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Abstract

We present a comparative study of the dynamics of entanglement and quantum discord in a bipartite
system in the presence of mixed classical noises. In particular, the joint effects of three different types
of classical noises, namely, random telegraphic noise (RTN), Ornstein–Uhlenbeck noise (OU), and
static noise, are studied by combining them in two different ways. In each case, one marginal system
is coupled with random telegraphic noise, and the other marginal system is coupled with either OU
or static noise. We make a comparison between the behaviors of both correlations in the two setups.
In the weak coupling regime, the qualitative behavior of entanglement is unaffected by switching the
coupling of only one marginal system from OU to static noise, and vice versa. However, the behavior
of quantum discord strongly depends on whether it is coupled with OU or static noise. On the other
hand, in the strong coupling regime, the static noise is more fatal to the survival of both correlations
as compared to the other two noises.
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1. Introduction

Composite quantum systems are more resourceful for information processing than its classical coun-

terparts due to the existence of nonclassical correlations between its constituent marginal systems [1].

The well-known and widely investigated phenomena among such nonclassical correlations is entangle-

ment. It has been recognized as the first candidate of nonclassical correlations and was, initially, used

to distinguish between classical and quantum realms. It is considered as a vital resource for quantum

information science [2]. Remarkable progress through strenuous efforts for the detection, quantification,

application, and its dynamics in several practically realizable systems have been made in the last few

decades [3–16].

In addition to entanglement, a quantum state ρ is endowed with classical as well as other kinds of

quantum correlations. Understanding and quantification of these correlations may be, in some respects,

useful for practical realization of various quantum information tasks. Generally, these correlations are

different in nature. Each of them behaves independently and is usually not captured by the measures of

each other. In addition to entanglement, quantum discord is one of such other correlations [17–19]. It is
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considered a more general measure of quantum correlations, which also captures those that do not come

into the domain of quantum entanglement. Its benefits, as a potential resource for different quantum

information tasks, have already been exploited in certain quantum computation models [20] encoding

information onto a quantum state [21] and quantum state merging [22,23].

Pertaining to its thrilling role in quantum information theory, the studies of its dynamics have been

recently extended to continuous variable systems of Gaussian and non-Gaussian states [24–26]. Another

study on the dynamics of quantum discord in non-inertial frame reveals that quantum discord for a two-

mode squeezed state asymptotically goes to zero in the limit of infinite acceleration [27]. Some further

details about the behavior of quantum discord in open quantum systems can be found in [28–30].

A quantum system very easily interacts with other nearby quantum systems of large dimensions.

Such quantum systems are ubiquitous and are generally known as environment. The interaction between

a quantum system and an environment is very fatal to the survival of correlations existing between

different marginal systems that constituting the principal one. The interaction between a system and an

environment can be modeled in a classical or quantum-mechanical picture of the environment. Dealing

with the environment through the classical approach is convenient and often more accurate in cases

where the degrees of freedom of the environment become considerably large, because quantum-mechanical

treatment in such situations is usually approximated. The effects of different environments in their

classical pictures on the dynamics of quantum correlations in several quantum systems have been studied,

and important results have been obtained [31–34].

In this paper, we investigate the dynamics of bipartite quantum correlations by making a comparative

study under the influence of different mixed classical noises that have no direct interaction with each other.

In particular, we consider the effects of static noise, random telegraphic noise (RTN), and the Ornstein–

Uhlenbeck noise (OU) on the behaviors of entanglement and quantum discord under two different setups.

In each case, one marginal system of the bipartite system is coupled to RTN, and the other is either

coupled to OU or to static noise in such a way that the environments are isolated from each other. We

make a comparative analysis between the two setups by limiting the coupling of one marginal system to

the weak coupling regime, and the other is varied from the weak to the strong coupling regime. Such a

study for the behavior of entanglement in the presence of quantum environments in accelerated frames

is made in [35].

Our study reveals that even in the absence of direct interaction between the environments in mixed

setups, the influence of one classical environment on the dynamics of quantum correlations is strongly

affected by the coupling of another type of classical environment that directly interacts with a different

marginal system.

2. The Physical Model

To carry out the present work in a more composite way, we begin this section by presenting a review of

the basic concepts of the required mathematical machinery. As mentioned above, the focus of our study

is the dynamics of different types of quantum correlations that initially exist between two noninteracting

identical qubits and evolves under the action of various local classical environments. Therefore, we first

write the Hamiltonian that describes the evolution of the system. If I represents the identity matrix

acting on the Hilbert space of a qubit, then the Hamiltonian in its most general form can be expressed

as follows:

H(t) = HA ⊗ I + I ⊗HB, (1)
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where HA(B) is a single-qubit Hamiltonian describing its dynamics in the presence of noise and can be

explicitly written as

HA(B) = εIA(B) + gχA(B)(t)σ
x
A(B). (2)

In Eq. (2), ε represents the energy of an isolated qubit, g defines the strength of the coupling of the qubit

with its local environment, χA(B)(t) stands for a stochastic variable, which depends on the nature of the

coupled noise, and σx
A(B) is the spin-flip Pauli matrix. The two qubits of our system are identical in the

sense that they are characterized by the same energy ε.

The three different kinds of classical noises incorporated in this study whose local coupling with the

qubits that we consider are random telegraphic noise (RTN), Ornstein–Uhlenbeck (OU) noise, and static

noise. The static noise bears the name due to its time independent stochastic variable χ(t) characterized

by the flat probability distribution P (χ) = 1/Δχ for |χ−χo| ≤ Δχ/2 and vanishes for all other choices [31,

36, 37]. Here, Δχ is a measure of the degree of disorder of the environment, and χo gives the average

value of the distribution. The autocorrelation function of the stochastic parameter χ(t) is given by

〈δχ(t)δχ(0)〉 = Δχ/2. This results in a power spectrum described by a δ function that peaks up at

zero frequency. Attributed to this is the longer characteristic time of the noise, longer than the system–

environment coupling. Consequently, the static noise bears the characteristic of non-Markovian noise.

Some detailed studies of the effects of static noise on various quantum systems such as the propagation of

particles in optical coupled waveguides, quantum walks, as well as on the dynamics of different quantum

correlations can be found in [31, 36, 37]. The overall effect of the static environment on the dynamics

of quantum correlations is obtained by averaging the final density matrix over all the possible noise

configurations. This goal is served by integrating the final density matrix over the stochastic variable

χ(t) between χo −Δχ/2 and χo +Δχ/2 [31].

In the case of RTN noise, the stochastic parameter χ(t) randomly takes the values ±1 at a particular

rate γ, usually different for the two transitions. However, in this paper, we consider it to be the same

for both transitions. Based upon the switching rate between the two allowed values and on the coupling

strength with the system, the behavior of the noise could be Markovian or non-Markovian. The former

behavior pertains to the so-called weak coupling regime and the latter to the strong coupling regime. The

autocorrelation function is a time-dependent exponentially decaying function given by 〈δχ(t)δχ(0)〉 =

e−2γt. The power spectrum, in this case, is Lorentzian in character [38]. It is shown in [39] that a system

evolving under the influence of RTN noise picks a random phase factor given by

ϕ(t) = −g

t∫

0

dt
′
χ(t′). (3)

The overall effect of the noise on a system coupled with it for a time t can be obtained by averaging the

density matrix of the system over the random phase factor ϕ(t), that is, ρ(t) = 〈ρ[ϕ(t)]〉ϕ.
Similarly, the OU process is characterized by the autocorrelation function 〈δχ(t)δχ(0)〉 = γp

2
e−γpt and

is Gaussian in nature [40]. Here, γp is the inverse of the correlation time and thus defines the spectral

width of the process. Under the influence of this environmental noise, the evolution operator accumulates

a phase similar to the one given in Eq. (3). Again, the overall effect of the noise on the system can be

obtained by averaging the final density matrix with respect to the accumulated phase factor. An explicit

relation for the final density matrix of the system can be found by utilizing the characteristic function

of Gaussian random process with zero mean as 〈enΦ(t)〉 = e−n2μ(t)/2, with n being an integer, and μ(t) is
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given by [41,42],

μ(t) =
1

γp
(e−γpt + γpt− 1). (4)

Next, we briefly review the basic mechanism of the quantifiers for entanglement and quantum discord.

Many entanglement measures for quantifying entanglement of bipartite states exist in the literature.

However, we will use negativity, which is a reliable measure of entanglement of bipartite states of any

dimensions, provided that the state has a negative partial transpose. The partial transpose of a bipartite

density matrix ρmν,nμ over the second qubit B is given by ρTB
mμ,nν = ρmν,nμ, and for the first qubit, it can

similarly be defined. For a bipartite state ρAB, the negativity N (ρAB) is defined as twice the absolute

sum of the negative eigenvalues of partial transpose of ρAB; it can be expressed as follows:

N (ρAB) =
1

2

(∑
i

|λi| − 1

)
, (5)

where λi are the eigenvalues of the partial transpose density matrix.

On the other hand, quantum discord D(ρAB) for the bipartite state ρAB is defined as the difference

between total correlations I(ρAB) and the classical correlation C(ρAB),

D(ρAB) = I(ρAB)− C(ρAB). (6)

The quantum mutual information I(ρAB) is a measure of the total amount of classical and quantum

correlations in a quantum state. Mathematically, it is given by

I(ρAB) = S(ρA) + S(ρB)− S(ρAB), (7)

where S(ρ) = −Tr(ρ log2 ρ) is the von Neumann entropy of the system in the state ρ, and ρA(B) =

TrB(A)(ρ
AB) are the reduced density matrices of the two subsystems of the bipartite composite system.

Similarly, by definition, the classical correlation is a measure of the maximum extractable information.

For a bipartite system, it is given by [17–19]

CB(ρAB) = S(ρB)− min
{�A

k }

∑
k

pkS(ρ
B
k ), (8)

where ρBk = TrA
[
(�A

k ⊗ I)ρAB(�A
k ⊗ I)

]
/pk is the post-measurement state of subsystem B after obtain-

ing the outcome k on subsystem A with the probability pk = Tr
[(
�
A
k ⊗ I

)
ρAB

(
�
A
k ⊗ I

)]
. Here, the set{

�
A
k

}
stands for the projectors onto the space of qubit A and can be written as follows:

�
A
k =

1

2
(I ±

∑
j

njσj), (9)

where the ± sign corresponds to k = 1, 2, respectively. The vector −→n defines a unit vector on the Bloch

sphere having components n = (sin θ cosφ, sin θ sinφ, cos θ)t with θ ∈ [0, π] and φ ∈ [0, 2π].

With all the necessary mathematical machinery in our hands, we are now in the position to present

the dependence of the dynamics of quantum correlations on different parameters of the system.
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3. Results and Discussion

In this section, we present the mathematical details and the graphical analysis of our results for each

type of mixed classical noise on the dynamics of quantum correlations in bipartite qubit system.

3.1. Static and RTN

This part deals with the situation in which one qubit (qubit A) is coupled with static noise, and the

other qubit (qubit B) evolves under the action of RTN noise. The evolution operator can be obtained

from the Hamiltonian of Eq. (1) with the help of Eq. (2) while using the defined relations for the two

random parameters given for static and RTN noises. It reads as U(χA, χB, t) = e−i
∫
H(t)dt with � set to

unity, and the explicit form of it becomes

U(t) = e−2εt

⎛
⎜⎜⎜⎜⎝

CC −iCS −iSC −SS

−iCS CC −SS −iCS

−iCS −SS CC −iCS

−SS −iCS −iCS CC

⎞
⎟⎟⎟⎟⎠ , (10)

with

CC = cos(χAgA) cos(χBgB), CS = cos(χAgA) sin(χBgB), (11)

SC = sin(χAgA) cos(χBgB), SS = sin(χAgA) sin(χBgB). (12)

As there is no direct interaction between the two environments, one can show that the unitary operator

of Eq. (10) factorizes into two unitary operators, each describing the evolution of its own qubit. If the

initial state of the two qubits is also factorizable, no interaction will ever occur between them, and they

will evolve independently under their own environment.

On the other hand, if the initial state of the qubits is not factorizable, there is an indirect interaction

between the two environments through the initial correlation between the state of the qubits. How this

indirect interaction between the environments or the presence of a single environment will influence the

dynamics of the initial correlations between the qubits is the subject of our study.

Let the system be initially prepared in the Bell state ρ(0) = |ψ〉〈ψ| with |ψ〉 = 1/
√
2(|00〉+ |11〉); then

the overall effect of the mixed noise on the evolved state ρ(χA, χB, t) = U(χA, χB, t)ρ(0)U(χA, χB, t)
† is

given as

ρ′(χA, χB, t) =

〈∫ χA+Δχ/2

χA−Δχ/2
dχAP (χA)ρ(χA, χB, t)

〉

ϕB

. (13)

The explicit form of the final density matrix becomes

ρ′(t) =

⎛
⎜⎜⎜⎜⎝

X1 − 1/4 −X2 −X2 X1 − 1/4

X2 −X1 − 1/4 −X1 − 1/4 X2

X2 −X1 − 1/4 −X1 − 1/4 X2

X1 − 1/4 −X2 −X2 X1 − 1/4

⎞
⎟⎟⎟⎟⎠ , (14)
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with

X1 =
1

4ΔχgAt
[(XB) cos(2χogAt) sin(ΔχgAt)], X2 =

i

4ΔχgAt
[(XB) sin(2χogAt) sin(ΔχgAt)].

(15)

In the above equation, XB represents the contribution arising from the average over the random phase

factor 〈einϕB(t)〉 and can explicitly be expressed as [39]

XB =

⎧⎪⎪⎨
⎪⎪⎩
e−γt

[
cosh(δngB t) +

γ

δngB
sinh(δngB t)

]
, for γ ≥ ngB,

e−γt

[
cos(δngB t) +

γ

δngB
sin(δngB t)

]
, for γ ≤ ngB,

(16)

where δngB =
√|γ2 − (ngB)2| with n ∈ {2, 4}. In the numerical simulations, we will use n = 2.

With the final density matrix of the system in our hands, it is straightforward to analyze the behavior

of the two types of quantum correlations. As mentioned earlier, for the analysis of the dynamics of

entanglement, we use negativity, which we calculate analytically using Eq. (5), first by taking the partial

transpose of Eq. (14) with respect to qubit B. On the other hand, the behavior of quantum discord is

analyzed numerically. The negativity in this case becomes

N (ρAB) = 2
√∣∣X2

1 −X2
2

∣∣.
In Fig. 1, we plot both the negativity and quantum discord against time for different choices of the

coupling strengths of the two noises. The dynamics of entanglement and quantum discord are given,

respectively, in the top and bottom rows of Fig. 1. Each curve in the first column corresponds to a

different value of gA, and in the second column it corresponds to a different value of gB. In the first

column, the coupling strength of the marginal qubit with RTN is limited to the weak coupling regime

(gB = 0.05), and the coupling strength gA is varied from zero to the weak and to the strong coupling

region in steps of (gA = 0, 0.2, 0.4, 0.6, 0.8). The values of other parameters are given in the caption of

the figure.

The same strategy is followed for the second column of Fig. 1 but with values of both gA and gB
interchanged. A comparison of the two columns reveals that both entanglement and quantum discord are

very fragile against the strength of the coupling constant with static environment than with RTN. The

rate of degradation of the correlations quickens and may lead to sudden death, as the coupling strength

with the static noise (first column) increases.

In the strong coupling regime of gA, the complete loss of the correlations is followed by periodic

revivals of decreasing amplitudes with time. The revivals are more prominent for entanglement than for

quantum discord, which shows robustness of entanglement over quantum discord in the periodic intervals.

On the other hand, the relative weaker monotonic degradation of the correlations against the coupling

strength gB of RTN (second column) ensures avoiding complete loss or sudden death of them.

3.2. RTN and Ornstein–Uhlenbeck Process

In this section, we deal with the dynamics of quantum correlations when one qubit is coupled with

OU noise and the other with RTN. Selecting the random variables for these two noises, we can find
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Fig. 1. Entanglement (first row) and quantum discord (second row) against time t for γ = 2, χo = 1 and Δχ = 5.
In the first column, gB = 0.05 and gA = {0, 0.2, 0.4, 0.6, 0.8} from top to bottom. In the second column, the values
of gA and gB are interchanged.

the evolution operator following the method of the previous case. However, the overall effect of the

environment on the final density matrix of the system, in this case, is obtained by averaging it over both

phase factors ϕA(t) and ϕB(t), where the former corresponds to RTN noise, and the latter to OU noise.

That is, ρ′(t) is obtained as ρ′(t) = 〈〈ρ(χA, χB, t)〉ϕA〉ϕB , which leads to the following form:

ρ′(t) =

⎛
⎜⎜⎜⎜⎝

(1/4) + Y 0 0 (1/4) + Y

0 (1/4)− Y (1/4)− Y 0

0 (1/4)− Y (1/4)− Y 0

(1/4) + Y 0 0 (1/4) + Y

⎞
⎟⎟⎟⎟⎠ , (17)

where

Y =

⎧⎪⎨
⎪⎩
1

4
Y1

(
cosh(δngAt) +

γ
δngB

sinh(δngAt)
)
e−γt, for γ ≥ ngA,

1

4
Y1

(
cos(δngAt) +

γ
δngA

sin(δngAt)
)
e−γt, for γ ≤ ngA,

(18)
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with

Y1 =
2gB
γp

(
1− e

−γpt − γpt+
γp
2gB

)
, δngA =

√
|γ2 − (ngA)2|.

Fig. 2. Entanglement (first row) and quantum discord (second row) against time t for γ = 2, γp = 0.2, χo = 1,
and Δχ = 5. In the first column, gB = 0.05 and gA = 0, 0.2, 0.4, 0.6, 0.8 from top to bottom. In the second column,
the values of gA and gB are interchanged.

Note that the final density matrix of Eq. (17) belongs to the family of X-type states whose discord

can be found analytically [43,44]. However, in parallel with the previous case, we work it out numerically.

Again, for the purpose of mathematical ease, we limit our analysis by employing the first condition in

Eq. (18) with n = 2. The dynamics of the correlations against time for different coupling strengths

between the system and the environments, in this case, are shown in Fig. 2, where the rows and columns

bear the same meaning as explained in Fig. 1. In contrast to Fig. 1, the entanglement monotonously

degrades, with different rates, both in the weak and strong coupling regimes, irrespective of the nature

of environments. A comparison of Figs. 1 b and 2 a reveals that the weak coupling of the system with

static and OU noises has no noticeable effect on the dynamics of entanglement with increasing coupling

strength of the system with RTN. However, the difference of the effects of increasing coupling strengths

of the static and OU environments in the presence of weak RTN coupling can easily be seen from a
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comparison of Figs. 1 a and 2 b. It can be seen that entanglement is comparatively robust against OU

noise, as there is neither entanglement sudden death nor its complete loss in the given coupling time.

On the other hand, the effects of weak couplings of static and OU noises on the behavior of quantum

discord with increasing strength of RTN is quite obvious. A comparison of Figs. 1 d and 2 c reveals that

the dynamics of quantum discord in the strong coupling regime with RTN depends heavily on whether

the marginal system is weakly coupled to static or OU noise. In the case of weak coupling of the marginal

system with OU noise (Fig. 2 c), unlike entanglement, the discord is more fragile than in the case of weak

coupling of the marginal system with static noise (Fig. 1 d). In the presence of weak coupling of one

marginal system with OU noise, the increasing coupling strength of the second marginal system with

RTN quickly destroys quantum discord. This, however, is followed by a sudden giant revival in the

strong coupling regime.

4. Conclusions

In this paper, we investigated the dynamics of entanglement and quantum discord of a maximum

entangled bipartite quantum system in the presence of different mixed classical environments. The static

and OU noises are mixed up with RTN, and a comparative study of the behaviors of entanglement and

quantum discord in both weak and strong coupling regimes is demonstrated. We studied the behavior

of entanglement analytically, whereas we used a numerical approach for the study of quantum discord.

Both the correlations are very fragile and go through sudden death, followed by periodic revivals, when

one qubit is strongly coupled with static noise and the other is weakly coupled to RTN noise.

On the other hand, when the coupling with RTN noise is strong, both correlations degrade mono-

tonically and completely avoid sudden death. This means that both correlations can survive for a long

enough time and can be utilized for realization of different quantum information tasks. Moreover, we

showed that the behavior of quantum discord, when one qubit is strongly coupled with RTN noise, is

very sensitive to the nature of the weakly coupled environment. It is robust when the weakly coupled

environment is static and is fragile when the weakly coupled environment is OU. On the contrary, unlike

quantum discord, the behavior of entanglement is independent of the nature of the weakly coupled en-

vironment. Our study provides a significant insight into which quantum correlation is better to use for

different quantum information tasks in various mixed classical environments.
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