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Abstract

We express the matrix elements of the density matrix of the qutrit state in terms of probabilities asso-
ciated with artificial qubit states. We show that the quantum statistics of qubit states and observables
is formally equivalent to the statistics of classical systems with three random vector variables and three
classical probability distributions obeying special constrains found in this study. The Bloch spheres
geometry of qubit states is mapped onto triangle geometry of qubits. We investigate the triada of
Malevich’s squares describing the qubit states in quantum suprematism picture and the inequalities
for the areas of the squares for qutrit (spin-1 system). We expressed quantum channels for qutrit
states in terms of a linear transform of the probabilities determining the qutrit-state density matrix.

Keywords: qudit, Malevich’s squares, probability representation, density matrix.

1. Introduction

The pure states of qutrit are described by a vector in the three-dimensional Hilbert space [1]. The

mixed states of qutrit are described by the three-dimensional density matrix [2]. The qutrit states can be

realized as the states of a spin-1 particle or as the states of the three-level atom. The density matrix of

the spin state in the spin tomographic probability representation [3,4] is determined by a fair probability

distribution of spin projections on arbitrary directions in the space called the spin tomogram. The von

Neumann entropy [5] of the qutrit state was shown [6] to satisfy the entropic inequality, which is the

subadditivity condition analogous to the subadditivity condition for bipartite systems of two qubits.

Recently [7,8], the triangle geometry of qubit states, in which the density matrix of the spin-1/2 particle

was associated with the triada of Malevich’s squares, was investigated. The areas of the Malevich’s squares

are determined by three tomographic probabilities of spin projections m = 1/2 onto three perpendicular

directions in the space.

The aim of this work is to construct the triada of Malevich’s squares associated with the density

matrix of qutrit states using the approach connecting the qutrit states with the states of two artificial
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qubits found in [6] and extra artificial qubit associated with the permutation of the axes x ←→ z in the

three-dimensional space. We review the probability description of qubit states [7–9] and derive compact

formulas for spin tomograms of these states. We use the relation of quitrit states to the states of artificial

qubits to express the density matrix elements of the qutrit state in terms of probabilities of the spin-1/2

projection.

This paper is organized as follows.

In Sec. 2, we review the quantum suprematism picture of spin-1/2 particle states suggested in [7, 8].

In Sec. 3, we discuss the statistical properties of the quantum spin-1/2 observable. In Sec. 4, we consider

the qutrit-state density matrix and express its matrix elements in terms of probabilities of spin-1/2

projections related to three artificial qubit states connected with the given indivisible qutrit system. In

Sec. 5, we discuss the triangle geometry of the qutrit state and study the inequalities for the tomographic

probabilities determining the state density matrix. We present our conclusions and prospectives in Sec. 6.

2. Qubits in the Quantum Suprematism Picture

The density matrix of qubit states is the Hermitian 2×2 matrix ρ satisfying the conditions ρ† = ρ,

Tr ρ = 1, and ρ ≥ 0. This means that the density matrix has two eigenvalues, which are nonnegative

numbers λ1 and λ2, with λ1 + λ2 = 1. We consider the matrix ρ =

(
ρ11 ρ12

ρ21 ρ22

)
. The eigenvalues λ1

and λ2 of the density matrix ρ satisfy the equation

(ρ11 − λ) (ρ22 − λ)− ρ12ρ21 = 0. (1)

It was shown in [9] that the matrix elements of the density matrix ρ can be expressed within the framework

of the probability representation of qubit states in terms of three probabilities 0 ≤ p1, p2, p3 ≤ 1, namely,

ρ =

(
p3 p1 − ip2 − (1/2) + (i/2)

p1 + ip2 − (1/2)− (i/2) 1− p3

)
. (2)

In this expression, nonnegative probabilities p1, p2, and p3 are the probabilities of spin-1/2 projections

m = 1/2 onto three perpendicular directions in the space, namely, p1 is the probability to have the spin

projection along the x direction, p2 is the probability to have the spin projection along the y direction,

and p3 is the probability to have the spin projection along the z direction. The eigenvalues of the density

matrix (2) read

λ1 =
1

2
+

⎡
⎣ 3∑
j=1

(
pj − 1

2

)2
⎤
⎦
1/2

, λ1 =
1

2
−

⎡
⎣ 3∑
j=1

(
pj − 1

2

)2
⎤
⎦
1/2

. (3)

The nonnegativity of the density matrix provides the inequality [9] for three probabilities pj , namely,

(p1 − 1/2)2 + (p2 − 1/2)2 + (p3 − 1/2)2 ≤ 1/4. (4)

This inequality is the nonnegativity condition for the density matrix of the qubit state; it reflects the

presence of quantum correlations of the single-spin states.
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There exists the geometrical interpretation of the introduced parameters of the spin-state density

matrix. The probabilities p1, p2, and p3 can be associated with a triangle on the plane [7,8]. The lengths

Ln (n = 1, 2, 3) of the triangle sides are expressed in terms of the probabilities as follows:

L1 =
(
2 + 2p22 − 4p2 − 2p3 + 2p23 + 2p2p3

)1/2
,

L2 =
(
2 + 2p23 − 4p3 − 2p1 + 2p21 + 2p3p1

)1/2
, (5)

L3 =
(
2 + 2p21 − 4p1 − 2p2 + 2p22 + 2p1p2

)1/2
.

The probabilities p1, p2, and p3 satisfy the inequality

Ln + Ln−1 > Ln+1, n = 1, 2, 3. (6)

Three squares with these sides and the areas Sn = L2
n were introduced in [7, 8]; they were called the

triada of Malevich’s squares. The area of triangle with the sides Ln reads

Str = (1/4)
[
(L1 + L2 + L3) (L1 + L2 − L3) (L2 + L3 − L1) (L3 + L1 − L2)

]1/2
. (7)

Usually, the density matrix (2) is associated with a point in the Bloch ball. In the triangle geometry

picture under discussion, the density matrix is represented by the triada of Malevich’s squares. This

means that we construct the invertible map of any point in the Bloch ball onto the triangle with sides Ln

and the triada of Malevich’s squares. The obvious inequalities for the triangle sides give the inequalities

for the probabilities p1, p2, and p3 (6). These inequalities are compatible with the condition (4). The three

squares introduced in [7,8] and called the triada of Malevich’s squares provide the quantum suprematism

picture of the qubit states.∗ It is worth noting that Zeilinger, emphasizing in [10] the importance in

physics to make experiments as simple as possible and with the smallest efforts, compared such approach

with the creation of Malevich’s black square in the art.

The sum of areas of three Malevich’s squares expressed in terms of the probabilities p1, p2, and p3
reads

S = 2
[
3 (1− p1 − p2 − p3) + 2p21 + 2p22 + 2p23 + p1p2 + p2p3 + p3p1

]
. (8)

The sum satisfies the inequality

3/2 ≤ S ≤ 9/2. (9)

For classical system of three coins, an analogous suprematism picture of Malevich’s squares provides for

this sum the domain 3/2 ≤ S ≤ 6. The difference between numbers 9/2 and 6 reflects the difference of

classical and quantum correlations in the two systems – qubit and three coins, though the states in both

cases are determined by three probabilities p1, p2, and p3.

3. Statistical Properties of Quantum Observable

In this section, we discuss the properties of means of an observable A given by the Hermitian matrix

Ajk =

(
A11 A12

A21 A22

)
. The mean values of the observable in the state with the density matrix (2) read

〈A〉 = TrAρ = p3A11 + (1− p3)A22 +A12

(
p1 + ip2 − (1 + i)/2

)
+A21

(
p1 − ip2 − (1− i)/2

)
. (10)

∗We thank Dr. Tommaso Calarco for informing us about available discussions of Malevich’s square picture related to
quantum states of a single atom (private communication).
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This relation can be interpreted using the picture of three classical random observables, which are de-

scribed by three probability distributions.

In fact, there are three probability vectors

�P1 =

(
p1

1− p1

)
, �P2 =

(
p2

1− p2

)
, �P3 =

(
p3

1− p3

)
.

For a spin-1/2 system, probabilities (1 − p1), (1 − p2), and (1 − p3) are the probabilities to have the

spin-projection m = −1/2 along the axes x, y, and z, respectively. The matrix elements of the matrix

Ajk (j, k = 1, 2) can be considered as linear functions of classical random variables, which take the real

values

X1 =
A12 +A21

2
, Y1 =

i(A12 −A21)

2
, X2 = −A12 +A21

2
, Y2 = − i(A12 +A21)

2
(11)

and

Z1 = A11, Z2 = A22. (12)

The inverse relations are

A12 = X1 − iY1, A11 = Z1, A22 = Z2, A21 = X1 + iY1. (13)

Introducing the vector notation for the classical variables

�X =

(
X1

X2

)
, �Y =

(
Y1

Y2

)
, �Z =

(
Z1

Z2

)
, (14)

we obtain the expression for the mean value of quantum observable 〈A〉 in terms of the mean values of

classical observables �X, �Y , and �Z of the form

〈A〉 = �P1
�X + �P2

�Y + �P3
�Z. (15)

Thus, the quantum relation for the mean value of the spin observable A in the state with the density

matrix ρ given by (2) is presented as the sum of three classical means of random variables �X, �Y , and �Z,

〈A〉 = p1X1 + (1− p1)X2 + p2Y1 + (1− p2)Y2 + p3Z1 + (1− p3)Z2. (16)

These observations provide a possibility to construct the model of quantum observable A using the

classical observables �X, �Y , and �Z.

In fact, for given arbitrary three real two-vectors �X, �Y , and �Z such that X1 +X2 = Y1 + Y2 = 0, we

construct the Hermitian matrix Ajk (j, k = 1, 2) with matrix elements (13). Since the density matrix (2)

is expressed in terms of classical probability vectors �P1, �P2, and �P3, the measurable quantum observable

A has the mean value determined by classical observables �X, �Y , �Z and classical probability distributions.

Quantumness of the model is formulated as inequality (4) reflecting the condition for classical pro-

babilities p1, p2, and p3, and the definition of the second moment of quantum observable 〈A2〉 in terms

of classical random variables �X, �Y , and �Z,

Tr ρA2 = p3Z
2
1 − (1− p3)Z

2
2 +X2

1 + Y 2
1 + 2(Z1 + Z2)

[
X1(p1 − 1/2) + Y1(p2 − 1/2)

]
= (Z1 + Z2)

[
�X �P1 + �Y �P2

]
+ (X2

1 + Y 2
1 ) + p3(Z

2
1 − Z2

2 ) + Z2
2 . (17)
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The constructed relations (13)–(16) and formulas (16) and (17) for the quantum mean and dispersion

of any observable A, expressed in term of classical random variables and classical probabilities, demon-

strate that quantum mechanics of qubits can be formulated using only standard ingredients of classical

probability theory. We conjecture that quantum mechanics of any qudit system can also be formulated

using only classical random variables and classical probability distributions. The difference from classical

statistical mechanics is expressed by specific inequalities for classical probabilities distributions, reflecting

hidden correlations in quantum systems analogous to (4) for qubits.

4. Qutrit in the Probability Representation

The tomographic probability distribution for the spin-1 system for a minimum number of probabilities

can be described by eight parameters, which are spin projections m = +1, 0 onto four directions; these

probabilities are discussed in [9]. In this section, we develop another approach to associate the density

matrix of the qutrit state with probabilities determining the states of artificial qubits.

We follow the approach applied to get a new entropic subadditivity condition for the qutrit state

suggested in [6]. The density matrix of the spin-1 system is given by the matrix ρ, such that ρ† = ρ,

Tr ρ = 1, and ρ ≥ 0; it reads

ρ =

⎛
⎜⎝

ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33

⎞
⎟⎠ . (18)

Applying the tool to consider the matrix ρ as the 3×3 block matrix in the 4×4 density matrix of two

qubits with zero fourth column and zero fourth row, we obtain two qubit-state density matrices of the

artificial qubits using the partial tracing procedure. The 2×2 matrices are

ρ(1) =

(
ρ11 + ρ22 ρ13

ρ31 ρ33

)
, ρ(2) =

(
ρ11 + ρ33 ρ12

ρ21 ρ22

)
. (19)

For these two qubit-state density matrices, we have the expressions in the probability representation in

terms of probabilities p
(k)
1,2,3, k = 1, 2, of the form

ρ(k) =

(
p
(k)
3 p

(k)
1 − ip

(k)
2 − (1/2) + (i/2)

p
(k)
1 + ip

(k)
2 − (1/2)− (i/2) 1− p

(k)
3

)
, k = 1, 2. (20)

This means that a part of the matrix elements of the density matrix ρ is expressed in terms of the

probabilities p
(k)
j , k = 1, 2, j = 1, 2, 3, namely,

ρ11 = p
(2)
3 − (

1− p
(1)
3

)
, ρ22 = 1− p

(2)
3 , ρ33 = 1− p

(1)
3 . (21)

For off-diagonal matrix elements, we have

ρ12 = p
(2)
1 − ip

(2)
2 − (1/2) + (i/2), ρ21 = ρ∗12, (22)

ρ13 = p
(1)
1 − ip

(1)
2 − (1/2) + (i/2), ρ31 = ρ∗13. (23)
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To obtain an explicit expression for the matrix element ρ23 in terms of probabilities, we consider the

density matrix of the state where we use the permutation of axes x ↔ z; this means that we use another

qutrit state. For a three-level atom, we use the permutation of the ground state level and maximum

excited energy level; in such a case, we have the extra qubit with the density matrix

ρ(3) =

(
ρ33 + ρ11 ρ32

ρ23 ρ22

)
. (24)

The probabilities p
(3)
j for this artificial qubit state read

p
(3)
3 = ρ11 + ρ33 = p

(2)
3 , p

(3)
1 − ip

(3)
2 − (1− i)/2 = ρ32, ρ23 = ρ∗32. (25)

Thus, we provide the final expression of the qutrit density matrix ρ in terms of eight parameters –

probabilities p
(1)
1 , p

(1)
2 , p

(1)
3 , p

(2)
1 , p

(2)
2 , p

(2)
3 , p

(3)
1 , and p

(3)
2 . The density matrix ρ is

ρ =

⎛
⎜⎝

p
(2)
3 + p

(1)
3 − 1 p

(2)
1 − ip

(2)
2 − (1− i)/2 p

(1)
1 + ip

(1)
2 − (1 + i)/2

p
(2)
1 + ip

(2)
2 − (1 + i)/2 1− p

(2)
3 p

(3)
1 + ip

(3)
2 − (1 + i)/2

p
(1)
1 − ip

(1)
2 − (1− i)/2 p

(3)
1 − ip

(3)
2 − (1− i)/2 1− p

(1)
3

⎞
⎟⎠ . (26)

The parameters p
(k)
j , k, j = 1, 2, 3 must satisfy the inequalities

3∑
j=1

(p
(k)
j − 1/2)2 ≤ 1/4. (27)

In addition to these inequalities, one has the cubic inequality det ρ ≥ 0 and the quadratic inequality like

(1− p
(2)
3 ) (1− p

(1)
3 )− |p(3)1 + ip

(3)
2 − (1 + i)/2|2 ≥ 0. (28)

To check all the inequalities, one needs to provide the probabilities of spin-projections m = +1/2 onto

three perpendicular directions for the three artificial qubits. For the two qubits, the directions are given

by the axes x, y, and z, and for the third qubit the direction corresponds to the permutation of the first

and the third directions, x ↔ z.

The density matrix ρ can be rewritten in the form

ρ =

⎛
⎜⎝

p
(2)
3 + p

(1)
3 − 1 p(2)∗ − γ∗ p(1) − γ

p(2) − γ 1− p
(2)
3 p(3) − γ

p(1)∗ − γ∗ p(3)∗ − γ∗ 1− p
(1)
3

⎞
⎟⎠ , (29)

where the complex numbers p(k) are p(k) = p
(k)
1 + ip

(k)
2 , k = 1, 2, 3, and γ = (1 + i)/2. Then we express

the purity of the qutrit state μ = Tr ρ2 in terms of three classical probabilities p
(k)
j , j, k = 1, 2, 3,

μ =
(
p
(2)
3 + p

(1)
3 − 1

)2
+

(
1− p

(2)
3

)2
+

(
1− p

(1)
3

)2
+ 2

[|p(1) − γ|2 + |p(2) − γ|2 + |p(3) − γ|2]. (30)
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The nonnegativity condition of the density matrix det ρ ≥ 0 yields the inequality for the probabilities

p
(k)
j , which looks like the inequality for the cubic polynomial,

(
p
(2)
3 + p

(1)
3 − 1

)(
1− p

(2)
3

)(
1− p

(1)
3

)
+

(
p(2) − γ

)(
p(1) − γ

)(
p(3)∗ − γ∗

)
+
(
p(2)∗ − γ∗

)(
p(1)∗ − γ∗

)(
p(3) − γ

)− |p(1)∗ − γ∗|2(1− p
(2)
3

)− |p(2) − γ|2(1− p
(1)
3

)
−|p(3) − γ|2(p(2)3 + p

(1)
3 − 1

) ≥ 0. (31)

The obtained inequalities (27), (28), and (31) are quantum characteristics of the qutrit state expressed

in terms of classical probabilities p
(k)
j . One can extend the model of qubit state based on the properties of

classical random variables �X, �Y , and �Z (14) to the case of the qutrit state. We consider random classical

variables �X(k), �Y (k), and �Z(k), k = 1, 2, 3 with the probability distributions given by the vectors �P(k)
1 ,

�P(k)
2 , and �P3(k).

If inequalities (27), (28), and (31) are not valid, the system properties correspond to the behavior

of sets of classical “coins.” Namely, quantum correlations are described by inequalities (27), (28), and

(31). Thus, we obtain new inequalities for qutrit states, which are entropic inequalities for the probability

vectors �P(k)
j , j, k = 1, 2, 3. For example, the inequality for relative entropy

2∑
j=1

p
(k)
j ln

(
p
(k)
j /p

(k′)
j

) ≥ 0, k, k′ = 1, 2, 3, (32)

is valid for two arbitrary probability distributions. Since the probabilities are expressed in terms of the

density matrix elements of the qutrit state, one has new entropic inequalities for the qutrit-state density

matrix; it is just inequality (32), which provides the entropic inequality for the matrix elements of the

qutrit-state density matrix.

For example, one has the new relative-entropy inequality for the matrix elements of the qutrit-state

density matrix

1

2
(ρ12 + ρ21 + 1) ln

[
ρ12 + ρ21 + 1

ρ13 + ρ31 + 1

]
+

1

2
[i(ρ12 − ρ21)− 1] ln

[
i(ρ12 − ρ21)− 1

i(ρ13 − ρ31)− 1

]
≥ 0. (33)

An arbitrary permutation of indices 1, 2, 3 in (33) yields another entropic inequality for the matrix

elements of the qutrit-state density matrix.

Now we discuss the geometric picture of the qutrit state using the quantum suprematism approach.

Each qubit state is visualized in terms of the triada of Malevich’s squares. The qutrit state, as we have

shown, is mapped onto three qubit states, which are described by probabilities p
(k)
j , j, k = 1, 2, 3. Among

these nine probabilities, eight are independent, but p
(3)
3 = p

(2)
3 . Thus, the state can be described by three

triadas of Malevich’s squares; see Fig. 1. Three sets of the Malevich’s squares are determined by the

probabilities p
(1)
1 , p

(1)
2 , p

(1)
3 , p

(2)
1 , p

(2)
2 , p

(2)
3 , p

(3)
1 , p

(3)
2 , and p

(3)
3 , where p

(2)
3 = p

(3)
3 . The sums of the areas of

the triadas of Malevich’s squares are given by (8). For each of the three triadas of Malevich’s squares,

one has the inequality for the sums of the areas given by (9). The inequality reflects the presence of

quantum correlations between the artificial qubits in the single-qutrit state. During the time evolution

of qutrit states, the inequalities for the areas of Malevich’s squares are respected.
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Fig. 1. Three triadas of Malevich’s squares describing the qutrit state and corresponding to three artificial qubit
states, respectively.

5. Quantum Channels for Qutrit States

The linear maps of the qutrit-state density matrix (26) can be expressed as a linear transform of

the eight-dimensional vector �Π with the components p
(1)
1 , p

(1)
2 , p

(1)
3 , p

(2)
1 , p

(2)
2 , p

(2)
3 , p

(3)
1 , and p

(3)
2 . These

components are the probabilities for three artificial spin-1/2 systems and three spin projections m = 1/2

onto three perpendicular directions in the space. In fact, we have also the probabilities p
(3)
3 = p

(2)
3 . The

unitary transform of the density matrix ρ

ρ −→ ρu = uρu†, (34)

where uu† = 1, provides the linear transform of the eight-vector �Π. One can get this transform (quantum

channel) in an explicit form.

In fact, the nine-dimensional vector �ρ with components (ρ11, ρ12, ρ13, ρ21, ρ22, ρ23, ρ31, ρ32, ρ33), which

can be denoted as (ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, ρ7, ρ8, ρ9), after the unitary transform converts to the vector

�ρu = u⊗ u∗�ρ. Then we arrive at

Π′
k =

8∑
j=1

ŪkjΠj + Γk, (35)

where the 9×9 unitary matrix U = u⊗ u∗ determines the 8×8 matrix Ūkj and the eight-vector �Γ.

Since the components of vectors �Π and �Π′ are expressed in terms of the probabilities p
(k)
j and p

(k)′
j ,

the channel under discussion provides an explicit transform of the probabilities determining the qutrit

density matrices. For a unital channel of the form ρ −→ ρU =
∑

k pkukρu
†
k (0 ≥ pk ≥ 0,

∑
k pk = 1), the

transform of the vector �ρ −→ �ρU reads

�ρU =

(∑
k

pkuk ⊗ u∗k

)
�ρ. (36)

It provides the transform of the eight-vector �Π −→ �ΠU of the form

�ΠU =

(∑
k

pkŪk

)
�Π+ �Γ, (37)
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where the eight-vectors �Π and �ΠU are expressed in terms of eight probabilities determining the qutrit-state

density matrix ρ. An analogous relation describes the generic completely positive map of the qutrit-state

density matrix

ρ −→ ρpos =
∑
k

VkρV
†
k , (38)

where Vk are arbitrary 3×3 matrices satisfying the relation
∑

k V
†
k Vk = 1 .

For example, the channel providing the transform ρkk −→ ρ′kk = ρkk and ρkj −→ ρ′kj = 0 (k 
= j) for

the qutrit-state density matrix determines the transform of the probabilities p
(k)′
1 = 1/2, p

(k)′
2 = 1/2,

p
(k)′
3 = p

(k)
3 , k = 1, 2, 3. This means that such a channel transforms the states of three artificial qubits

determining the initial density matrix of the qutrit state into the state with maximum entropy S = ln 2

for the probability distributions of spin-projections m = ±1/2 along the axes x and y. The positive map

can be determined by the combination of the described maps with the transforms ρ(1) −→ ρtr(1) and

ρ(2) −→ ρtr(2) of the two artificial qubit-state density matrices, as well as an analogous transposition of

the third artificial qubit-state density matrix.

6. Conclusions

To conclude, we point out the main results of this work.

We presented the matrix elements of the qutrit-state density matrix as linear combinations of nine

classical probabilities p
(1)
1 , p

(1)
2 , p

(1)
3 , p

(2)
1 , p

(2)
2 , p

(2)
3 , p

(3)
1 , p

(3)
2 = p

(3)
3 . We interpreted the probabilities p

(k)
j ,

j, k = 1, 2, 3 as the probabilities to have “spin-1/2 projections” m = 1/2 in three perpendicular directions

of three artificial qubits. This means that such quantum system as qutrit has states whose density

matrices are given in the classical formulation by eight independent parameters – eight probabilities

corresponding to the states of eight classical coins.

We found new inequalities for the introduced classical probabilities, including new entropic inequalities

for the qutrit-state density matrix elements. The new inequalities provide the condition of quantumness

of qutrit. The states of eight classical coins are described by the same probabilities, but these probabilities

should not satisfy these constrains. The new relations for the qutrit-state density matrices obtained can

be checked in experiments with superconducting circuits [11] based on Josephson junctions, which have

been discussed in connection with the nonstationary (dynamical) Casimir effect in [12–15]; see also recent

publications [16–22]. The dynamical Casimir effect was discovered in [23] and discussed in [24–27].

We presented the observables of the spin-1/2 system in the form of three classical random variables
�X, �Y , and �Z, which are described by classical probability vectors �P1, �P2, and �P3. These three classical

variables are organized in the form of the Hermitian matrix. The quantumness of the construction is

reflected by the introduced inequalities for the probability distributions. We extended an analogous

construction for qutrit states and observables. We discussed quantum channels for qutrit states in

the probability representation. Some aspects of the quantum channel properties in the tomographic-

probability picture are presented in [28, 29]. We considered the triangle geometry of qutrit states and

described the states by the three triadas of Malevich’s squares in the quantum suprematism approach

(suprematism in the art is reviewed in [30]). The consideration can be extended to arbitrary systems of

qudit states. We will study this problem in a future publication.
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