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Abstract

We show the star-product quantization procedure for spin-1/2 particles (qubits) employing the con-
struction of a pair of operators – dequantizers and quantizers. We present an explicit description
of all minimal systems of such dequantizers and quantizers and discuss their relation to the proba-
bility representation of spin states where the fair probability distribution is identified with the spin
states. We give some examples and discuss the possibility of constructing a symplectic structure in
the finite-dimensional phase space.

Keywords: discrete Wigner function, operator symbols, spin states, star-product, quantizers, dequan-

tizers, symplectic structure.

1. Introduction

In quantum mechanics, the notion of state of a system differs from the notion of state in classical

mechanics. The classical particle state, if there is no fluctuations due to the interaction with an environ-

ment, is associated with a pair of numbers — the particle position q and velocity q̇ or the particle position

q and momentum p. If there are fluctuations of the particle position and momentum, the particle state

is identified with the probability density in the phase space, which is a nonnegative normalized function

f(q, p) with intuitively clear physical meaning.

In quantum mechanics, the particle’s pure states are identified with the complex wave function ψ(x)

depending on the particle position x, and mixed states are identified with the complex function ρ(x, x′)
of two variables x and x′, which is the matrix element of the state density operator ρ̂ in the position

representation, i.e., ρ(x, x′) = 〈x | ρ̂ | x′〉.
∗Based on the Poster presented at the 23nd Central European Workshop on Quantum Optics (27 June – 1 July 2016,

Kolymbari, Crete, Greece).
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In classical mechanics, the observables like the particle position and momentum are described by

c-numbers. In quantum mechanics, the observables (position and momentum) are identified with the

Hermitian operators q̂ and p̂ acting in the Hilbert space of the particle states | ψ〉. Intuitively such

description of states and observables in quantum mechanics is quite different from the clear classical

picture of states and observables. Due to this fact, the formulations of quantum mechanics based on star-

product schemes of quantization were suggested; here, invertible maps of operators of physical observables

and the state density operators onto the functions (analogous to the corresponding functions associated

with classical particles) were suggested; see, for example, the recent review [1].

The most general formulation of the star-product scheme of quantization, in which the basic notion

of pairs of operators called dequantizers Û(α) and quantizers Q̂(α) (depending on a variable α) was

introduced and applied to construct the symbols of an arbitrary operator acting in the Hilbert space

of states, was elaborated in [2]. The pairs of dequantizer and quantizer operators determine the rule of

nonlocal associative multiplication of the functions, which are the corresponding symbols of the operators

associated with quantum observables and the state density operators. Among the known formulations of

quantum mechanics with continuous variables like the position and momentum, the formulations based

on the phase-space representations of the state play the important role.

In the phase-space formulation of quantum mechanics, the quasiprobability distributions are widely

used for describing the quantum states. The problem of representation of quantum mechanics in the

phase space was also discussed long ago by Stratonovich [3]. The properties of quantum quasidistribution

functions for systems with continuous variables are studied in the reviews [4–7] and books [8–11]. The

most well-known and frequently used among them are the Wigner functionW (q, p) [12], the Husimi–Kano

function Q(q, p) [13,14], and the Glauber–Sudarshan P (q, p) quasidistribution [15,16]. In this approach,

some special functions defined on the phase space correspond to the operators called the symbols of

operators.

In addition to various quasiprobability distributions in quantum mechanics, there exists a symplectic

tomogram of the quantum state [17–20]; it is a real probability-distribution function of the position

measured in an ensemble of reference frames in the phase space. The symplectic tomogram completely

determines the quantum state. and this probability distribution is the tomographic symbol of the density

operator. The connection between symplectic tomograms and the Husimi functions for systems with

continuous variables was studied in [21].

In this paper, we consider quantum systems with discrete (spin) variables. The approach to these

systems based on quasiprobability distributions in a finite phase space was developed in [22–27]. Such

quasiprobability and probability distributions were studied in [28–33]. Just as in the case of quantum

systems with continuous variables, the systems with discrete (spin) variables can be described in view

of the probability distributions. These probability distributions are called spin tomograms introduced

in [34–37] and unitary-matrix tomograms introduced in [38].

With the help of dequantizers, one can find the symbols of operators, and with the help of quantizers

one can restore the operators by their symbols. It is worth noting that the pair of quantizer–dequantizer

operators introduced in [2] for the description of an arbitrary star-product scheme is a generalization

of the method of using the quantizer discussed in [3] for the cases where the quantizer and dequantizer

operators are substantially different. For some special set of dequantizers, the symbols of the density

operators are called the Wigner function [25]. The algebra of symbols is based on the star-product

method [2,39]. The technique of star-products of symbols in the case of spin states is described in detail,

e.g., in [40].
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TheWigner functions and tomograms of the density matrix of quantum spin states are studied in many

papers. In this paper, we propose a method of constructing all possible minimal systems of dequantizers

and quantizers, both Hermitian and non-Hermitian, self-dual and non-self-dual ones. We prove several

statements concerning their properties. For this purpose, we use a special technique [41,42] described in

Sec. 2, which allows one to consider instead of matrices some vectors corresponding to the matrices. We

define linear transforms in the space of these vectors and consider orbits of these transforms. In Sec. 3,

we present a general description of the dequantizer and quantizer constructions. We give the general

approach to constructing minimal sets of dequantizers and quantizers in the case of one-qubit states in

Sec. 4. We present our conclusions in Sec. 5.

Most of the results obtained can be generalized to the case of N qubits.

2. Representation of Matrices as Vectors

While constructing systems of dequantizers and quantizers, which are realized in the form of matrices,

one requires that the sets of matrices should satisfy some properties of orthogonality. To this end, one

needs to calculate products of these matrices and check if traces of the products are equal to zero or

not. In some cases, for this purpose, it is convenient to represent matrices in the form of vectors. In this

representation, the traces of the products of matrices are equal to scalar products of the vectors (see,

e.g., [41]).

Assume that we have a n×n matrix Â = ||aij ||, i, j = 1, . . . , n. With this matrix, we associate

a vector of the n2-dimensional space. This vector, being written as a column, has appropriate matrix

elements of Â as components located in the same order as they appear in the columns of the matrix Â.

In other words, in order to build a column vector corresponding to the matrix Â, we should take the

columns of the matrix and arrange them under each other. We explain this procedure on the example of

a real 2×2 matrix.

If we have a 2×2 matrix

Â =

(
a11 a12

a21 a22

)
, (1)

the 4-vector can be constructed as follows:

�A =

⎛
⎜⎜⎜⎜⎝

a11

a21

a12

a22

⎞
⎟⎟⎟⎟⎠ . (2)

We see that in (2) the columns of matrix (1) are one under the other, and it is just the rule of invertible

mapping of vectors onto matrices. We denote this map of matrices into vectors by the symbol MV , and

the reverse mapping by the symbol VM ; they read

(MV ) : Â → �A, (VM) : �A → Â. (3)

We can determine the scalar product ( �A, �B)M of such vectors as follows.

Assume that we have two real vectors �A and �B with n2 components. First, we construct the matrix

B̂ by a vector �B, then transpose the matrix B̂ and pass from the transposed matrix B̂T to the vector
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�BT . Then we can calculate the scalar product of vectors �A and �BT in the usual way by multiplying their

components; we obtain

( �A, �B)M = ( �A, �BT ) =

n2∑
i=1

Ai
�BT

i, (4)

where Ai and
�BT

i are the components of vectors �A and �BT , respectively.

It is easy to verify the relation

( �A, �B)M = ( �A, �BT ) = Tr (ÂB̂). (5)

We showed that, instead of calculating the matrix product trace, one can calculate the scalar product

of the corresponding vectors. In some cases, it is easier to work with vectors than with matrices, in

particular, for checking the orthogonality property. An analogous rule can be formulated for complex

vectors.

3. Constructions of Dequantizers and Quantizers

In this section, we consider finite-dimensional quantum systems such as, for example, the spin systems.

The physical states of such systems correspond to the vectors of some d-dimensional Hilbert space Hd.

Also B(Hd) is a set of linear operators in the space Hd. Each operator Â ∈ B(Hd) is bounded and

can be represented as a d×d-dimensional matrix with complex elements. This Hermitian matrix can be

associated with values of some observables.

In the space Hd, we consider a set of Hermitian operators Û(α) assuming the parameter α to be

either discrete or continuous. If one considers an operator Â ∈ B(Hd), the c-function fA(α) defined by

the formula

fA(α) = Tr
(
Û(α)Â

)
(6)

is called the symbol of operator Â ∈ B(Hd) built by a set of operators Û(α). The operators Û(α) are

called the dequantizers. Let α be a discrete variable, which we denote as k.

For a given system of dequantizers Û(k), k = 1, . . . , N , formula (6) defines a map of the space of

operators B(Hd) into the space of functions F = {f(k) : {k = 1, . . . , N} → C}. It is a linear map, i.e.,

the relations

Ĉ = Â+ B̂ ⇔ fC(k) = fA(k) + fB(k), Ĉ = cÂ ⇔ fC(k) = cfA(k),

are valued for each number c ∈ C.

If map (6) of the operator Â onto the function fA(k) is a one-to-one map, the symbol fA(k) contains

complete information on the operator Â, and the latter can be reconstructed as follows:

Â =

N∑
k=1

fA(k)D̂(k). (7)

The operators D̂(k) ∈ B(Hd) are called the quantizers, and their relation to the dequantizers is

Tr
(
Û(k)Â

)
=

N∑
k′=1

Tr
(
Û(k′)Â

)
Tr

(
Û(k)D̂(k′)

)
. (8)
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Relation (8) holds for all sets of dequantizers and quantizers. For minimal sets of dequantizers and

quantizers, it can be simplified,

Tr
(
Û(k)D̂(k′)

)
= δ(k, k′). (9)

Such minimal sets of dequantizers contain d2 linearly independent operators.

In the case of discrete systems, the sets of functions Tr
(
Û(k)ρ̂

)
are analogs of the quasiprobability

distributions, which are used to study the systems with continuous variables such as the Wigner and

Husimi functions. For this reason, the functions Tr
(
Û(k)ρ̂

)
with appropriate dequantizers are also often

called the discrete Wigner functions.

These functions, which are symbols of the density operators ρ̂, i.e., fρ(k) = Tr
(
Û(k)ρ̂

)
, can be

negative; in these cases, they cannot be interpreted as the probabilities.

4. Minimal Sets of Dequantizers and Quantizers

Let us consider a one-qubit state. Its density matrix reads

ρ̂ =
1

2

(
1 + z x+ iy

x− iy 1− z

)
, x2 + y2 + z2 ≤ 1. (10)

The matrix is Hermitian, i.e., ρ† = ρ, its trace is equal to the unity, and eigenvalues are nonnegative

numbers. The three real parameters in the matrix determine the probabilities to have spin projectors

±1/2 on the axes x, y, and z, respectively.

In this case, the dimension d = 2, and the minimum set of dequantizers contains four operators.

In the general case, dequantizers Û (k) have the form of arbitrary linearly independent 2×2 matrices,

Û (k) =

(
U

(k)
11 U

(k)
12

U
(k)
21 U

(k)
22

)
, k = 1, 2, 3, 4. (11)

The matrices form a basis in the space of all 2×2 matrices.

The four-vectors �U (k), k = 1, 2, 3, 4 corresponding to the above matrices can be written in the form

of column-vectors; they read

�U (k) =

⎛
⎜⎜⎜⎜⎝

U11

U21

U12

U22

⎞
⎟⎟⎟⎟⎠ , k = 1, 2, 3, 4. (12)

For the vector �U (k), we use the notation omitting index k in the column having in mind that such

structure of the vectors corresponds to an arbitrary value of k. These four vectors form a basis in the

four-dimensional complex linear space.

Now we construct the quantizers D̂(k), k = 1, 2, 3, 4, which are 2×2 matrices. To this end, we consider

four 2×2 matrices

D̂(k) =

(
D

(k)
11 D

(k)
12

D
(k)
21 D

(k)
22

)
, k = 1, 2, 3, 4. (13)
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The four vectors �D(k), k = 1, 2, 3, 4 read

�D(k) =

⎛
⎜⎜⎜⎜⎝

D11

U21

D12

D22

⎞
⎟⎟⎟⎟⎠ , k = 1, 2, 3, 4. (14)

As in the case of dequantizer, here, we again omit the index k in the column-vector components.

In order to be the sets of dequantizers and quantizers, the matrices (11) and (13) should satisfy

relation (9). With the help of vectors (12) and (14), relation (9) can be written in the form of the

orthogonality condition for these vectors(
�U (k), �D(k′))

M
= δ(k, k′). (15)

Let us choose a set of linearly independent vectors (14), i.e., we assume that the values U
(k)
ij (i, j =

1, 2; k = 1, 2, 3, 4) are given and, for simplicity, are real. Now we can rewrite the orthogonality condi-

tion (15) as a system of equations for unknown parameters D
(k′)
ij (i, j = 1, 2; k′ = 1, 2, 3, 4). If k′ = 1,

one arrives at four linear equations

U
(1)
11 D

(1)
11 + U

(1)
21 D

(1)
12 + U

(1)
12 D

(1)
21 + U

(1)
22 D

(1)
22 = 1, U

(2)
11 D

(1)
11 + U

(2)
21 D

(1)
12 + U

(2)
12 D

(1)
21 + U

(2)
22 D

(1)
22 = 0,

(16)

U
(3)
11 D

(1)
11 + U

(3)
21 D

(1)
12 + U

(3)
12 D

(1)
21 + U

(3)
22 D

(1)
22 = 0, U

(4)
11 D

(1)
11 + U

(4)
21 D

(1)
12 + U

(4)
12 D

(1)
21 + U

(4)
22 D

(1)
22 = 0.

Thus, the problem of obtaining the quantizer is reduced to the problem of solving the system of the above

linear equations.

Vectors (12) are linearly independent, so the determinant Δ(Â) of matrix

Â = ||amn|| =

⎛
⎜⎜⎜⎜⎝

U
(1)
11 U

(1)
21 U

(1)
12 U

(1)
22

U
(2)
11 U

(2)
21 U

(2)
12 U

(2)
22

U
(3)
11 U

(3)
21 U

(3)
12 U

(3)
22

U
(4)
11 U

(4)
21 U

(4)
12 U

(4)
22

⎞
⎟⎟⎟⎟⎠ , m, n = 1, 2, 3, 4 (17)

is not equal to zero: Δ(Â) 	= 0.

Using the standard procedure, we solve the system of equations (16) and obtain the components of

the vector �D(1),

D
(1)
11 = A11Δ(Â)−1, D

(1)
12 = A12Δ(Â)−1, D

(1)
21 = A13Δ(Â)−1, D

(1)
22 = A14Δ(Â)−1. (18)

These components provide the first column in the quantizer matrix.

Similarly, one obtains the components of vectors �D(2), �D(3), and �D(4),

D
(2)
11 = A21Δ(Â)−1, D

(2)
12 = A22Δ(Â)−1, D

(2)
21 = A23Δ(Â)−1, D

(2)
22 = A24Δ(Â)−1,

D
(3)
11 = A31Δ(Â)−1, D

(3)
12 = A32Δ(Â)−1, D

(3)
21 = A33Δ(Â)−1, D

(3)
22 = A34Δ(Â)−1, (19)

D
(4)
11 = A41Δ(Â)−1, D

(4)
12 = A42Δ(Â)−1, D

(4)
21 = A43Δ(Â)−1, D

(4)
22 = A44Δ(Â)−1.
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In (18) and (19), Amn is the cofactor of an element amn of matrix (17).

Thus, we obtained all matrix elements of the quantizer matrix. Analogous formulas can be written

for complex matrices.

Now we are in the position to prove some statements concerning the dequantizers and quantizers.

Statement 1.

If vectors (12) are linearly independent, vectors (14) are linearly independent too.

In fact, the coefficients D
(k′)
ij (i, j = 1, 2; k′ = 1, 2, 3, 4) of vectors (14) form the matrix

B̂ =

⎛
⎜⎜⎜⎜⎝

D
(1)
11 D

(1)
12 D

(1)
21 D

(1)
22

D
(2)
11 D

(2)
12 D

(2)
21 D

(2)
22

D
(3)
11 D

(3)
12 D

(3)
21 D

(3)
22

D
(4)
11 D

(4)
12 D

(4)
21 D

(4)
22

⎞
⎟⎟⎟⎟⎠ = Δ(Â)−1

⎛
⎜⎜⎜⎜⎝

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

⎞
⎟⎟⎟⎟⎠ , (20)

i.e., ÂB̂T = 1. Therefore, Δ(B̂) = Δ(Â)−1 	= 0, and vectors �D(k), k = 1, 2, 3, 4 (14), are linearly

independent.

Statement 2.

If matrices (11) are Hermitian, matrices (13) are Hermitian as well.

We assume now that dequantizers Û (k) are Hermitian operators. Then the matrix element U
(k)
12 =

U
(k)∗
21 . If we introduce the notation U

(k)
12 = P (k) + iQ(k), Eqs. (16) read

U
(1)
11 D

(1)
11 + (P (1) − iQ(1))D

(1)
12 + (P (1) + iQ(1))D

(1)
21 + U

(1)
22 D

(1)
22 = 1,

U
(2)
11 D

(1)
11 + (P (2) − iQ(2))D

(1)
12 + (P (2) + iQ(2))D

(1)
21 + U

(2)
22 D

(1)
22 = 0,

(21)
U

(3)
11 D

(1)
11 + (P (3) − iQ(3))D

(1)
12 + (P (3) + iQ(3))D

(1)
21 + U

(3)
22 D

(1)
22 = 0,

U
(4)
11 D

(1)
11 + (P (4) − iQ(4))D

(1)
12 + (P (4) + iQ(4))D

(1)
21 + U

(4)
22 D

(1)
22 = 0.

The values U
(k)
11 , D

(k)
11 , U

(k)
22 , D

(k)
22 , P (k), and Q(k) are real; therefore, it follows from Eqs. (21) that

U
(k)
12 = U

(k)∗
21 and, therefore, the quantizers D̂(k) are Hermitian operators.

Let us consider some arbitrary set of dequantizers Û (k) and quantizers D̂(k′); they satisfy relation (15).

We make a nondegenerate linear transform of the vectors
(
Û (1), Û (2), Û (3), Û (4)

)T
,

V̂ (k) =

4∑
i=1

LkiÛ
(i), k = 1, 2, 3, 4. (22)

Our goal is to find a new set of quantizers Ê(k′) such that its members satisfy relation (9),

Tr (V̂ (k)Ê(k′)) = δ(k, k′). (23)

So we are considering the problem using a new reference frame in our linear space.

550



Volume 37, Number 6, November, 2016 Journal of Russian Laser Research

We are looking for these new operators as linear combinations of the previous quantizers D̂(k),

Ê(l) =

4∑
j=1

MljD̂
(j), k = 1, 2, 3, 4. (24)

In view of relation (15), one can obtain a system of equations for the unknown coefficients Mlj . This

system of equations is similar to the system of equations (16). If k′ = 1, one has four linear equations,

which can be solved using the standard procedure:

L11M11 + L12M12 + L13M13 + L14M14 = 1, L21M11 + L22M12 + L23M13 + L24M14 = 0,
(25)

L31M11 + L32M12 + L33M13 + L34M14 = 0, L41M11 + L42M12 + L43M13 + L44M14 = 0

Since the transform (22) is nondegenerate, the determinant Δ(̂L) of the matrix

L̂ = ||Lmn|| =

⎛
⎜⎜⎜⎜⎝

L11 L12 L13 L14

L21 L22 L23 L24

L31 L32 L33 L34

L41 L42 L43 L44

⎞
⎟⎟⎟⎟⎠ , m, n = 1, 2, 3, 4 (26)

is not equal to zero, i.e., Δ(̂L) 	= 0.

Now after solving the system of equations (25), we obtain the coefficients M1k (k = 1, 2, 3, 4),

M11 = l11Δ(L̂)−1, M12 = l12Δ(L̂)−1, M13 = l13Δ(L̂)−1, M14 = l14Δ(L̂)−1. (27)

Similarly, we obtain the coefficients M2k, M3k, and M4k (k = 1, 2, 3, 4),

M21 = l21Δ(L̂)−1, M22 = l22Δ(L̂)−1, M23 = l23Δ(L̂)−1, M24 = l24Δ(L̂)−1,

M31 = l31Δ(L̂)−1, M32 = l32Δ(L̂)−1, M33 = l33Δ(L̂)−1, M34 = l34Δ(L̂)−1, (28)

M41 = l41Δ(L̂)−1, M42 = l42Δ(L̂)−1, M43 = l43Δ(L̂)−1, M44 = l44Δ(L̂)−1.

Here, lmn is the cofactor of element Lmn of matrix (26).

The coefficients Mmn form a matrix M̂ ,

M̂ = ||Mmn|| =

⎛
⎜⎜⎜⎜⎝

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

⎞
⎟⎟⎟⎟⎠ , m, n = 1, 2, 3, 4. (29)

Now we are in the position to formulate the next statement.

Statement 3.

If the set of dequantizers Û (k) is transformed by the linear transform (22), which is defined by the

matrix L̂ (26), the set of quantizers D̂(k) is transformed by the linear transform (24), which is defined by

the matrix M̂ (29).
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We can consider the values V̂ (k) and Ê(l) as elements of the four-dimensional vector space and co-

efficients Lki and Mlj as coordinates of these vectors. We also consider the coefficients Lki and Mlj as

coordinates of points of two four-dimensional space that we call phase spaces. These spaces are conjugate

to each other. Our aim is to construct a symplectic structures in such phase spaces. Formulas (22) and

(24) can be interpreted as linear transforms of these phase spaces. One can construct an orbit of this

group of linear transform and consider symbols of operators and Wigner functions of quantum states

as continuous functions, which are defined on this orbit. Now it is possible to construct a symplectic

structure on this orbit using the Kirillov–Kostant bracket [43, 44].

The other possibility of constructing the simplectic structure is related to the existence of duality

between orbits of transforms (22) and (24).

We will study in detail such a construction in another paper.

Statement 4.

If dequantizers Û (k) are orthogonal to each other, i.e., Tr (Û (k)Û (k′)) = δ(k, k′), the corresponding

quantizers D̂(k) are orthogonal to each other too, i.e., Tr (D̂(k)D̂(k′)) = δ(k, k′), and coincide with de-

quantizers Û (k). So they form a self-dual system.

In fact, according to Statement 3, each set of dequantizers Û (k) can be transformed with the help of

linear transforms to the set of the form

Û (1) =
1

2
√
2

(
2 0

0 0

)
, Û (2) =

1

2
√
2

(
0 1 + i

1− i 0

)
,

(30)

Û (3) =
1

2
√
2

(
0 1− i

1 + i 0

)
, Û (4) =

1

2
√
2

(
0 0

0 2

)
.

In this case, matrix Â (17) reads

Â =
1

2
√
2

⎛
⎜⎜⎜⎜⎝

2 0 0 0

0 1− i 1 + i 0

0 1 + i 1− i 0

0 0 0 2

⎞
⎟⎟⎟⎟⎠ . (31)

One can easily verify that for dequantizers (30) the corresponding quantizers read

D̂(k) = Û (k), k = 1, 2, 3, 4. (32)

As an example, we consider the tomographic-probability scheme determined by specific dequantizers

and quantizers.

For spin s = 1/2, the dequantizers denoted as Q̂(x) ≡ Q̂(m,�n) are

Q̂(m,�n) = U †|m 〉〈m |U, (33)

where the spin projection m = ±1/2, and the unitary matrix U reads

U =

(
cosϑ/2 ei(ϕ+ψ)/2 sinϑ/2 ei(ϕ−ψ)/2

− sinϑ/2 ei(−ϕ+ψ)/2 cosϑ/2 e−i(ϕ+ψ)/2

)
. (34)
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Here, the angles parameterizing the unitary matrix U are the Euler angles.

The dequantizer operators Q̂(x) ≡ Q̂(m,�n) (33) with a unit vector �n =
(
sinϑ sinψ, sinϑ cosψ, cosϑ

)
and unitary matrix (34) have the explicit matrix form

Q̂ (1/2, ϑ, ψ) =
1

2

(
1 0

0 1

)
+

1

2

(
cosϑ sinϑe−iψ

sinϑeiψ − cosϑ

)
,

(35)

Q̂ (−1/2, ϑ, ψ) =
1

2

(
1 0

0 1

)
− 1

2

(
cosϑ sinϑe−iψ

sinϑeiψ − cosϑ

)
.

The dequantizer operator depends only on two Euler angles, which follows from relation (33).

The quantizer operators D̂ are given by explicit relations

D̂ (1/2, ϑ, ψ) =
1

2

(
1 0

0 1

)
+

3

2

(
cosϑ sinϑe−iψ

sinϑeiψ − cosϑ

)
,

(36)

D̂ (−1/2, ϑ, ψ) =
1

2

(
1 0

0 1

)
− 3

2

(
cosϑ sinϑe−iψ

sinϑeiψ − cosϑ

)
.

The continuous set of dequantizers (35) and quantizers (36) satisfy the orthogonality condition (8)

but do not satisfy the condition (9). Thus. we obtain a version of the spin-1/2 tomography determined

by a pair of the dequantizer and quantizer, which are not self-dual operators.

5. Conclusions

We developed a general approach to constructing the sets of dequantizers and quantizers introduced

in the general scheme for description of associative products in [2] in the finite-dimensional space. We

apply an invertible map of the matrices onto vectors elaborated in [41], i.e., instead of matrices, which

act in this space, we use the vectors, which correspond to the matrices, and investigate the properties of

the space of these vectors. Calculating the scalar products of such vectors, one can find the equations for

elements of matrices that represent the dequantizers and quantizers. We realized this program for one-

qubit states. We presented the algorithm for constructing all minimal sets of dequantizers and quantizers

in the one-qubit case and described some properties of these sets; all these results can be generalized for

the N -qubit case.

The coefficients of linear transforms (22) and (24) can be considered as coordinates in a finite-

dimensional phase space. The construction under discussion has a structure of an orbit of a group

of linear transform. In particular, in the case of tomographic symbols of one-qubit states, the corre-

sponding orbit has the form of two-dimensional sphere [45, 46]. In a future paper, we will construct a

symplectic structure on this orbit using the Kirillov–Kostant bracket [43, 44].

In view of the spin-tomography methods, the coordinates of four-dimensional phase spaces can be

connected with the probabilities of measurable observables. We plan to investigate the connection between

the coordinates of symplectic space and measurable tomographic symbols [47–50].

553



Journal of Russian Laser Research Volume 37, Number 6, November, 2016

Acknowledgments

This work was performed within the framework of the collaboration between the Hungarian Academy

of Sciences and the Russian Academy of Sciences on the Problem “Quantum Correlations, Decoherence

in the Electromagnetic Field Interaction with Matter, and the Tomographic Approach to the Signal

Analysis,” and between the Romanian Academy of Sciences and the Russian Academy of Sciences on the

Problem “Fundamental Aspects of Quantum Optics and Quantum Correlations in Information Theory.”

V.A.A. and M.A.M. are grateful to the Institute of Solid State Physics and Optics, Wigner Research

Centre of the Hungarian Academy of Sciences, for the hospitality. A.I. acknowledges financial support

from the Romanian Ministry of Education and Research under Project CNCS-UEFISCDI PN-II-ID-PCE-

2011-3-0083.

References

1. F. Lizzi and P. Vitale, SIGMA, 10, 086 (2014).

2. O. Man’ko, V. Man’ko, and G. Marmo, J. Phys. A: Math. Gen., 35, 699 (2002).

3. S. L. Stratonovich, Sov. Phys. JETP, 4, 891 (1957).

4. K. E. Cahill and R. J. Glauber, Phys. Rev., 176, 1857 (1968).

5. K. E. Cahill and R. J. Glauber, Phys. Rev., 177, 1882 (1969).

6. M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner, Phys. Rep., 106, 121 (1984).

7. V. I. Tatarskii, Sov. Phys. Uspekhi, 26, 331 (1983).

8. A. B. Klimov and S. M. Chumakov, A Group-Theoretical Approach to Quantum Optics, Wiley,

Wenheim (2009).

9. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press (1995).

10. M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge University Press (1997).

11. W. P. Schleich, Quantum Optics in Phase Space, Wiley (2001).

12. E. P. Wigner, Phys. Rev., 40, 749 (1932).

13. K. Husimi, Proc. Phys. Math. Soc. Jpn., 22, 264 (1940).

14. Y. J. Kano, J. Math. Phys., 6, 1913 (1965).

15. R. J. Glauber, Phys. Rev. Lett., 10, 84 (1963).

16. E. C. G. Sudarshan, Phys. Rev. Lett., 10, 277 (1963).

17. S. Mancini, V. I. Man’ko, and P. Tombesi, Quantum Semiclass. Opt., 7, 615 (1995).

18. S. Mancini, V. I. Man’ko, and P. Tombesi, Phys. Lett. A, 213, 1 (1996).

19. S. Mancini, V. I. Man’ko, and P. Tombesi, Found. Phys., 27, 801 (1997).

20. A. Ibort, V. I. Man’ko, G. Marmo, et al, Phys. Scr., 79, 065013 (2009).
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