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Abstract

We investigate the damped interaction between two Λ-type three-level atoms and a quantized single-
mode cavity field, for which the Hamiltonian of the field is rewritten in Caldirola–Kanai form. We
obtain the wave functions for the case where the two atoms are initially prepared in arbitrary pure
states and the field is initially prepared in the coherent state. We investigate numerically the influence
of the damping parameter on the temporal behavior of the Mandel Q-parameter, linear entropy, and
normal squeezing. We find the damping parameter and initial atomic states to play central roles in
the nonclassical features and the degree of entanglement.

Keywords: three-level atom, linear entropy, Mandel parameter, normal squeezing, Caldirola–Kanai

approach.

1. Introduction

The interaction model for a single quantized mode of a radiation field and a two-level atom in the

rotating wave approximation (RWA) is called the Jaynes–Cummings model (JCM) [1]. This model has

been the focus of many theoretical and experimental studies [2, 3]. The description of quantum friction

in the classical formulation of quantum mechanics was considered in [4, 5]. Indeed, the main physical

defect of the Caldirola–Kanai (CK) approach is that it implies the assumption that the quantum state

of the system remains pure during its evolution, whereas the dissipation is always connected with the

loss of quantum purity [6, 7]. Many different generalizations that modified the JCM using, for example,

multimode fields [8], multilevel atoms [9–12], intensity-dependent (nonlinear regime) JCM [13, 14], and

multiphoton transitions [15,16] have been proposed in recent decades. All of these studies have assumed an

ideal system where damping is neglected; nevertheless, two Λ-type three-level atoms have been considered

in [17,18]. Entanglement plays a central role in the new field of quantum information, there being many

studies concerning its properties [19]. The CK Hamiltonian has in this regard provided a vast area of

research.

The problem of controlling entanglement using the quantized CK Hamiltonian has attracted much at-

tention. This Hamiltonian was investigated in several quantum systems to study physical properties such
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as plasma environments and mesoscopic (RLC) circuits [20,21]. The coherent states and squeezed states of

the CK Hamiltonian were also studied [22,23] and showed that the eigenfunctions of the CK Hamiltonian

satisfy the minimum uncertainty relation in a generalized form [24]. The many studies have examined

different models in regard to the concept of damping [25, 26]. Caldirola and Kanai treated the problem

of friction for a quantum harmonic oscillator by introducing a Hamiltonian with a time-dependent mass,

called the CK Hamiltonian [27,28],

HCK =
p̂2

2m0
exp(−2γt) +

1

2
m0ω

2q̂2 exp(2γt), (1)

where ω, m0, and γ are frequency, initial mass, and damping parameter, respectively. Furthermore, it

is possible to introduce canonical transform [29] to reduce this Hamiltonian with its variable mass to a

time-independent Hamiltonian in such a way that the uncertainty relation is preserved. Briefly, in this

approach, the canonical transform introduced is P̂ = e−γtp̂ and Q̂ = eγtq̂ [30, 31] with the generating

function �2(q̂, P̂ , t) = eγt
P̂ q̂ + q̂P̂

2
. As p̂ =

∂�2

∂q̂
and Q̂ =

∂�2

∂P̂
, the transformed Hamiltonian is then

K = HCK +
∂�2

∂t
, which can be explicitly rewritten as

K̂ =
P̂ 2

2m0
+

1

2
m0ω

2Q̂2 +
γ

2
(P̂ Q̂+ Q̂P̂ ). (2)

The new momentum and position operators can then be written in terms of the usual creation and

annihilation operators [30, 31],

P̂ = i

√
�m0ω

2
(â+ â†), Q̂ =

√
�

2m0ω
(â† − â). (3)

Next, the new ladder operators are defined as [32]

Â = (2m0�Ω)
−1/2[m0(Ω + iγ)Q̂+ iP̂ ] = 1

2
√
Ωω

(ζ+â+ ζ−â†),
(4)

Â† = (2m0�Ω)
−1/2[m0(Ω− iγ)Q̂− iP̂ ] = 1

2
√
Ωω

(ζ∗+â† + ζ∗−â),

where Ω = ω
√

1− η2, η = γ/ω, and ζ± = Ω + iγ ± ω. The relation [Â, Â†] = 1 is easily verified.

Accordingly, the transformed Hamiltonian in terms of Â and Â† reads [32]

HCK = �Ω(Â†Â+ 1/2). (5)

However, as is seen, the Hamiltonian obtained is reduced from a variable mass Hamiltonian to a quantized

Hamiltonian that does not explicitly depend on time. The system becomes a cavity containing a quantized

multimode field that interacts with a multilevel atom, where the Hamiltonian of the quantized field is

expressed according to the transformed Hamiltonian, i.e., the CK Hamiltonian, Eq. (5). The Hamiltonian

of the whole system in the dipole approximation [33] is H = Hfree +Hint, with

Hfree =
∑
k

ΩkÂ
†
kÂk + Eiσ̂ii, Hint =

∑
i,j

∑
k

λij
k σ̂ij(Â

†
k + Âk), (6)
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where σ̂ij represents the atomic operator |i〉〈j|, and |i〉 denotes the atomic energy eigenstate with

eigenvalue Ei, the factor 1/2 having been dropped. The subscript k is related to the kth mode of

electromagnetic field, which is coupled to transition between atomic levels i, j by coupling constant

λij
k = −℘ijεk£k/� [34]. Here £k = e〈i|r̂|j〉 is the electric-dipole transition matrix element also, and εk

and £k denote, respectively, the unit vector polarization vector and the amplitude of the kth mode of

electric field. The interaction between a two-level atom with such a single-mode field, which is described

by the CK Hamiltonian, has been studied in [33]. In [35], the interaction of such a damped field with a

three-level atom having a Ξ-type configuration was examined, assuming that the quantized single-mode

field undergoes dissipation described by the CK Hamiltonian. For any specific initial state with a given

field intensity, the observed value for the maximum degree of entanglement (DEM) increases with increase

in the value of the damping parameter.

In this paper, we investigate the interaction between two Λ-type three-level atoms and a single-mode

quantized field with the CK Hamiltonian. After transforming the interaction Hamiltonian for the system,

we obtain the probability amplitudes and the associated atom-field state vectors. In addition, we study

the influence of the initial atomic states and damping parameters on the time behavior of the physical

properties such as linear entropy, Mandel parameter, and normal squeezing.

The rest of this article is organized as follows.

In the next section, we derive the form of the probability amplitudes for the considered system. In

Sec. 3, by considering different types of initial atomic states, we numerically investigate the effect of

damping on the physical properties. Finally, in Sec. 4, we provide a summary.

2. Description of the Model

Fig. 1. Energy level diagram for two Λ-type three-level
atoms coupled to a single-mode cavity field of frequency
Ω with detunings Δ1 and Δ2.

The interaction between two Λ-type three-level

atoms and a single-mode quantized field was inves-

tigated without damping in [17, 18]. In this work,

we include damping of the quantized single-mode

field, where it is described by the CK Hamiltonian.

Here, the atomic levels are indicated by |1〉, |2〉, and
|3〉 with energies ω1 > ω2 > ω3; transition |2〉 ↔ |3〉
is forbidden in the electric-dipole approximation;

the allowed transitions are |1〉 ↔ |2〉 and |1〉 ↔ |3〉;
see Fig. 1. The free atomic and the field Hamilto-

nians are given by

H0 =
∑

j=A,B

(ω1σ̂
j
11 + ω2σ̂

j
22 + ω3σ̂

j
33) + ΩÂ†Â, (7)

Accordingly, the atom–field Hamiltonian in the dipole approximation can be written as

HAB−f =
∑

j=A,B

λj
1(σ̂

j
12 + σ̂j

21)(Â+ Â†) + λj
2(σ̂

j
13 + σ̂j

31)(Â+ Â†), (8)
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where λj
1 and λj

2 are the atom-field coupling constants. The HamiltonianHAB−f in the interaction picture

is

�(t) =
∑

j=A,B

λj
1(e

it(ω1−ω2)σ̂j
12 + e−it(ω1−ω2)σ̂j

21)(e
−iΩtÂ+ eiΩtÂ†)

+λj
2(e

it(ω1−ω3)σ̂j
13 + e−it(ω1−ω3)σ̂j

31)(e
−iΩtÂ+ eiΩtÂ†), (9)

�eff(t) =
∑

j=A,B

λj
1

2
√
ωΩ

(eitΔ1ζ+âσ̂
j
12 + e−itΔ1ζ∗+â

†σ̂j
21) +

λj
2

2
√
ωΩ

(eitΔ2ζ+âσ̂
j
13 + e−itΔ2ζ∗+â

†σ̂j
31).

where the detuning parameters are given by Δ1 = (ω1 − ω2)− Ω and Δ2 = (ω1 − ω3)− Ω.

To obtain the wave function of the considered system, we solve the time-dependent Schrödinger

equation i
∂

∂t
|ψ(t)〉 = �eff |ψ(t)〉. The wave function at any time t can be written in the form

|ψ(t)〉 =
∑
n

cn

[
X1(n, t)|1, 1, n〉+ X2(n+ 1, t)

(|1, 2, n+ 1〉+ |2, 1, n+ 1〉)

+X3(n+ 1, t)
(|1, 3, n+ 1〉+ |3, 1, n+ 1〉)+ X4(n+ 2, t)

(|2, 3, n+ 2〉+ |3, 2, n+ 2〉)
+X5(n+ 2, t)|2, 2, n+ 2〉+ X6(n+ 2, t)|3, 3, n+ 2〉

]
. (10)

We assume that the field is initially prepared in the coherent state |α〉 and the atoms enter the cavity in

arbitrary pure atomic states. Hence, the wave function at the initial time is given by

|ψ(0)〉 =
[
ξ1|1, 1〉+ ξ2

(|1, 2〉+ |2, 1〉)+ ξ3
(|1, 3〉+ |3, 1〉)+ ξ4

(|2, 3〉+ |3, 2〉)+ ξ5|2, 2〉+ ξ6|3, 3〉
]
|α〉,

(11)

where |α〉 = ∑
n cn|n〉, cn = e−n̄/2 n̄n/2√

n!
and ξl (l = 1, . . . , 6) are arbitrary complex values that satisfy

the normalization condition

|ξ1|2 + 2

4∑
l=2

|ξl|2 + |ξ5|2 + |ξ6|2 = 1. (12)

Substituting Eq. (10) in the Schrödinger equation, we obtain six differential equations

iẊ1 = 2ψn+1X2e
iΔ1t + 2ψn+1X3e

iΔ2t, iẊ2 = ψn+2X5e
iΔ1t + ψ∗

n+1X1e
−iΔ1t + ψn+2X4e

iΔ2t

iẊ3 = ψn+2X4e
iΔ1t + ψn+2X6e

iΔ2t + ψ∗
n+1X1e

−iΔ2t, iẊ4 = ψ∗
n+2X3e

−iΔ1t + ψ∗
n+2X2e

−iΔ2t,

iẊ5 = 2ψ∗
n+2X2e

−iΔ1t, iẊ6 = 2ψ∗
n+2X3e

−iΔ2t,

(13)

where ψn = λ
√
nζ+/2

√
ωΩ, such that ω2 � γ2, λj

1 = λj
2 = λ, and Ω 	 ω − γ2/2ω. It is obvious that the

coefficients of this coupled system of differential equations are time-dependent ones. We can avoid this

problem using the transforms

X1(n, t) = X̄1(n, t)e
i
2
(Δ1+Δ2)t, X2(n+ 1, t) = X̄2(n+ 1, t)e

i
2
(Δ2−Δ1)t,

X3(n+ 1, t) = X̄3(n+ 1, t)e
i
2
(Δ1−Δ2)t, X4(n+ 2, t) = X̄4(n+ 2, t)e

−i
2
(Δ1+Δ2)t,

X5(n+ 2, t) = X̄5(n+ 2, t)e
i
2
(Δ2−3Δ1)t, X6(n+ 2, t) = X̄6(n+ 2, t)e

i
2
(Δ1−3Δ2)t,

(14)
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and the Laplace transform to arrive at⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s+ iΔ12 2iψn+1 2iψn+1 0 0 0

iψ∗
n+1 s+ iΔ21 0 iψn+2 iψn+2 0

iψ∗
n+1 0 s+ iΔ̄12 iψn+2 0 iψn+2

0 iψ∗
n+2 iψ∗

n+2 s− iΔ12 0 0

0 2iψ∗
n+2 0 0 s+ iΔ̃21 0

0 0 2iψ∗
n+2 0 0 s+ iΔ̃12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L(X̄1)

L(X̄2)

L(X̄3)

L(X̄4)

L(X̄5)

L(X̄6)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X̄1(0)

X̄2(0)

X̄3(0)

X̄4(0)

X̄5(0)

X̄6(0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

where

Δ12 = (Δ1 +Δ2)/2, Δ̄12 = (Δ1 −Δ2)/2, Δ̃12 = (Δ1 − 3Δ2)/2,

Δ21 = (Δ2 −Δ1)/2, Δ̃21 = (Δ2 − 3Δ1)/2.
(16)

After some straightforward calculations, we obtain the solution of Eq. (15) using the initial state, Eq. (11).

Here, we reveal the complete solution for X1(n, t),

X1(n, t) =
6∑

e=1

αee
(se+iΔ12)t, αe =

F1(se)

Ωe
, (17)

where

Ωe =

e �=d∏
d=1,...,6

(se − sd), F1(s) = X̄1(0)a1(s)− 2 i ψn+1a2(s) + 2 i ψn+1a3(s). (18)

The solutions of X2(n + 1, t), X3(n + 1), X4(n + 2), X5(n + 2), and X6(n + 2) can be obtained in the

same way. We have

a1(s) =

∣∣∣∣∣∣∣∣∣∣∣∣

s+ iΔ21 0 iψn+2 iψn+2 0

0 s+ iΔ̄12 iψn+2 0 iψn+2

iψ∗
n+2 iψ∗

n+2 s− iΔ12 0 0

2iψ∗
n+2 0 0 s+ iΔ̃21 0

0 2iψ∗
n+2 0 0 s+ iΔ̃12

∣∣∣∣∣∣∣∣∣∣∣∣
,

a2(s) =

∣∣∣∣∣∣∣∣∣∣∣∣

X̄2(0) 0 iψn+2 iψn+2 0

X̄3(0) s+ iΔ̄12 iψn+2 0 iψn+2

X̄4(0) iψ∗
n+2 s− iΔ12 0 0

X̄5(0) 0 0 s+ iΔ̃21 0

X̄6(0) 2iψ∗
n+2 0 0 s+ iΔ̃12

∣∣∣∣∣∣∣∣∣∣∣∣
, (19)

a3(s) =

∣∣∣∣∣∣∣∣∣∣∣∣

X̄2(0) s+ iΔ21 iψn+2 iψn+2 0

X̄3(0) 0 iψn+2 0 iψn+2

X̄4(0) iψ∗
n+2 s− iΔ12 0 0

X̄5(0) 2iψ∗
n+2 0 s+ iΔ̃21 0

X̄6(0) 0 0 0 s+ iΔ̃12

∣∣∣∣∣∣∣∣∣∣∣∣
,
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and se, e = 1, . . . , 6, are the roots of the equation

μ0 + μ1s+ μ2s
2 + μ3s

3 + μ4s
4 + μ5s

5 + s6 = 0, (20)

where

μ0 =
(Δ1 +Δ2)

2

64

[
(Δ1 − 3Δ2)(Δ1 −Δ2)

2(3Δ1 −Δ2)− 32|ψn+2|2
(
4|ψn+1|2 − 4|ψn+2|2 + (Δ1 −Δ2)

2
) ]

,

μ1 = − i(Δ1 +Δ2)

16

[− 4
(
Δ2

1 − 14Δ1Δ2 +Δ2
2

) |ψn+2|2 + 8|ψn+1|2
(
16|ψn+2|2 + (3Δ1 −Δ2)(Δ1 − 3Δ2)

)
+

(
Δ2

1 −Δ2
2

)2 ]
,

μ2 = |ψn+1|2
(
8|ψn+2|2 +Δ2

1 − 14Δ1Δ2 +Δ2
2

)
+

3

2
(Δ1 +Δ2)

2|ψn+2|2 + 8|ψn+2|4 (21)

+
1

16
(7Δ4

1 − 20Δ3
1Δ2 + 10Δ2

1Δ
2
2 − 20Δ1Δ

3
2 + 7Δ4

2),

μ3 = −1

2
i(Δ1 +Δ2)

(
12|ψn+1|2 + 6|ψn+2|2 +Δ2

1 +Δ2
2

)
,

μ4 = 4|ψn+1|2 + 6|ψn+2|2 + 5

4
(Δ1 −Δ2)

2, μ5 = −i(Δ1 +Δ2).

3. Physical Properties

After obtaining the final form of the wave function, Eq. (10), we next study the various physical

properties of the system and the effects of the initial atomic states and damping parameter have on these

physical properties. Note that in all situations, we set δ1 = δ2 = λ, such that δ1 = (ω1 − ω2) − ω,

δ2 = (ω1 − ω3)− ω, and λ = 0.01ω.

3.1. Degree of Entanglement

To evaluate the DEM between the field and the atoms, we use the linear entropy measure, which is

defined as [36]

S = 1− Tr(�2AB), (22)

where

�AB = Trf(|ψ(t)〉〈ψ(t)|), (23)

with the atomic basis {|1, 1〉, |1, 2〉, |1, 3〉, |2, 1〉, |2, 2〉, |2, 3〉, |3, 1〉, |3, 2〉, |3, 3〉}, the diagonal matrix ele-

ments given by

�11 =
∞∑
n=0

|cn|2|X1(n, t)|2, �ii =
∞∑
n=0

|cn|2|Xj(n+ 1, t)|2, �jj =
∞∑
n=0

|cn|2|Xj(n+ 2, t)|2, (24)
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and the off-diagonal matrix elements given by

�1i =

∞∑
n=0

cn+1c
∗
nX1(n+ 1, t)Xi(n+ 1, t)∗, �1j =

∞∑
n=0

cn+2c
∗
nX1(n+ 2, t)Xj(n+ 2, t)∗,

�23 =

∞∑
n=0

|cn|2X2(n+ 1, t)X3(n+ 1, t)∗, �2j =

∞∑
n=0

cn+1c
∗
nX2(n+ 2, t)Xj(n+ 2, t)∗,

�3j =
∞∑
n=0

cn+1c
∗
nX3(n+ 2, t)Xj(n+ 2, t)∗, �45 =

∞∑
n=0

|cn|2X4(n+ 2, t)X5(n+ 2, t)∗, (25)

�46 =

∞∑
n=0

|cn|2X4(n+ 2, t)X6(n+ 2, t)∗, �56 =

∞∑
n=0

|cn|2X5(n+ 2, t)X6(n+ 2, t)∗,

�i1 = �∗1i, �j1 = �∗1j , (i = 2, 3, j = 4, 5, 6).

To show the influence of damping on the linear entropy of this system, we plotted the time evolution

of the linear entropy (Fig. 2) when the field is initially in the coherent state with the mean photon number

n̄ = 25. However, for undamped instances, η = 0.0, and various initial atomic states a1, b1, c1 in Fig. 2,

Fig. 2. Linear entropy versus scaled time λt with n̄ = 25, δ1 = δ2 = λ, and λ/ω = 0.01 for different damping
parameter values η. For the initial atomic state in (a1, a2, a3) ξi = 1/3, i = 1, 2, 3, 4, 5, 6, in (b1, b2, b3) ξi = 1/

√
6,

i = 2, 3, 4, and in (c1, c2, c3) ξ2 = 1/
√
2.
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such that the two atoms are initially in a superposition of all states ξl = 1/3, l = (1, 2, 3, 4, 5, 6) and

ξl = 1/
√
6, l = (2, 3, 4), and ξ2 = 1/

√
2, we see that after a short time the entropy rapidly oscillates

around its upper value (nearly 0.65). Hence, there is an increase in the maximum DEM between the two

atoms and the field. Note that the heights of the revivals in probability are very small, and the value of

the probability almost remains at a constant value of 0.7; see a1, b1, c1 in Fig. 2. However, the DEM has

increased and it reaches its maximum during collapse. In what follows, we use linear entropy to discuss

the DEM for different values of the damped parameters and various initial atomic states. For η = 0.6,

the temporal behavior of the linear entropy is plotted in Fig. 2 as a2, b2, c2.

In a3, b3, c3 in Fig. 2, we note that there is an increase in the reduction of the maximum DEM between

the two atoms and the field, which nearly reaches (0.6, 0.63, 0.55) for the initial states in a superposition

of all states ξl = 1/3, ξl = 1/
√
6, and ξ2 = 1/

√
2, respectively. A comparison between a1, b1, c1, a2, b2, c2,

and a3, b3, c3 in Fig. 2 shows that the temporal behavior of the linear entropy is very sensitive to the

damping parameters.

3.2. Mandel Qm Parameter

The Mandel Qm parameter is a very useful quantity for the investigation of quantum statistical

properties of any state. It is defined as [37]

Qm =
〈(a†a)2〉 − 〈a†a〉2 − 〈a†a〉

〈a†a〉 ; (26)

negative values of Qm correspond to sub-Poissonian statistics, indicating nonclassicality of the given

state.

We plotted the time behavior of Qm against the scaled time λt (Fig. 3). The initial field is the

coherent state, with n̄ = 25. However, a different value for the damping parameter is chosen with various

initial atomic states. For η = 0 (no damping), the oscillations tend to rise to positive regions more often

than when damping is present. Furthermore, we note that revivals and collapses are clearly evident and

is a distinctive quantum behavior of the state in Fig. 3 (a1, b1, c1). We examined the effects of damping

on the temporal evolution of the Mandel Qm parameter in Fig. 3 (a2, b2, c2). For η = 0.6, the Mandel Qm

parameter varies between positive and negative values, which means that the photons display super- or

sub-Poissonian statistics at different intervals of time; a long collapse-revival phenomenon is clearly seen

for all instances. We note that in Fig. 3 (a3, b3, c3), the depth of negativity has increased. Also, we observe

that the Mandel parameter descends towards the negative region and becomes negative, indicating full

sub-Poissonian statistics of the field at all times, and the super-Poissonian statistics part of the field

disappears. Clearly, when the two atoms are prepared initially in a separable atomic state, the effect of

damping is stronger, making the Qm curves go negative and indicating nonclassical features.

3.3. Normal Squeezing

To discuss the normal squeezing of the field, we introduce two quadrature field operators x̂ =
a+ a†√

2

and p̂ =
a+ a†√

2i
, the variances of position (Δx)2 and momentum (Δp)2, and the squeezing of x and p,

which is expressed by Sl = 2(Δl)2 − 1 with l = x, p. Subsequently, a state is squeezed in the l direction
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Fig. 3. Mandel Qm parameter versus scaled time λt, with n̄ = 25, δ1 = δ2 = λ, and λ/ω = 0.01, for different
values of the damping parameter η. All initial atomic states are as stated in Fig. 2.

if the inequality −1 < Sl < 0 holds. These parameters can be rewritten as

Sx = 2〈â†â〉+ 2Re〈â†2〉 − 4(Re〈â†〉)2, Sp = 2〈â†â〉 − 2Re〈â†2〉 − 4(Re〈â†〉)2. (27)

The time evolution of the normal squeezing parameter corresponding to a fixed position is plotted

with the same data as in Fig. 2 for no damping, η = 0.0. We find that, for all instances, squeezing

exists at position x. In Fig. 4 (a1, b1, c1), the curves for squeezing lie in the positive region, ensuring that,

apart from a short initial period, the introduced field is not squeezed with the initial atomic state. In

Fig. 4 (a2, b2, c2) with increased damping η = 0.6, the strength of normal squeezing can be observed for

all initial states ξl = 1/3, l = (1, 2, 3, 4, 5, 6) as in Fig. 4 (a2) and ξl = 1/
√
6, l = (2, 3, 4) as in Fig. 4 (b2),

while weakness of normal squeezing was observed for the initial state ξ2 = 1/
√
2 as in Fig. 4 (c2). However,

in Fig. 4 (a3, b3, c3), the evaluated normal squeezing occurs in some finite intervals of time, while with

increased damping η = 0.99, the strength of normal squeezing occurs more clearly. Furthermore, a

comparison between Fig. 4 (a1) and (a2, a3), Fig. 4 (b1) and (b2, b3), and Fig. 4 (c1) and (c2, c3), for the

different initial atomic states, shows that by increasing η the intervals of this nonclassical effect in x

are augmented. Also, our results suggest that squeezing in the x component in the initial atomic state

ξ2 = 1/
√
2 is weaker than for the other two instances.
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Fig. 4. Normal squeezing parameter Sx plotted as a function of scaled time λt, with n̄ = 25, δ1 = δ2 = λ, and
λ/ω = 0.01, for different values of the damping parameter η. All initial atomic states are as stated in Fig. 2.

4. Summary

From an analysis of damping based on the CK Hamiltonian, we investigated a few nonclassical features

such as quantum entanglement for two Λ-type three-level atoms, initially prepared in different initial

atomic states, and a single-mode field. Also we evaluated the Mandel parameter as well as quadrature

squeezing. The results for the effect of damping and the initial atomic states on these features showed

that the state of the system plays an important role in the time evolution of entanglement. We conclude

by listing the main results:

1. In the absence of damping, the maximum DEM value (∼0.77) takes place when the two atoms are

initially in ξ2(|1, 2〉+ |2, 1〉), ξ2 = 1/
√
2. In contrast, when damping is present, the maximum DEM

value decreases but gradually increases with time.

2. In the absence of damping, the Mandel parameter becomes more negative when the two atoms are

initially in ξ2(|1, 2〉+ |2, 1〉), ξ2 = 1/
√
2. Furthermore, when damping is present, the revival periods

decrease and fluctuate below zero with increasing damping.

3. In the absence of damping, normal squeezing of the x component in the initial atomic state ξ2(|1, 2〉+
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|2, 1〉), ξ2 = 1/
√
2 is weaker than for the other two instance. Squeezing becomes stronger with

increase in damping.
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