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Abstract

We obtain the current–voltage characteristics for the following three modes of current passing through
a system consisting of a Josephson junction coupled to a waveguide: first, only through the waveguide;
second, both through the junction and through the waveguide; and third, only through the junction.
In the first and second modes, sustaining of the induced motion of fast vortex chains is possible at a
lower current density than that in the third mode.
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1. Introduction

An attractive property of long Josephson junctions is the possibility of motion of Josephson vortices,

both solitary and their chains [1]. Josephson vortices have a large number of applications. In particular,

they are used to record and transmit information [2]. They find applications in generators of radiation

in the flux flow regime [3]. On their basis, qubits are created [4]. Experimental investigation of the

dynamics of vortices is possible with the help of registration of the current–voltage characteristics (CVC)

of Josephson junctions [5, 6]. The study of the induced motion of vortices under the action of the

bias current has long attracted the attention of researchers. In the development of this topic, we have

previously predicted the possibility of fast vortex motion [7] and chains of such vortices [8,9]. To advance

towards a possible experimental check of the traveling fast vortices, in the present paper we describe the

CVC of Josephson junction coupled to a waveguide. Such a system is shown in Fig. 1. We can assume

that the waveguide is a limiting case of a Josephson junction with zero critical current. In this sense,

the system depicted in Fig. 1 is similar to multilayered systems, which are stacks of Josephson junctions.

Such systems have been intensely studied (see, for example, [10–13]) when building models for describing

the motion of vortices in layered high Tc superconductors and also to demonstrate the manifestation of

the Vavilov–Cherenkov effect in the physics of Josephson junctions.

Below we present an unusual CVC of Josephson junction–waveguide system. We believe that such

a CVC can be implemented experimentally. This would give a new impetus to the studies of dynamics

of fast vortices, which we predicted earlier [7]. The properties of fast vortices are studied in a number
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a) b)

Fig. 1. A schematic (not to scale) image of a system consisting of a coupled Josephson junction (the tunneling
area is shown in black) and a waveguide (shown in gray), with S1, S2, and S3 being superconducting electrodes.
The arrows indicate the direction of current flow through only the waveguide (a) and through the entire system (b).

of papers; at the same time, in the absence of accompanying experiments, an interesting theoretical

prediction has not yet received due recognition. It should be noted that experimental detection of fast

vortices by registering new CVC would allow one to take a fresh look at the possibility of using Josephson

vortices in mastering the terahertz frequency range and, in the long term, in creating compact terahertz

generators. Stable areas of the found CVC can be detected in the mode of a given current. It is shown

that in order to maintain the induced motion of fast vortices, it is preferable to pass current only through

the waveguide or through the entire system than to pass current only through the junction.

2. Chains of Slow and Fast Vortices

For a description of electrodynamics of a layered system consisting of a long Josephson junction and

a magnetically coupled plane waveguide in the dissipation-free limit, the following equations for phase

differences of the superconductive order parameter on the junction ϕ and the waveguide ϕw are usually

used:

ω2
J sinϕ+ ϕtt = V 2

Sϕzz + SV 2
Sϕw,zz, (1)

ϕw,tt = V 2
Swϕw,zz + SV 2

Swϕzz, (2)

where ω2
J ≡ 16π2cdjc/εφ0 is the Josephson plasma frequency, c is the speed of light, 2d is the width of

the Josephson junction in the x direction, jc is the critical Josephson current density, ε is the dielectric

constant of a tunneling layer, φ0 is the magnetic flux quanta, VS and VSw are renormalized Swihart

velocities of the Josephson junction and the waveguide [7], and S and Sw ≤ 1 are coupling constants of

the Josephson junction and the waveguide, respectively.

The main difference between Eqs. (1) and (2) is the absence of a nonlinear term on the left-hand side

of the Eq. (2). This is due to the fact that Cooper pairs do not tunnel through the waveguide.

For vortex structures traveling with constant velocity v, from Eq. (2) we obtain

ψ′′
w =

[
SwV

2
Sw/(v

2 − V 2
Sw)

]
ψ′′, (3)

where ψw(ζ) ≡ ϕw(z, t), ψw(ζ) ≡ ϕw(z, t), and ζ ≡ z − vt. Relations (1) and (3) lead to the following

equation for the phase difference ψ on the Josephson junction:

sinψ = k−2
J ψ′′, (4)
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where

kJ(v) ≡
√

V 2
Sw − v2(

v21 − v2
) (

v22 − v2
) ωJ , (5)

and the velocities v1 and v2 are known functions of VS , VSw, S, and Sw [7]; they read

vm ≡

√√√√V 2
S + V 2

Sw

2
+ (−1)m

√(
V 2
S − V 2

Sw

)2
4

+ SSwV 2
S V

2
Sw, m = 1, 2. (6)

As in the case of an isolated long junction [1], Eq. (4) has solutions describing the vortex chains.

Depending on the velocity, these chains have different shapes. In the case where the velocity lies in the

intervals (0, v1) and (VSw, v2), kJ is real and ψ = π + 2am(kJζ/k, k), 0 < k < 1. In other case where the

velocity lies in the intervals (v1, VSw) and (v2,∞), kJ is imaginary, and we have ψ = 2am(|kJ |ζ/k, k).
In the both cases, the parameter k characterizes the period 2kK(k)|kJ(v)|−1 of the chain of traveling

vortices, and K(k) is the complete elliptic integral of the first kind.

We emphasize that usually in Josephson junctions a chain of vortices, whose velocity is small compared

to the Swihart velocity, are considered. Taking into account the influence of the waveguide provides the

extension of the permissible limits of existence of vortices. If the Swihart velocity of the waveguide VSw

is large compared to the Swihart velocity of the junction VS , there is a possibility of movement of the

so-called fast vortices with a velocity close to VSw.

In [14], it is shown that there is a peak, associated with the chain of fast vortices, on the CVC of a

system consisting of a Josephson junction magnetically coupled to a waveguide. This result is obtained

when the bias current passes only through the Josephson junction, when the bias current is applied to

the electrode S3 and removed from the electrode S2. Next, we consider the CVC of such a system in the

case of vortex chain motion under other modes of passage of the bias current.

3. Forced Motion of Vortex Chains

Analysis of forced motion of vortex chains is convenient using the balance of forces acting on the

vortex. At small losses and bias current densities significantly less than jc, it is possible to follow the

approach previously proposed for the solitary Josephson junction [15].

According to [14], the friction force per chain period (per unit length along the Oy axis) is

Ff = −φ2
0εE(k)

4π3c2kd
v |kJ(v)|α(v)ez, (7)

where E(k) is the complete elliptic integral of the second kind,

α(v) ≡ α+ SSw
V 2
S V

2
Sw

(V 2
Sw − v2)2

αw,

and α and αw characterize ohmic losses in nonsuperconducting layers. At the same time, the Lorenz

force is FL = (φ0/c)

∫
period

dζ
(
jJψ

′ + jwψ
′
w

)
ez, where jJ and jw are values of the bias-current density

in the Josephson junction and the waveguide. They are introduced for three possible situations, i.e.,
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(1) when the current passes only through the junction, then jJ = j and jw = 0; (2) when the current

passes only through the waveguide, then jJ = 0 and jw = j; (3) when the current passes through

the entire system, then jJ = jw = j. In the same way as the Lorentz force acting on the Abrikosov

vortex is determined by the product of the bias current density and the magnetic flux carried by the

vortex [17], in the system under consideration, the Lorentz force is determined by the product of the

current density in the Josephson junction and (or) the waveguide and the change in the corresponding

phase differences at one period of the vortex chain. For small losses and small values of the current

density, the derivatives of phase differences on the waveguide and the Josephson junction are linearly

related: ψ′
w =

[
SwV

2
Sw/(v

2 − V 2
Sw)

]
ψ′ (it is assumed that there is no external magnetic field), and for

the Lorentz force we have

FL =
φ0

c

(
jJ +

SwV
2
Sw

v2 − V 2
Sw

jw

)
ez. (8)

The appearance of the multiplier SwV
2
Sw/(v

2−V 2
Sw) in expression (8) corresponds to a linear relationship

for the derivatives of phase differences. The balance of friction and Lorentz forces corresponding to the

motion of vortices with a constant velocity results in the current–velocity characteristic.

First, consider the situation where the bias current flows only through the waveguide, when the bias

current is applied to the electrode S2 and removed from the electrode S1, as depicted in Fig. 1 a. Then,

in accordance with Eqs. (7) and (8), we have the following relation between the bias current density j

and the vortex chain velocity v:

j

jc
= −4E(k)

πk

V 2
Sw − v2

SwV 2
Sw

v|kJ(v)|
ω2
J

α(v). (9)

Relation (9) is also applicable to the case of ring geometry, where the Josephson junction and the

waveguide have relatively large radii R, which allows us to ignore the curvature and use the equations

for the rectilinear system. In this case, the parameter k and the velocity v are related by

2πR = 2nkK(k)/|kJ(v)|, (10)

where n = 1, 2 . . . is the number of vortices in the ring.

The voltage across the Josephson junction averaged with respect to the time period 2πR/nv is

〈U〉 = −φ0nv/2πcR. (11)

Equations (9), (10), and (11) implicitly describe the CVC of a ring system consisting of the Josephson

junction and the waveguide in the case of current passing only through the waveguide. Eliminating the

parameter k by numerically solving Eq. (10), in view of the relation between the velocity and voltage (11)

and the transcendental equation (9), one can numerically get the CVC (the dependence of j on 〈U〉).
The other possibility of sustaining the induced motion of a chain of vortices is realized when current

is passing through the entire system, as shown in Fig. 1 b. Then we have the following relation between

the bias current density j and the vortex chain velocity v [9]:

j

jc
=

4E(k)

πk

V 2
Sw − v2

v2w − v2
v |kJ(v)|

ω2
J

α(v), (12)

where vw ≡ √
1− Sw VSw. The procedure for obtaining the CVC from this current–velocity characteristic

is similar to that described above.
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4. Calculations and Results

The CVC in the case of passing bias current only through the waveguide are shown in Fig. 2 by

dashed curves. The following notation was used: Up ≡ −φ0nvp/2πcR (p = 1, 2), Uw ≡ −φ0nvw/2πcR,

US ≡ −φ0nVS/2πcR, and USw ≡ −φ0nVSw/2πcR. Calculations were performed for a system with the

following parameters: VSw = 2VS , S = Sw = 0.9, α = 5 · 10−4ωJ , RωJ/VS = 2/π, and n = 1. In Fig. 2,

only stable parts of the CVC are given, where the absolute value of the current density increases with

increasing voltage 〈U〉. Here, stable sections of the CVC in the cases of current passing through the entire

system (solid curves) and only through the Josephson junction (dash-dotted curves) are also shown.

a) b)

Fig. 2. The CVC of the ring system consisting of the Josephson junction and the waveguide for voltages from 0
to Uw (a) and from � USw to U2 (b). The CVC for the case of passing current through only the waveguide are
shown by the dashed curve, through the entire system by the solid curve, and only through the Josephson junction
by the dash-dotted curve, respectively. The inset in (a) shows the stable section of the CVC in the voltage range
between U1 and Uw and the inset in (b) shows stable sections near the voltage USw. Only stable parts of CVC are
shown. Asymptotes are shown by thin solid lines.

From Fig. 2 a one can see that in the region of voltages smaller than U1, which correspond to slow

vortices moving at velocities of 0 < v < v1, all three CVC are stable. At high voltages, at all CVC,

instability regions appear.

For a given voltage value, the friction force (7) does not depend on the mode of passing current. At

the same time, the multiplier in parentheses in (8) is j in the case of current passing only through the

Josephson junction, SwV
2
Swj/(v

2 − V 2
Sw) in the case of current passing only through the waveguide, and

(v2− v2w)j/(v
2− v2Sw) in the case of current passing through the whole system. In the region of existence

of a fast vortex, VSw < v < v2, inequalities are met 1 < SwV
2
Sw/(v

2−v2Sw) < (v2−v2w)/(v
2−v2Sw). Then it

follows from the condition of the balance of forces that, in order to maintain uniform motion of the vortex

chain, the least current is required if it is passing through the entire system. When the current passes

only through the waveguide, its value is more, (v2 − V 2
Sw)/SwV

2
Sw > 1. A greater value of the current

is required when it passes only through the Josephson junction. According to Fig. 2 b, passing current

only through the waveguide or through the entire system requires significantly less current than passing
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current only through the Josephson junction. The closeness of the current supporting the movement of

fast vortices in the case of current passing only through the waveguide or through the entire system arises

from the fact that the magnetic field of the fast vortex is mainly localized on the waveguide and near

it (see, i.e., [18]).

Now we briefly discuss the sections of the CVC away from the region of motion of the fast vortex.

Speaking of the motion of a slow vortex at voltages less than U1, from Fig. 2 a it can be seen that

maintaining the uniform motion of vortices when passing current through the waveguide requires a

different direction of current than with other passing modes. This is due to the fact that in the case of

jJ = 0 and at voltages smaller than USw, the sign of the Lorentz force is opposite to the sign of jw. Note

that, in this area, the highest absolute value of the current density corresponds to the case of passing

current through the entire system.

In the intermediate voltage range, from U1 to USw, for the same reason, changing the sign of the

Lorentz force, the current is negative in the case of passing only through the waveguide. Also note a new

feature of the voltage Uw. It is characteristic only for passing current through the whole system. This

feature is related to the presence of the denominator v2w − v2 in the expression for current density (12).

When passing the point v = vw (or 〈U〉 = Uw) from left to the right, the Lorentz force (∝ v2 − v2w)

changes sign, which corresponds to the CVC gap by the law ∝ 1/(v2 − v2w). Note that Fig. 2 a is plotted

in the case V1 < vw. In the opposite case, a similar gap arises at the point 〈U〉 = Uw, which is located to

the left of the point 〈U〉 = U1. In this case, on a stable part of the CVC near this voltage, the current (12)

is negative.

Finally, speaking of the CVC in the voltage region greater than U2, not depicted in the figures, the

continuous and dashed curves yield a linear asymptotic dependence j/jc = −2πcα〈U〉/φ0ω
2
J , correspond-

ing to the vortex-free state according to [14], which is shown in Fig. 2 by a thin solid line. At the same

time, in the case of current passing only through the waveguide, the asymptotic dependence is quadratic,

due to the fact that the Lorentz force at sufficiently high velocities decreases by the law v−2.

5. Conclusions

From the above consideration of the dynamics of vortex chains in the Josephson junction coupled to

the waveguide, two conclusions follow. First, the induced motion of slow vortices is easier to realize by

current passing only through this junction. Second, it is advisable to study the dynamics of fast vortex

chains by passing the current only through the waveguide or through the entire structure.
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