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IS THERE A PROBLEM WITH OUR HAMILTONIANS

FOR QUANTUM NONLINEAR OPTICAL PROCESSES?
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Abstract

The models we use, habitually, to describe quantum nonlinear optical processes have been remarkably
successful, yet, with few exceptions, they each contain a mathematical flaw. We present this flaw, show
how it can be fixed, and, in the process, suggest why we can continue to use our favored Hamiltonians.
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1. Introduction: a Dilemma

Quantum nonlinear optics is now very well developed, with photonic devices such as parametric

oscillators and spontaneous parametric down-converters playing the role of workhorses in experimental

demonstrations of exotic quantum phenomena (including entanglement) and in the advance of quantum

information technology. Of particular relevance to us are those associated with second- and third-order

nonlinearities corresponding to the interaction between three or four fields. We shall see that the natural

and widely employed quantum descriptions of these processes rely on Hamiltonians with spectra that are

unbounded from below [1]. There are very good mathematical and, indeed physical, reasons for doubting

the validity of such an unbounded Hamiltonian and these doubts, in turn, challenge our confidence in our

understanding of quantum nonlinear optical processes. The problem is an old one, although perhaps not

well known, and it is for this reason, primarily, that this article cites mostly books rather than original

papers; tracking down the full set of relevant papers published over the last 30 or so years would be an

exhausting challenge.

Let us begin by presenting the problem as simply as possible. To this end, we consider a simple

model of an intracavity optical parametric oscillator, in which a nonlinear crystal mediates the reversible

transformation of single photons from mode a into a pair of photons, one each in modes b and c. A simple

Hamiltonian used to describe this process might be of the form

Ĥ = ωaâ
†â+ ωbb̂

†b̂+ ωcĉ
†ĉ+ κ

(
â†b̂ĉ+ b̂†ĉ†a

)
, (1)

where, as is common practice in quantum optics, we have chosen units such that � = 1. We shall assume

that the parametric process is resonant so that ωa = ωb + ωc. This is not strictly necessary but making

this choice simplifies the analysis without affecting the points we seek to make. There is a very large

variety of models of this form; these include four-wave processes in which there is an additional mode,

with annihilation operator d̂, and for which â is replaced by âd̂ in the interaction term, models in which
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one or more modes are strong and treated classically, and also models using continuum modes. These are

often supplemented by driving terms and the ubiquitous losses and noise. The treatment of these is now

the domain of specialist textbooks devoted to quantum optics [2–11]. That our simple Hamiltonian has

a spectrum that is unbounded from below is most readily demonstrated by evaluating the expectation

value of Ĥ for the three-mode coherent state |α〉a|β〉b|γ〉c [1],

〈Ĥ〉 = ωa|α|2 + ωb|β|2 + ωc|γ|2 + κ (α∗βγ + β∗γ∗α) , (2)

where we used the familiar eigenstate property of the coherent states: â|α〉 = α|α〉 [8]. This expectation
value can take any value and, in particular, any negative value as may readily be seen by setting |α| =
|β| = |γ| and choosing the phases of these such that the interaction term is negative,

〈Ĥ〉 = (ωa + ωb + ωc)|α|2 − 2|κ||α|3, (3)

which tends to −∞ for large |α|. The expectation value of the Hamiltonian cannot be less than its lowest

energy eigenvalue, and it follows, therefore, that the Hamiltonian has a spectrum that is unbounded from

below.

There are very good reasons for being suspicious of and even rejecting Hamiltonians with no ground

state. Perhaps the most telling of these is the possibility, were such a system to be realized, of extracting

unbounded amounts of energy associated with the decay of the system to every lower energy states.

2. Resolution I: Restricted State Space

The first thing to notice about the above argument is that the runaway behavior towards negative

energy eigenstates sets in at very high photon numbers corresponding to high optical, electric field

strengths. As an indication of this, we can write our polarization as a nonlinear function of the electric

field [12,13],

P = ε0

(
χ(1)E + χ(2)E2 + · · ·

)
. (4)

Typical values of the nonlinear susceptibility, χ(2), are in the range 10−11 to 10−12 m ·V−1 [12], and this

suggests that we need an optical electric field strength in the region of perhaps 1012 V ·m−1 corresponding

to an intensity of the order of 1018 W · cm−2 before the nonlinear susceptibility dominates and perhaps

leads to the problems indicated. So one might very well take the view that the problem does not arise in

the experimental regime of interest. This is not quite satisfactory, however, unless we can show that the

dynamical evolution of the modes cannot take us into the regime in which the unbounded negative-energy

eigenspace occurs.

There is, thankfully, a natural set of conservation relations that apply, and these ensure that if our

initial state has no overlap with the troublesome negative energy eigenstates, then it will not acquire one.

It may be shown, either by inspection of the Hamiltonian or by explicit calculation, that there are three

conserved quantities corresponding to the operators

M̂1 = b̂†b̂+ â†â, M̂2 = ĉ†ĉ+ â†â, (5)

with the third following from these:

M̂3 = ĉ†ĉ− b̂†b̂. (6)
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These three are the operator analogs of the Manley–Rowe relations familiar from classical nonlinear

optics [12,13]. It follows that we can divide the state space into noninteracting blocks, each characterized

by a pair of positive integers, M1 and M2, corresponding to the first of our two conserved quantities. It

then follows that within each block, the number of photons in any mode can never exceed the largest

of these two integers. This procedure provides a very natural way to solve for the dynamics of the

three-mode state and of its mathematically equivalent model of a number of two level-atoms interacting

cooperatively with a single cavity mode [14–16].

In light of the above observations, it is interesting, at least mathematically, to ask how it is that a

Hamiltonian with photon-number conservation laws can lead to an energy eigenvalue spectrum that is

unbounded from below, as surely adding more photons will increase the energy. In fact, this is not so,

as may readily be seen in the following estimate. Let us suppose that we have a low-energy eigenstate,

in which all three modes have roughly N photons but with some small variations in the superposition of

photon-number product states. For this state, we can estimate the energy eigenvalue by replacing each

of the creation and annihilation operators by
√
N and suitably selecting the phases in the superposition

such that the contribution from the interaction term is negative. We find

EN ≈ 2Nωa − 2|κ|N3/2, (7)

so that the energy becomes negative for
√
N > ωa/|κ|. It will become increasingly negative as we increase

N so that adding photons in this regime will reduce the overall energy for this state. If we restrict our

state space to contain only photon numbers very much less than this value, then using our coupled-mode

Hamiltonian will not get us into the difficulties associated with much higher photon numbers. This means

that we will avoid problems if we restrict our Hamiltonian as being valid only for photon numbers below

some upper limit and restrict our state space to be spanned only by photon numbers less than this upper

value.

3. Resolution II: Higher-Order Processes

The resolution presented in the preceding section is somewhat mathematical in nature and, as a

counterbalance, we present here a more physical line of reasoning. We have seen that the problem of

unbounded negative energy eigenvalues arises at high field strengths, corresponding to very high photon

numbers, and this suggests that higher-order nonlinear optical processes will come into play before the

problem is reached. If so, then the physical resolution will be a more accurate Hamiltonian that does not

have the problem of unbounded negative-energy eigenstates. This does indeed turn out to be the case.

Let us consider a three-level atomic model with a ground state |0〉 and two excited states, |1〉 and

|2〉, coupled by our three optical modes, as depicted in Fig. 1.∗ Such level schemes form the basis

of microscopic calculations of nonlinear susceptibilities and can be found in many texts on nonlinear

optics [12,13,17–21]. It suffices, for our purposes, to consider just a single atom as our nonlinear medium;

including many atoms to form a nonlinear medium presents no special difficulties but would add an

unnecessary complication. Our Hamiltonian has the form

Ĥ = ĤF + ĤA + V̂ , (8)

∗Strictly speaking, we need an additional electric field to mix the parities of the energy levels so that the pattern of
transitions are all allowed.
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where the component parts are

ĤF = ωaâ
†â+ ωbb̂

†b̂+ ωcĉ
†ĉ, ĤA =

2∑
i=0

Ei|i〉〈i|,
(9)

V̂ = ga

(
|2〉〈0|â+ â†|0〉〈2|

)
+ gc

(
|2〉〈1|ĉ+ ĉ†|1〉〈2|

)
+ gb

(
|1〉〈0|b̂+ b̂†|0〉〈1|

)
.

Fig. 1. Electronic energy level scheme and cou-
plings for a microscopic theory of our nonlinear
optical process. Here, the detunings δ and Δ are
δ = E2 −E0 − ωa and Δ = E1 −E0 − ωb, where E0,
E1, and E2 are the energies of the states |0〉, |1〉,
and |2〉, respectively.

It is interesting to note that this Hamiltonian provides

a physical picture of the origin of entanglement generated

between modes b and c. If mode a starts in a coherent

state, then the interaction with the atom imprints a phase

from mode a onto the probability amplitude for energy

level 2, so that there is a coherence induced between le-

vels 0 and 2. This coherence is transferred to modes b and

c on transition to the atomic ground state so as to pro-

duce a nonvanishing expectation value 〈b̂ĉ〉 even though

〈b̂〉 = 0 = 〈ĉ〉, which is a result of the entanglement be-

tween the modes. We may view this as a manifestation of

interference between the two possible excitation pathways

between the states |0〉 and |2〉 [22–27].
We can recover our initial nonlinear optical Hamil-

tonian by applying perturbation theory, as used in mi-

croscopic derivations of the nonlinear susceptibility [12].

Here we adopt a slightly different approach, in which we

derive an effective Hamiltonian [28, 29] for the three interacting field modes based on time-independent

perturbation theory to obtain, in operator form, the shift to the atomic ground-state energy. This is a

simple extension of the treatments given in many quantum-mechanics textbooks [30–33], although we

require perturbation theory up to third order, which is one order higher than that found in most texts.

For these reasons, it is worth pausing to present a few details of the calculation. To order zero in the

fields, our perturbed atomic ground-state energy is

Ĥ(0) = 〈0|ĤF + ĤA|0〉 = ωaâ
†â+ ωbb̂

†b̂+ ωcĉ
†ĉ+ E0. (10)

The first-order correction is zero,

Ĥ(1) = 〈0|V̂ |0〉 = 0. (11)

At the second order, we find a shift of the energies of modes a and b,

Ĥ(2) =
〈0|V̂ |1〉〈1|V̂ |0〉
E0 − (E1 − ωb)

+
〈0|V̂ |2〉〈2|V̂ |0〉
E0 − (E2 − ωa)

= −g2a
δ
â†â− g2b

Δ
b̂†b̂. (12)

Finally, at the third order, we find a term coupling the three modes,

Ĥ(3) =
〈0|V̂ |2〉〈2|V̂ |1〉〈1|V̂ |0〉+ 〈0|V̂ |1〉〈1|V̂ |2〉〈2|V̂ |0〉

[E0 − (E2 − ωa)][E0 − (E1 − ωb)]
=

gagbgc
δΔ

(
â†b̂ĉ+ b̂†ĉ†â

)
. (13)
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If we combine these together and drop the unimportant constant ground-state energy, E0, then we arrive

at an effective Hamiltonian for the three interacting fields,

Ĥ = ωaâ
†â+ ωbb̂

†b̂+ ωcĉ
†ĉ− g2a

δ
â†â− g2b

Δ
b̂†b̂+

gagbgc
δΔ

(
â†b̂ĉ+ b̂†ĉ†a

)
. (14)

The fourth and fifth terms in this Hamiltonian correspond to Stark shifts of the ground state but appear

here as a modification of frequencies of the cavity modes. These account for the effective refractive index

associated with the presence of the atom, and we can include these in the frequencies for the modes,

ω′
a = ωa − g2a/δ and ω′

b = ωb − g2b/Δ, to give

Ĥ = ω′
aâ

†â+ ω′
bb̂

†b̂+ ωcĉ
†ĉ+

gagbgc
δΔ

(
â†b̂ĉ+ b̂†ĉ†a

)
, (15)

which becomes our initial Hamiltonian, Eq. (1), if we set κ = gagbgc/δΔ and relabel our AC Stark-shifted

shifted frequencies ω′
a and ω′

b as ωa and ωb. At a fundamental level, these frequency shifts appear because

we have used fixed cavity modes in our analysis, with predetermined wavelengths. The relabeling has a

physical interpretation, which is that we shift to modes with a small difference in wavelength such that

the process is resonant with the shifted frequencies.

Our perturbative approximation has reproduced the Hamiltonian, which has the energy spectrum

with no lower bound. To show that this is a consequence of the approximations used to derive it, we

need only show that the microscopic Hamiltonian from which it was derived, Eq. (8), does not have this

property. To this end, we evaluate the expectation value of our microscopic Hamiltonian for a general

atomic state,
∑

i ci|i〉, and the field coherent state |α〉a|β〉b|γ〉c. For this state, we find

〈Ĥ〉 = ωa|α|2 + ωb|β|2 + ωc|γ|2 +
2∑

i=0

Ei|ci|2

+ga(αc0c
∗
2 + α∗c2c∗0) + gc(αc1c

∗
2 + α∗c2c∗1) + gb(αc0c

∗
1 + α∗c1c∗0). (16)

This expectation value tends to +∞ as the amplitudes of the coherent states become large, and the

problem of unbounded negative eigenvalues does not arise. We conclude that this unphysical behavior

arises as a consequence of extending a perturbative theory beyond the bounds of its validity. It is not

difficult to see where this breakdown occurs; if the couplings between the atomic levels become large

compared with the detunings (for example, ga
√
Na � δ), then we start to find a significant probability

for the atom to be found in one its excited states, and this invalidates the atomic ground-state assumption

used in deriving the approximate Hamiltonian, Eq. (15).

4. Conclusions

The problem we have identified with the simple Hamiltonian, Eq. (1), applies to a very wide range

of such model Hamiltonians used to describe quantum effects in nonlinear optics, including those used

with great success to describe the generation of entangled states. That we can continue to use these

model Hamiltonians with confidence comes from the fact that the dynamics predicted by these models

cannot enter the regime in which unphysical behavior would emerge. That this is true mathematically

is ensured by the conservation of the quantities M̂1 and M̂2 given in Eq. (5), which mean, in turn, that

if we ensure that the maximum photon number in our analysis is sufficiently small, then we can be
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confident in the predictions made using our model Hamiltonian. If we do push the model towards higher

photon numbers, then we will, at some stage, need to abandon our simple multimode interaction term

and include, explicitly, the dynamics of the nonlinear medium.

Perhaps, we should, if only occasionally, acknowledge the fact that the Hamiltonians we use habitually

in modeling nonlinear optical processes should be used with caution [1], and that they form a valid

description only when operating in a restricted state space, in which the photon number is not too large.

End note

Stig Stenholm was a wonderful man, a brilliant and ingenious physicist, a scholar, a caring nurturer of

young scientists and, perhaps above all, an inquisitive, far-seeing and deep thinker. We worked together

for many years, albeit intermittently, and I owe to him far more than these few words can adequately

express. Looking back, I find it surprising that we published only nine papers together [34–42], but these

papers constitute only a very small part of the fields we explored, in physics, mathematics and, latterly,

in philosophy, especially the philosophical foundations of quantum theory [43].

Let me conclude by quoting the final paragraph from Stig’s last book, The Quest for Reality [44], in

which he sought to reconcile distinct philosophical views of quantum theory. He wrote:

The situation is far from satisfactory, but it may, in the end, be the best world image available to our

limited human intellect. If that is so, we have to be grateful for what we get. Chasing rainbows has never

uncovered the treasures. But the display of colors is magnificent.

This sums up the man I knew rather well: “you never really finish a problem,” he once told me, but

the fun is in the challenge to understand.
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