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Abstract

We consider a four-level atom (FLA) interacting with a field mode that is initially in a coherent state
associated with a generalized Heisenberg algebra (CSGHA). The dynamical behavior of quantum
entropy, the Pancharatnam phase, and the Mandel parameter are investigated. The statistical and
nonclassical properties of the field in regard to its CSGHA are discussed through the evolution of the
Mandel parameter, and the effects of the initial atomic state position and time-dependent coupling
given in terms of atomic speed and acceleration are examined. The results show that the CSGHA
strength and time-dependent coupling based on the atomic speed and acceleration have the potential
to affect the time evolution of the entanglement, the Pancharatnam phase, and the Mandel parameter.

Keywords: entanglement, coherent states, Heisenberg algebras, Mandel parameter, Pancharatnam

phase.

1. Introduction

The advanced concept of coherent states (CSs) is widely used in quantum estimation theory (QET). CS

was introduced by Schrödinger [1] within the context of the harmonic oscillator (HO) model, intriguingly

using them once to find the quantum states. With either the quantum or classical formulation, any

physical system can be interpreted in terms of CSs. Later, the notion of CS grew to be primary in

quantum optics as eigenstates of the annihilation operator by Glauber [2]. In further developments,

deformed CSs associated with quantum groups have been constructed by exploiting its mathematical

description as a deformed Lie algebra. The resulting nonlinear states appear as a natural extension of

the concept of CSs [3,4]. Currently, these deformed states have garnered interest through their practical

application in many areas of quantum information [5–7]. These states have some nonclassical properties,

which include sub-Poissonian photon distribution [8], photon antibunching [9], and squeezing [10, 11].

Moreover, it has been realized that, in experiments, real laser beams are expressible as Poissonian or

sub-Poissonian distributions [12, 13].

The nonclassical properties such as specific photon distributions in the f -coherent states were dis-

cussed in [14]. Also, generalized coherent states have been constructed as a broader generalization of
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q-coherent states [15]. These can be associated with different statistical properties in quantum optics

such as photon distribution functions, Wigner functions, and Q-functions.

Controlling quantum correlations between subsystems is one of the main goals of quantum technolo-

gies [16–18]. The most thoroughly explored quantum correlation is quantum entanglement [19]. In recent

years, different devices have been proposed and realized experimentally to generate quantum entangle-

ment, such as beam splitters [20–22], nanoresonators [23,24], and nuclear-magnetic-resonance (NMR) sys-

tems [25].

The geometric phase is a basic intrinsic feature in quantum mechanics that has been investigated by

almost two generations of physicists [26–28]. Berry proved that the solution of the quantum object (wave

function) retains the memory of its evolution in its complex phase argument (known as the geometric

phase factor), which, when observed from the perspective of its dynamical contribution, depends only

on the geometry of the path traversed by the system [29, 30]. It is robust against environmental pertur-

bations and imperfections in control. This explains why it has gained attention in the implementation

of fault-tolerant quantum computation. More recently, we investigated the quantum phase and field pu-

rification for quantum systems in the coherent state of a generalized Heisenberg algebra (GHACS) [31].

The geometric phase and field purification have been found to be very sensitive to the number of photon

transitions and the initial atomic state setting. Nevertheless, these results were obtained neglecting the

effect of atomic speed and acceleration. Hence the main goal of this article is to develop the model by in-

vestigating the behavior of an electromagnetic field in a GHACS interacting with a four-level atom (FLA).

We explore the relationship between quantum quantifiers, including nonlocal correlation, physical pro-

perties, and geometric phase for constant and time-dependent coupling based on the atomic speed and

acceleration.

2. Four-Level Atom and Field in GHA Coherent States

We introduce a model for the field mode interacting with a FLA with energy levels denoted by |j〉,
j = 1, 2, 3, 4 where the lower level is |4〉, the two intermediate levels are |2〉, |3〉, and |1〉 is the upper level.
The interaction Hamiltonian reads

HI(t) =

3∑

j=1

gj(t) {â |j〉 〈j + 1|+ â† |j + 1〉 〈j|} , (1)

where â (â†) is the annihilation (creation) operator, and gj(t) is the time-dependent coupling parameter-

ized by atomic speed v and acceleration a and given in the form g(t) = ε sin(at2+vt+c) with coupling con-

stant ε. The time dependence of the coupling is negligible if a = v = 0 and c = π/2 [32,33]. We consider

the symmetric case where the coupling between the field mode and atomic levels g1(t) = g2(t) = g3(t).

As is well known, the superposition principle is crucial in quantum information processing (QIP).

Hence we assume that the initial state of the FLA is a superposition between the two upper levels |1〉
and |2〉. The field is initially set in the GHACS |β〉, hence the combined atomic–field (A-F) system is

then |�(0)〉 = cos(ϑ) |β, 1〉+sin(ϑ) exp(iϕ) |β, 2〉, where ϑ is the initial atomic-state position and ϕ is the

relative phase between the two upper levels.

The GHACS is the CS associated with the anharmonic oscillators and is expressed in the form [31,34]

|β〉 = 1

N (|β|2)
∞∑

n=0

βn

√
G(n)

|n〉, (2)
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with

G(n) =

n∏

k=1

(k2 + μk), G(0) = 1. (3)

The normalization factor is then given as

N (|β|2) =
√

Γ(μ+ 1)|β|−μIμ(2|β|), (4)

where Iμ(β) is the modified Bessel function of the first kind. The final form of the state vector at any

time is

|�(t)〉 = exp

⎧
⎨

⎩−i

t∫

0

HI(T )dT

⎫
⎬

⎭ |�(0)〉. (5)

We can now use the wave function (5) to calculate the Pancharatnam phase, atom–field entanglement

(A-FE) measured by the von Neumann entropy, and the Mandel parameter.

3. Pancharatnam Phase and A-F Entanglement

The Mandel parameter is a good measure of the nonclassical and statistical properties. It is defined

in terms of the average photon number of reduced field (RF) states 〈N〉 as [35, 36]

QM =
〈N2〉
〈N〉 − 〈N〉 − 1, (6)

and is an indicator of whether the photon distribution of the RF is sub-Poissonian (−1 ≤ QM ≤ 0),

inferring the presence of nonclassical states, Poissonian (QM < 0 ) for semiclassical states, and super-

Poissonian (QM > 0) for a classical system.

To quantify the A-FE, we use the von Neumann entropy or quantum entropy given by [37–39]

SA = −Tr
{
ρA ln ρA

}
= −

4∑

j=1

ξj ln ξj , (7)

where ρA denotes the atomic density matrix obtained by taking the trace over the atomic basis (i.e.,

ρA = TrF (|�(t)〉 〈�(t)|)) and ξj is the eigenvalues of the atomic density matrix ρA. Quantum entropy

varies from zero for separable states to ln(4) for maximum entangled states.

The evolution of the quantum system is defined as noncyclic if the initial and final states are distinct.

Hence the final and initial wave functions are not related by a simple multiplication with a complex

number. We suppose that the initial state |�(0)〉 evolves to |�(t)〉 after a certain time t. If the scalar

product L(t) = 〈�(0)|�(t)〉 can be formulated by a real number F , where L(t) = Feiφ, then the noncyclic

phase is the angle φ.

The phase between the two states for such an evolution is nontrivial. The noncyclic phase generalizes

the cyclic geometric phase and can be regarded as a special case of the former in which F = 1.

The Pancharatnam phase contains the dynamical phase and the geometric phase, which is prescribed

as the phase acquired during an arbitrary evolution of the wave function from the initial vector |�(0)〉
to |�(t)〉 [27, 40],

φP (t) = arg(〈�(0)|�(t)〉). (8)
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a) b) c)

Fig. 1. Effects of the GHACS strength β on the time evolution of the von Neumann entropy SA (a), the Pan-
charatnam phase φP (b), and the Mandel parameter QM (c) of a FLA interacting with a field initially in the
GHACS for μ = 1.5 and ϑ = ϕ = 0 for nonzero atomic speed and acceleration (specifically, a = v = 1 and c = 0).
Here, the solid curve corresponds to |β| = 1 and the dashed curve to |β| = 6.

a) b) c)

Fig. 2. Effect of the atomic speed (i.e., v = 1 and a = c = 0) on the time evolution. The figure descriptions are
the same as for Fig. 1.

a) b) c)

Fig. 3. The same as Fig. 2 but for ϑ = π/2 and ϕ = π/4.

4. Numerical Results and Discursion

In Figs. 1–4, we present our main results by exhibiting the influence of the physical parameters

on the Pancharatnam phase φP , the von Neumann entropy SA, and the Mandel parameter QM . A

reasonable comparison between the results enables us to understand the contribution of the atomic

speed, acceleration, and atomic state position on the evolution of the different physical quantities.
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In Fig. 1, the respective variations of φP , SA and QM are plotted against the scaled time εt setting

nonzero values for the atomic speed and acceleration (i.e., a = v = 1 and c = 0). The QE oscillates

between a minimum and a maximum value although the maximum A-FE value is not reached (i.e.,

ln(4)). Entanglement increases when the FLA is in a superposition state. Interestingly, the A-FE is

more enhanced when θ = π/4 than in the upper-state case, θ = 0. In addition, the dynamical behavior

of φP involves oscillations where the widths of the amplitude of oscillation decrease as time evolves. As

we see in Fig. 1 c, the Mandel parameter is always negative, and hence the state exhibits sub-Poissonian

statistics. According to Fig. 1, there is a clear correspondence between the appearance of the oscillations

in SA, φP , and QM for a single photon transition. Also, all the quantities present a richer structure for

the superposition state compared with the upper state, where the φP and SA are enhanced whereas the

field mixes less and becomes more quantum mechanical.

In Fig. 2, we present the effect of the GHACS strength on the dynamical properties of the quantities

for nonzero atomic speed and negligible acceleration. We observe that an increasing CS strength leads

to a significantly enhanced efficiency for the A-FE. In this regard, the maximum A-FE is obtained at

εt = (2m + 1)π/2 m = 1, 2, 3, . . . At these points, the A-FE is at a minimum in the strong CS-strength

regime and corresponds to high values for φP . Also, the field is close to Poissonian statistics. Hence the

results in Fig. 2 show clearly that the maximum A-FE can be obtained by considering a nonzero atomic

speed and weak CS strength regime. With the figure, we examined the influence of the atomic-state angle

on the behavior of the quantities for the strong CS strength regime. Strong A-FE is obtained when the

Pancharatnam phase is zero.

In Fig. 3, we see the effect of the GHACS strength on the evolution of SA, φP , and QM when the

FLA starts the interaction from a superposition between the two upper levels. The main observation

from Fig. 3 in comparison with Fig. 2 is that a Pancharatnam phase appears for both strong and weak

CS-strength regimes.

In Fig. 4, we compare the dynamical behavior when the time-dependent coupling (i.e., g(t) = ε) is

negligible. The initial atomic position is the excited state (solid curve) and the superposition state (dashed

curve). A comparison between these two settings verifies that the dynamics are changed by the atomic-

state position. Note that the A-FE and the Mandel parameter exhibit nonperiodic behavior. Additionally,

the superposition-state parameter θ has a clear effect on the dynamic behavior of the entanglement and

the Pancharatnam phase. The rectangular peaks of φP change to sharp nonperiodic peaks with increasing

A-FE when the initial atomic state is changed from the excited state to the superposition state.

a) b) c)

Fig. 4. Effect of the initial state position ϑ and relative phase ϕ on the dynamical behavior. The figure descriptions
are the same as for Fig. 1, except that the solid curve represents ϑ = ϕ = 0 and the grey dashed curve represents
ϑ = π/2 and ϕ = π/4.
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5. Conclusions

We investigated the dynamical behavior of the Pancharatnam phase and entanglement of an input

field in terms of the interaction between a FLA and an optical field within the GHACS formalism. The

statistical properties of the field were also discussed using the evolution of the Mandel parameter. We

found that the time-dependent coupling in terms of the atomic speed and acceleration have a central role

in the dynamics of the Pancharatnam phase, Mandel parameter, and entanglement. Our results clarify

the link between the dynamical behavior of the Mandel parameter and the A-FE for the strong and weak

coherent-state strength regimes. We showed that the statistical properties of these states based on GHA

exhibit the Poissonian and sub-Poissonian distributions, and that the Mandel Q-parameter decreases as

the coherent-state strength increases. Additionally, we observed that high entanglement can be obtained

through a suitable choice of the initial atomic-state position and the weak coherent-state strength regime.
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