plasma frequency and λDe = vth/ωpe is the electron Debye length. The

last term in the parenthesis accounts for the OAM and final radial extension of the plasma wave. It

makes a positive nonthermal contribution to the wave dispersion.

Taking the residue in the resonance terms on the right-hand side of Eq. (5), one finds an expression

for the plasma wave damping. The Landau resonance in the case of plane wave vz = ω/k splits into

two resonances v±z = (ω/k)± (v⊥/kwb,0)
√

p+ (|l|+ 1)/2 shifted with respect to the axial phase velocity.

Calculation of corresponding integrals leads to the following expression for the plasma wave damping

rate γ = − Imω:

γ

ω
≈

√
π

8

1

k3λ3
De

exp

(
− ω2

2k2v2th

)
R

(√
p+ (|l|+ 1)/2

k2λDewb,0

)
. (7)

Here, the function R(ξ) = 1 +
√

π/2 ξ exp(−ξ2/2)Erf(ξ/
√
2) accounts for the OAM with Erf being

the error function. Graphical representations of these two functions with comparisons to the standard

dispersion relation and damping are presented in Fig. 1. The OAM carried by plasma waves results in a

notable increase in the dispersion. The contribution of OAM to the wave damping is visible for a beam

width wb,0 smaller than 20λDe.

3. Structure of a Vortical Plasma Wave

As an example of twisted plasma wave considered in the previous section, here we consider the

structure of a single mode p, l within the Rayleigh zone |z| < zR. The electric potential (2) contains only

one term characterized by the amplitude φp,l:

Φ(z, r, θ, t) = φp,lFp,l(X) cos(kz − ωt+ lθ). (8)

The electric field can be found taking the gradient of the potential. The axial field Ez = kφp,lFp,l sin(kz−
ωt+ lθ) dominates, and the transverse fields Er = −(2r/w2

b,0)φp,lF
′
p,l cos(kz−ωt+ lθ) and Eθ = (l/kr)Ez

are smaller by a factor 1/kwb,0 � 1. The radial field has a phase shifted by a quarter of a period with

respect to the azimuthal and axial fields.

422



Volume 40, Number 5, September, 2019 Journal of Russian Laser Research

a) b)

Fig. 1. Dispersion (a) and damping (b) of the plasma wave with p = 0 and l = 1 calculated using Eqs. (6) and (7).
The wave width wb,0/λDe = 8 (curve 1, dash-dotted), 18 (curve 2, dashed), 30 (curve 3, dotted), and 1,000 (curve 4,
solid).

The electron distribution function in the first order over the paraxial parameter can be presented in

the following explicit form:

δfe = −eφp,l∂εfe0Fp,l cos(kz − ωt+ lθ) +
ωeφp,l∂εfe0

(ω − kvz)2 − (2p+ |l|+ 1)v2⊥/2w
2
b,0

×
[(

ω − kvz +
vθl

r

)
Fp,l cos(kz − ωt+ lθ)− 2

vrr

w2
b,0

F ′
p,l sin(kz − ωt+ lθ)

]
, (9)

where F ′ is the derivative of the LG function with respect to its argument X. Coupling of the dominant

part of the distribution function f
(0)
p,l to neighboring modes f

(±1)
p,l±1 and f

(±1)
p∓1,l±1 results in the appearance

of azimuthal vθ and radial vr electron velocities in terms of the first order on the paraxial parameter [6].

This expression can be used for calculation of the moments of the electron distribution function. The

lowest moments, the perturbation of density and electric current, can also be found directly from the

Poisson and Ampere equations. For further analysis, we are interested in the electron density perturbation

eδne = −k2ε0Φ, the axial velocity uz = −ekΦ/meω, and the azimuthal velocity uθ = −elΦ/merω.

These expressions take a simpler explicit form for the lowest mode p = 0 and l = 1, where the

corresponding radial function reads F0,1 = X1/2e−X/2. The electric potential (8) is characterized by a

dimensionless amplitude a0 = eφ0,1/mec
2,

eΦ/mec
2 = a0(r/wb,0) e

−r2/2w2
b,0 cos(kz − ωt+ θ).

The perturbation of the electron distribution function given by Eq. (4) reads

δfe
fe0

= a0
mec

2

Te

r

wb,0
e−r2/2w2

b,0 cos(kz − ωt+ θ)− a0
mec

2

Te

ω

(ω − kvz)2 − v2⊥/w
2
b,0

e−r2/2w2
b,0

×
[(

ω − kvz +
vθ
r

)
r

wb,0
cos(kz − ωt+ θ) +

vr
wb,0

(
r2

w2
b,0

− 1

)
sin(kz − ωt+ θ)

]
.

423



Journal of Russian Laser Research Volume 40, Number 5, September, 2019

The analytical results presented here were confirmed by numerical calculations using the particle-in-

cell (PIC) code OCEAN [9]. A three-dimensional box containing 480×480×160 cubic cells with sides

of length π/20k is filled with a uniform plasma with fixed ions and electrons having temperature Te =

0.03mec
2; 100 particles per cell are used to achieve a signal-to-noise ratio sufficient for measuring damping.

The boundary condition along the propagation axis is absorbing, while in the transverse directions they

are reflecting for both fields and particles. In order to facilitate a simple periodic plasma wave with

OAM, the Gouy phase and front curvature are ignored for this analysis assuming |z| < zR.

Simulations are run with a mode p = 0, l = 1 having a wave number k = 1.9ωpe/c corresponding

to the parameter kλDe = 0.33 and a frequency ω close to the plasma frequency. The length of the box,

Lz, was chosen so that it fits exactly four wavelengths with kLz = 8π. The width of the plasma wave

wb,0 = 6/k is chosen so that the additional dispersion owing to OAM in Eq. (5) is small, ω/ωpe = 1.17,

with 3% coming from the last term, while the OAM contribution to the damping (7) increases it by a

factor of 1.28. The expected damping is γ/ω = 0.038; see curve 2 in Fig. 1.

Fig. 2. Results from OCEAN PIC simulation. Plots show transverse slices taken halfway along the simulation
box of Ex normalized to the plasma field Ep = mecωpe/e. The left-hand side plot shows the simulation at the time
the amplification process stops at t � 30/ωpe and so is at a maximum amplitude; the right-hand side plot shows
the simulation at time ∼ 70/ωpe during the damping process.

An electric field calculated from the potential described by Eq. (8) is imposed volumetrically on each

time step, with the dimensionless amplitude a0 increasing linearly in time from zero to the maximum

value a0 = |Ex|/Ep � 0.02 over five plasma periods, 2π/ωpe. After that time, the wave evolved freely in

plasma without any driver over more than 20 periods, with the amplitude decaying exponentially.

Figure 2 shows two transverse slices of the axial electric field from halfway along the simulation box,

the first plot showing Ex immediately after amplification at the maximum amplitude, and the second

plot ∼ 10 plasma periods later. The first plot shows a clean LG mode while the second plot shows a

spiral shaped perturbation, which is visible while the wave is damping. It is likely this is due to electrons

carrying the orbital angular momentum away from the plasma wave as it decays.

Values for the plasma wave frequency and Landau damping are found from the wave form calculated

with the PIC code. Figure 3 a shows the spectrum of excited plasma wave calculated over a time of

about 10 periods in the interval delimited in panel 2 with two vertical dashed lines. The measured wave

frequency is in good agreement with the values expected from the dispersion relation (6). The procedure

for damping rate calculation is explained in Fig. 3 b: the points are taken at the peaks of the current

and electric field and fitted to an exponential function. These points are taken at kr = 1.9π to capture
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a)

b)

Fig. 3. Spectrum (a) and waveform (b) of the plasma waves obtained from the PIC calculation. Panel a shows
the wave spectrum measured in the time interval shown with vertical dashed lines in panel b. The frequency value
ω/ωpe = 1.17±0.05, where the error comes from the spectral resolution. Panel b shows the absolute value of electric
field as a function of time sampled at a position kx = 4.25π and kr = 1.9π, where the maximum amplitude is
expected but with fixed θ = π/2 to capture oscillatory behavior. The time interval between t = 0 and t � 30/ωpe

(up to the fist black dashed line from the left) is the amplification time. The interval between the two black dashed
lines is used for fitting the wave amplitude to the exponential law, a(t) = a0e

−γt (shown as small crosses).

the maximum amplitude and at kx/π = 3.25, 3.75, 4.25, 4.75 and θ/π = 0, 1/2, 1, 3/2. The decay in

amplitude of both longitudinal current and electric field is measured independently and produced similar

results. The value calculated from all points gives γ/ω = 0.036 ± 0.003, which is in fair agreement

with the expected value of 0.038. However, taking the lowest half of the data gives a smaller value

of γ/ω = 0.027 ± 0.002. The nonuniformity of damping across the simulation box is likely due to the

relatively high noise level and nonuniform temperatures at the absorbing boundaries. At later time

ωpet > 100, the wave evolution enters into the nonlinear phase, and the wave amplitude is stabilized due

to the energy exchange with trapped particles.

4. Interaction of a Twisted Plasma Wave with Resonant Particles

The twisted plasma wave carries the orbital angular momentum in addition to the energy and mo-

mentum of the ordinary plasma wave. The time-averaged energy density W = ε0k
2φ2

p,lF
2
p,l/2 is equally

distributed between the field and the particles. However, only particles contribute to the time-averaged

momentum of the plasma mode P = 〈δnemeu〉. Consequently, the expression for the axial momentum

reads Pz = ε0k
3φ2

p,lF
2
p,l/2ω. Similarly we obtain an expression for the axial component of the orbital

momentum,

Lz = 〈rPθ〉 = ε0k
2lφ2

p,lF
2
p,l/2ω. (10)
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Performing integration in the transverse plane, we find the total energy per unit length carried by the

plasma wave W = πε0k
2w2

bφ
2
p,l/2, the orbital momentum per unit length Pz = πε0k

3w2
bφ

2
p,l/2ω, and the

total orbital momentum Lz = πk2lw2
bε0φ

2
p,l/2ω. The last two quantities depend on the sign of the axial

wave number k and the orbital momentum l, respectively.

The interaction of a plasma wave with resonant particles results in its absorption. This process

corresponds to an irreversible transfer of the wave energy and momentum to electrons. The rate of

energy gain by electrons can be evaluated by calculating the period-averaged work performed by the

electric field on the current: dW/dt = 〈E · j〉. Evaluating the current from expression (9) for the electron

distribution function, one can demonstrate that 〈E · j〉 = 2γW , that is, the wave damping (7) defines

the rate of energy transfer. Similarly, by calculating the average longitudinal force 〈−eδneEz〉 and the

longitudinal component of the torque 〈−erδneEθ〉 one can demonstrate that the axial momentum and

orbital momentum are transferred to electrons with the same rate: dPz/dt = 2γPz and dLz/dt = 2γLz.

However, the general expression for the wave damping (7) does not show how the absorbed energy

and momentum are distributed between the particles. In order to demonstrate the dissipation process

explicitly, we employ a microscopic approach following the method presented in [10,11].

Let us calculate the gain of the orbital momentum of an electron, lz = mervθ, in the plasma wave

field in the first order over a short interval of time Δt. The increment of the orbital angular momentum

contains two terms, Δlz = meΔrvθ +merΔvθ, but only the second one needs to be calculated. The first

term is imparted to the electron azimuthal velocity and will disappear after integration over all velocities

with the electron distribution function. The increment of the azimuthal velocity can be calculated from

the electron equation of motion

dtvθ = −(vrvθ/r)− eEθ/me,

where Eθ = −r−1∂θΦ. The first term on the right-hand side is imparted to the radial and azimuthal

velocities and will disappear after integration. For integration of the second term, one has to account for

the variation of coordinates along the electron trajectory. In the lowest order, we have

z(t) = z0 + vzt, θ(t) = θ0 + vθt/r, r(t) = r0 + vrt.

By integrating then the azimuthal electric field over the time interval Δt, we find the increment of the

azimuthal velocity and the orbital momentum; the latter is

Δlz = elφp,l
Fp,l

kvz + vθl/r − ω

{
cos[kz0 + lθ0 +

(
kvz + (vθl/r)− ω

)
Δt]− cos(kz0 + lθ0)

}
.

In order to account for the contribution of all electrons, we integrate this expression over the electron

distribution function fe0. The total gain of the angular momentum comprises two terms: (i) increase in

the orbital momentum of the electrons having the initial velocity v and gaining the velocity increment

Δv, and also (ii) reciprocal decrease of the orbital momentum of the electrons having the initial velocity

v +Δv and decreasing by Δv,

ΔLz =

∫
dvΔlz[fe0(v)− fe0(v +Δv)] ≈ −me

∫
dvΔlzΔv · v ∂εfe0(ε). (11)

Before taking the integral over velocities in this expression, we need to average the product ΔlzΔv over

the initial position of the electron, z0 and θ0, over one wave period. The axial and azimuthal components

of the electron velocity increment oscillate in phase: Δvz = (kr/l)Δvθ. Conversely, the radial part of the
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electron velocity increment is shifted by a quarter of period with respect to the azimuthal component. It

does not contribute to the averaged expression for the increment of the electron orbital momentum,

ΔLz = −2kle2φ2
p,lF

2
p,l

∫
dv

(vz + vθl/kr)∂εfe0
[kvz + (vθl/r)− ω]2

sin2[
(
kvz + (vθl/r)− ω

)
Δt/2]. (12)

This expression can be further simplified by taking the limit Δt → 0 and using the following relation:

lim
Δt→0

∫ ∞

−∞
da

sin2(aΔt)

a2
= Δt

∫ ∞

−∞
dξ

sin2 ξ

ξ2
= πΔt.

Correspondingly, the rate of the orbital angular momentum gain by electrons from the wave reads

dLz

dt
= −πlωe2φ2

p,lF
2
p,l

∫
dv δ

(
kvz + (vθl/r)− ω

)
∂εfe0 . (13)

The delta-function selects the integral in the velocity space along the resonance line kvz+(vθl/r)−ω = 0.

For a given absolute value of the transverse velocity v⊥, there are two values of the azimuthal angle, where

this condition can be satisfied. By performing integration over the velocity azimuthal angle θv and using

expression (10) for the orbital momentum, we find

1

Lz

dLz

dt
= −e2ω2

ε0k2

∫
dv

∂εfe0√
(v⊥l/r)2 − (kvz − ω)2

. (14)

As one can see, in the square root term under the integral, only a narrow range of electron velocities

Δvz/vth ∼ l/kr � 1 contributes to this expression.

For a Maxwellian distribution function fe0, the remaining integrals can be also calculated. That gives

us the following expression for the rate of the orbital momentum gain by electrons:

1

Lz

dLz

dt
≈

√
π

2

ω

k3λ3
De

exp

(
− ω2

2k2v2th
+

l2

2k2λDer

)
. (15)

Owing to the orbital momentum conservation, the OAM gained by electrons is equal to the OAM lost by

the wave. Therefore, expression (15) with the opposite sign defines the rate of the plasma wave orbital

angular momentum damping rate, i.e.,
dLz

dt

1

Lz
= 2γ. In the limit k2λder � l2, this corresponds to a

standard expression for the Landau damping rate. In the opposite limit, k2λder � l2, the damping rate

is larger, and there is a difference between Eq. (7) and (15). This difference is partially explained by the

fact that in deriving the latter expression we did not perform averaging over the radial structure of the

wave.

Similar expressions can be obtained for the rate of energy and axial-momentum losses of the plasma

wave. This means that the axial momentum, orbital angular momentum, and energy are dissipated

with the same rate, and the resonance wave–particle interaction transfers them irreversibly from the

bulk-motion adiabatic particles to the resonant particle moving with the phase velocity of the wave.

5. Conclusions

The analysis presented in this paper shows that, similarly to electromagnetic waves, the electrostatic

wave may also carry an orbital angular momentum and effectively transfer it to resonant particles. The
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method developed for Langmuir plasma waves can be readily extended to ion acoustic and electrostatic

waves propagating along an external magnetic field. These waves can be excited by beating two co-

or counter-propagating electromagnetic waves carrying OAM and thus facilitate coupling of the wave

momentum to plasma particles.

Imparting of axial and orbital angular momenta to electrons corresponds to excitation of the axial and

azimuthal quasistatic electric currents. Modulation of the plasma wave currents by the density perturba-

tions, as demonstrated in [6], results in excitation of a quasistatic magnetic field. It is of a second order

on the wave amplitude and has azimuthal Bθ and axial Bz components with magnetic field lines forming

helices. For a sufficiently high-amplitude plasma wave, these magnetic fields can be used for collimation

and guiding energetic electrons, for example, in the wake field acceleration scheme. The magnetic fields

are related to the mechanical momenta according to the Ampere law: Bθ � −(μ0e/me)Pz/2πr and

Ψz = 2π

∫
Bzr dr � −(μ0e/2me)Lz, where μ0 is the vacuum magnetic permeability.

The excitation of a twisted plasma wave with orbital angular momentum l = 2 was described in [5].

Two copropagating electromagnetic waves with opposite OAM ±1 were used to resonantly excite a

Langmuir wave in a plasma with density 2.5 · 10−3 of the critical density. The chosen parameters,

however, correspond to a small value of parameter kwb = 0.2, which is opposite to the paraxial condition

kwb � 1. Consequently, the plasma wave was strongly damped, and the authors observed a relatively

weak axial magnetic field with induction of a few teslas. Excitation of a plasma wave in the paraxial

regime offers higher wave amplitudes and stronger magnetic fields.
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