
Journal of Russian Laser Research, Volume 37, Number 5, September, 2016

AMPLIFICATION OF ELECTROMAGNETIC PULSES

BY PHOTOIONIZED PLASMA

Konstantin Yu. Vagin and Sergey A. Uryupin∗

Lebedev Physical Institute, Russian Academy of Sciences

Leninskii Prospect 53, Moscow 119991, Russia

∗Corresponding author e-mail: uryupin@ sci.lebedev.ru

E-mail: vagin@ sci.lebedev.ru

Abstract

We consider the conditions of aperiodic instability appearance in photoionized plasma produced at the
impact of a pulse of circularly polarized radiation on the gas. We show the possibility of electromagnetic
radiation amplification under reflection by photoionized plasma. We give a comparative analysis of
amplification patterns taking place in hydrodynamic and kinetic description of the photoelectrons
dynamics.
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1. Introduction

The action of laser radiation on the atoms of a substance is accompanied by the formation of plasma

with an anisotropic electron-velocity distribution (see, e.g., [1–7]). At sufficiently intense radiations,

the conditions under which the time of atomic ionization is several orders of magnitude shorter than

the lifetime of the anisotropic photoelectron distribution are easily implemented. In this case, one can

speak of a photoionized plasma, the physical properties of which differ qualitatively from those of nearly

equilibrium plasma. In particular, the anisotropy of the photoelectron distribution leads to a change

in the optical properties of hot dense plasma, because the alternating magnetic field of laser radiation

affects the electron kinetics [8–11].

Plasma with an anisotropic electron distribution is unstable [12–14]. As was shown in [15–17], such

aperiodic instability can lead to the amplification of electromagnetic radiation reflected from photoionized

plasma, as well as transmitted through a plasma slab [18, 19]. The spectrum of the amplified radiation

is rather wide, with characteristic frequencies on the order of the instability growth rate. Note that, for

typical parameters of photoionized plasma, the characteristic frequencies lie in the terahertz range [15–19].

Bearing in mind the existing interest in this frequency range and the qualitative novelty of the

properties of photoionized plasma, we consider in this paper the interaction of test electromagnetic

radiation with plasma formed as a result of tunnel ionization of atoms in the field of circularly polarized

high-power radiation pulse. In Sec. 2, we show an explicit form of the photoelectron distribution function

presented and the time interval during which the nonequilibrium distribution exists. In Sec. 3, we

describe the growth rate of aperiodic instability and determine the boundaries of an instability domain in

the wave-vector space and the maximum growth rate. In Sec. 4, we describe the anomalous amplification

of the test laser pulse reflected by a nonequilibrium plasma using the hydrodynamic approximation.
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We present the kinetic theory of the radiation amplification in Sec. 5 and show that the amplification

efficiency is determined by the maximum value of the instability growth rate, which depends on the

degree of anisotropy of the photoelectron distribution function.

2. Photoelectron-Velocity Distribution Function

Consider the interaction of ionizing ultrashort laser pulse with matter. We assume that the pulse

duration is larger than the atom-ionization time but smaller than the time of change in the distribution

of nonequilibrium photoelectrons over velocities. Also we assume that the laser field has a circular

polarization and approximated by the expression

Epump = Epump

{− sin(ωpump t), cos(ωpump t), 0
}
, (1)

where ωpump is the carrier frequency of the pulse and Epump is the electric field strength. We assume

that the frequency and field strength (1) satisfy the conditions

mv2E � 2I � 3

2
�ωpump

√
mv2E
2I

, (2)

where vE =

∣
∣
∣
∣
eEpump

mωpump

∣
∣
∣
∣, e and m are the electron charge and mass, and I is the ionization potential of

the substance atoms. Under these conditions, the regime of tunnel ionization of atoms in the electric

field (1) is realized, and the distribution of photoelectrons over velocities v corresponds to the probability

of ionization W (v) derived in [1],

W (v) ∝ exp

{
− 2

3�ωpump
√
mvE

[
2I +mv2z +m(v⊥ − vE)

]3/2
}
. (3)

From this formula and inequalities (2) it follows that the distribution function of the bulk photoelectrons

with velocities

v2z � 2I/m, (v⊥ − vE)
2 � 2I/m (4)

can be approximated as follows:

fa(v) � n

4π2vEv2T
exp

[
−(v⊥ − vE)

2

2v2T
− v2z

2v2T

]
, (5)

where n is the photoelectron density

vT =

√
�ωpumpvE

2
√
2mI

� vE . (6)

From (5) for the average velocities of photoelectrons, we have
√〈v2z〉 ∼ vT , 〈v⊥〉 ∼ vE . Taking into

account this evaluation, in view of the degree of anisotropy of the distribution of photoelectrons, we can

understand the relationship vE/vT .

Collisions of electrons lead to the isotropization of the distribution of photoelectrons. If the multi-

plicity of the ion ionization Zi > 1, the process of isotropization is mainly determined by the collisions of
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electrons with ions. Herewith, the evolution of the initial distribution of photoelectrons (5) is described

by the equation
∂f

∂t
=

1

2
ν(v)

∂

∂ξ
(1− ξ2)

∂f

∂ξ
, −1 < ξ < 1, (7)

where f = f(v, ξ, t), ξ = cos θ, θ is the angle between the velocity vector v and the anisotropy axis of

distribution (5),

ν(v) = 4πZie
4nΛm−2v−3 (8)

is the collision frequency of electrons with ions, and Λ is the Coulomb logarithm. As for the initial

distribution vE � vT , in the first time moments the bulk of the photoelectrons are localized in a relatively

narrow velocity interval vE−vT < v < vE+vT and in the region of angles close to π/2, when ξ � vT /vE �
1. Thus, for the first time moments, to describe the relaxation of the initial distribution of photoelectrons,

we can approximately replace Eq. (7) by a more simple one, namely,

∂f

∂t
≈ 1

2
ν
∂2f

∂ξ2
, (9)

where ν ≈ ν(vE). Considering νt � 1, we can write the approximate solution to Eq. (9) in the form

f(v, ξ, t) =

+∞∫

−∞

dξ′√
2πνt

exp

[
−(ξ − ξ′)2

2νt

]
f(v, ξ′, t = 0), (10)

where ξ � νt � 1, and the initial distribution f(v, ξ, t = 0) is described by (5), with vz = vξ and

v⊥ = v
√

1− ξ2.

At small times, when νt � v2T /v
2
E , the distribution (10) is close to the initial distribution of photo-

electrons. If

v2T /v
2
E � νt � 1,

then from (10) we approximately find

f(v, ξ, t) ≈ n

4π2v2EvT
√
νt

exp

[
− ξ2

2νt
− (v⊥ − vE)

2

2v2T

]
. (11)

According to Eq. (10), electron collisions lead to a broadening of the distribution of photoelectrons over

the velocity angles. As can be seen from (11), the domain of the bulk electron localization in the velocity

space expands with time according to the law −√
νt � ξ �

√
νt. In view of (11), we have for the degree

of electron distribution anisotropy vE/
√〈v2z〉
vE
vT

� vE√〈v2z〉
∝ 1√

νt
� 1.

When νt ≈ 1, the electron–ion collisions lead to the isotropic distribution of photoelectrons. If Zi � 1,

at the time νt � 1, the effect of electron–electron collisions on the relaxation of the initial photoelec-

tron distribution can be neglected. If Zi = 1, the electron–electron collisions speed up the process of

isotropization of the photoelectron distribution. In addition, the electron–electron collisions lead to the

energy relaxation accompanied by the formation of Maxwell electron distribution at times of the order

of ν−1. From this consideration it follows that the characteristic preservation time of the photoelectron

distribution anisotropy is ∼ ν−1.

475



Journal of Russian Laser Research Volume 37, Number 5, September, 2016

3. Growth Rate of Aperiodic Instability

As is well known (see, for example, [12]), the plasma with anisotropic electron velocity distribution

is unstable with respect to the development of non-potential aperiodic instabilities. Recall the basic

statements of the corresponding theory.

Consider small perturbations of electric and magnetic fields of the form

E ∼ B ∼ exp(−iωt+ ikr). (12)

Neglecting electron collisions, from the kinetic equation for electrons and the Maxwell equations, we

obtain the following system of equations:

{
k2δij − kikj − ω2

c2
εij

}
Ej = 0, i, j = x, y, z, (13)

with the permittivity tensor of the form

εij ≡ εij(ω,k) = δij

(
1− ω2

L

ω2

)
+

ω2
L

nω2

∫
dv

vivj
ω − kv

(
k
∂ fa
∂v

)
. (14)

Equations (13) have a nontrivial solution if the determinant of this system of equations is equal to zero.

In the low-frequency range |ω| � ωL, there is a purely imaginary solution ω = iγ corresponding to

the possibility of aperiodic instability development with growth rate γ. When the average kinetic energy

of the electrons perpendicular to the anisotropy axis exceeds the energy of their motion along it, the

perturbations with wave vectors directed along this axis are built up most effectively (for details, see, for

example, [15, 17, 20]).

Being interested in optimum conditions of the instability development, we restrict our consideration

to perturbations with wave vectors k = {0, 0, k}. For such perturbations, the electromagnetic field is

transverse and, to be specific, we assume that E = {E, 0, 0} and B = {0, B, 0}. Then we obtain the

equation for ω = iγ of the form

D(k, ω) ≡ k2E +
ω2

c2
−

(
k2E +

ω2
L

c2

)
Q

(
ω

kvT

)
− k2 = 0, (15)

where

k2E =
ω2
L

2c2

(
v2E
v2T

+ 1

)
, (16)

Q(z) =

+∞∫

−∞

dξ√
2π

e−ξ2/2 z

z − ξ
= −i

√
π

2
zw

(
z√
2

)
, (17)

with w(z) being the function related to the error function (see Eq. (7.1.4) in [21]).

In the limit case kvT � |ω| � ωL, from Eq. (15) we obtain an approximate expression for the growth

rate as follows:

γ ≈ ωLkvE√
2
√

ω2
L + k2c2

. (18)
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Expression (18) is valid in the range of relatively small wave numbers corresponding to the hydrodynamic

limit. From (18), we see that, in this limit, the growth rate of aperiodic instability is a monotonically

increasing function of the wave number. With increasing in k (18), the γ tends to the value γE = kEvT ≈
ωL(vE/

√
2c) � ωL, which is the maximum possible growth rate of aperiodic instability in unbounded

plasma with the electron distribution (5) [22]. However, for sufficiently large values of k ∼ |ω|/vT , the
approximate expression (18) is not valid, and it is necessary to solve numerically Eq. (18) in order to

obtain the growth rate γ(k).

Fig. 1. The growth rate of aperiodic instability γ(k)/γE
versus the wave number k c/ωL for different values of the
ratio vE/vT = 6 (curve 1), 10 (curve 2), and 15 (curve 3).

In Fig. 1, we show the function γ(k)/γE in

the region k > 0 for three values of the ratio

vE/vT ; here, curve 1 corresponds to vE/vT = 6,

curve 2 to vE/vT = 10, and curve 3 to vE/vT =

15. From Fig. 1, we see that instability can de-

velop only if |k| < kE , which corresponds to not

very small spatial scales. The growth rate γ(k)

has a strongly marked maximum.

The maximum growth rate for a given value

of vE/vT , γm ≡ γm(vE/vT ) = γ(km), which

takes place at km ≡ km(vE/vT ), corresponds to

the field perturbations that are most efficiently

amplified during the aperiodic instability deve-

lopment. The values of γm and km are indicated

on curve 1 in Fig. 1.

In Figs. 2 and 3, we present the dimensionless quantities γm/γE and kmc/ωL as functions of the ratio

vE/vT � 1, which characterizes the degree of anisotropy of the initial distribution (5).

From Fig. 2, we see that the maximum growth rate satisfies the inequality γm < γE , and the quantity

γm monotonically increases with increase in vE/vT , asymptotically approaching γE .

According to Fig. 3, the wave number km corresponding to the most efficiently amplified perturbations

also increases with increase in vE/vT .

Fig. 2. The growth rate of aperiodic instability γm/γE
versus the ratio vE/vT .

Fig. 3. The wave number kmc/ωL, at which the growth
rate of aperiodic instability γm reaches its maximum
value, versus the ratio vE/vT .
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4. Amplification of Reflected Field. Hydrodynamic Approach

Assume that the half-space z > 0 is occupied by the plasma formed under the ionization of matter in

the strong laser pulse of circularly polarized radiation. At time t = 0, the test electromagnetic pulse

Ei(z, t) = {Ei(t− z/c), 0, 0} , Bi(z, t) = {0, Ei(t− z/c), 0} (19)

falls on the plasma surface. Here, Ei(t− z/c) = EL η(t− z/c) sin[ω0(t− z/c)], ω0 < ωL, and η(τ) is the

Heaviside function.

In this section, we describe the response of a nonequilibrium plasma with the electron velocity distri-

bution (5) on the pulse action (19) in the hydrodynamic approximation. We adopt a system of equations

for the mean electron velocity u(z, t), momentum flux density tensor Pij(z, t), vortex electric E(z, t), and

magnetic B(z, t) fields (see, for example, [15]). For an electron velocity distribution of the form (5), the

momentum flux density tensor Pij = m

∫
dv vivjfa(v) is diagonal,

Pxx = Pyy � 1

2
nmv2E � Pzz � nmv2T . (20)

Assuming that the field (19) action on plasma is weak, we describe its influence on the field strength in

the linear approximation.

The pulse of the form (19) leads to the excitation of the plasma electromagnetic field with components

E(z, t) = {E(z, t), 0, 0} and B(z, t) = {0, B(z, t), 0}.
At the same time, one velocity component δu(z, t) = {δu(z, t), 0, 0} and two identical momentum flux

density tensor components δPxz(z, t) = δPzx(z, t) ≡ δP (z, t) are nontrivial. For these quantities, we have

the linearized system of equations

∂δu

∂t
+

1

mn

∂δP

∂z
=

e

m
E,

1

mn

∂δP

∂t
+ v2T

∂δu

∂z
=

(
1

2
v2E − v2T

)
eB

mc
,

(21)

∂B

∂t
+ c

∂E

∂z
= 0,

∂E

∂t
+ c

∂B

∂z
= −4πen δu.

To solve the system of equations (21) for t > 0, we use the Laplace transform where the original

function F (t) and its image F (ω) are related as follows:

F (ω) =

+∞∫

0

dt F (t) exp(iωt), F (t) = (2π)−1

+∞+iΔ∫

−∞+iΔ

dω F (ω) exp(−iωt),

where Δ > 0 is larger then the exponential growth rate of the function F (t). We assume that in plasma

the perturbations of E, B, δu, and δP due to the action of pulse (19) are much higher than their values

due to thermal fluctuations. This fact allows us to assume that, at time t = 0, the initial values of

perturbations of these quantities are approximately equal to zero.

Under the conditions (20), the system of equations (21) permits significant simplification if the cha-

racteristic electron velocity along the anisotropy axis satisfies the inequality vT � Lz|ω|, where Lz is

the minimum characteristic-length scale of variation in physical quantities along the z axis. Then, from

478



Volume 37, Number 5, September, 2016 Journal of Russian Laser Research

(21), we obtain the second-order differential equation for the Laplace image of the electric field E(z, ω)

in plasma {
∂2

∂z2
− k2(ω)

}
E(z, ω) = 0, (22)

Fig. 4. Path of integration in the complex plane of vari-
able ω.

where k2(ω) =
ω2

c2
ω2
L − ω2

γ2E + ω2
. The solution to

Eq. (22) that does not grow deep into the plasma

is E(z = 0, ω) exp[−k(ω)z], z > 0, where for the

function k(ω) we chose the branch in the plane

of the complex variable ω satisfying the condition

Re [k(ω)] � 0 on the straight line Im [ω] = Δ along

which the integration is performed in the inverse

Laplace transform (see Fig. 4).

In the case of the electron distribution axially

symmetric with respect to the z axis, the reflected

field satisfying the Maxwell equations at z < 0

reads

Er(z, t) = {Er(t+ z/c), 0, 0} , Br(z, t) = {0,−Er(t+ z/c), 0} . (23)

Using the continuity of tangential electric and magnetic field components at the plasma boundary z = 0,

for the electric field outgoing from the plasma we have

Er

(
t+

z

c

)
= −Ei

(
t+

z

c

)
+

+∞+iΔ∫

−∞+iΔ

dω

2π
Ei(ω)

2ω

ω + i k(ω)c
exp

[
−iω

(
t+

z

c

)]
, (24)

where Ei(ω) = EL ω0/(ω
2
0 − ω2) is the Laplace image of the electric field (19) incident on the plasma.

In order to calculate the integral in (24), we use the integration contour in the plane of the complex

variable ω shown in Fig. 4. According to (24), for t > 0, the front of the reflected field reaches zf = −c t.

At z = zf , the field (24) is zero. The reflected field is localized in the space zf < z < 0 and for time t > 0

in the point z < 0 is specified by the field strength on the plasma surface at an earlier time τ = t+z/c < t.

Departure from the plasma surface field (24) consists of two parts:

Er = E(ω)
r + E(γ)

r . (25)

The first part E
(ω)
r corresponds to the sum of the field −Ei(t+ z/c) and the contributions to the integral

term in (24) from the contour segments in Fig. 4 passing along the real axis. This part describes the

non-increasing contribution to the reflected field, the spatio–temporal structure of which is similar to

the radiation field reflected by equilibrium plasma. As plasma is in the nonequilibrium state, there is

an additional contribution E
(γ)
r to the outgoing field due to the aperiodic instability development. This

contribution to the integral part of (24) comes from the sides of the cut along the imaginary axis on the

interval (0, iγE) and has the form

E(γ)
r (τ) = −η[τ ]ES

γE∫

−γE

dμ

π

√
γ2E − μ2

ω2
0 + μ2

exp(μτ)sign(μ), (26)
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where ES = (2ω0/ωL)EL is the amplitude of the electric field in plasma near the surface under the

conditions of the high-frequency skin-effect for a time interval less than the reverse instability growth

rate.

Far from the front of the outgoing radiation, where τ = t+ z/c � (ω−1
0 , γ−1

E ), the growing field (26)

may be approximated by the expression

E(γ)
r (τ) � − ES√

2π

1

1 + ω2
0/γ

2
E

exp(γEτ)

(γEτ)3/2
. (27)

We see from (27) that the amplitude of the function E
(γ)
r (τ) has a maximum when the frequency ω0

coincides with γE .

5. Amplification of Reflected Field. Kinetic Approach

In this section, we consider the features of reflected field amplification, using the kinetic equation to

describe the electron motion. Thus, for the fields in plasma and a small perturbation of the electron

distribution function δf ≡ δf(v, z, t), we have the equations

∂δf

∂t
+ vz

∂δf

∂z
= − e

m

{
E+

1

c
[vB]

}
∂ fa
∂v

, (28)

∂B

∂t
+ c

∂E

∂z
= 0,

∂E

∂t
+ c

∂B

∂z
= −4πe

∫
dv vx δf. (29)

As before, we assume zero initial conditions for perturbations of all the quantities in plasma and consider

only the forced solutions to Eqs. (28) and (29) induced by the field (19).

As in the previous section, for solving Eqs. (28) and (29), we use the Laplace transform and the

simplest boundary condition corresponding to the mirror reflection of electrons from the plasma boundary.

In this case, after reflection the electron velocity component normal to the plasma boundary changes its

sign, while the electron velocity components parallel to the plasma boundary remain unchanged. Also

we take into account that the perturbed electromagnetic field and function δf vanish deep in the plasma.

Then, from Eqs. (28) and (29), we obtain the integro-differential equation for E(z, ω) in plasma z > 0,

[
∂2

∂z2
+

(
k2E +

ω2

c2

)]
E(z, ω) =

(
k2E +

ω2
L

c2

) +∞∫

0

dz′
[
Q(z + z′, ω) +Q(|z − z′|, ω)] E(z′, ω), (30)

where the kernel entering into the integral reads

Q(|z|, ω) = − i ω√
2π vT

+∞∫

0

dξ

ξ
exp

[
−ξ2

2
+ i

ω

vT ξ
|z|

]
. (31)

Equation (30) should be supplemented with conditions corresponding to the continuity of the tangential

components of electric and magnetic fields on the surface z = 0.

Following [17] for the electric field reflected from the plasma, we arrive at

Er

(
t+

z

c

)
= −Ei

(
t+

z

c

)
+

+∞+iΔ∫

−∞+iΔ

dω

π

Ei(ω)Z(ω)

1 + Z(ω)
exp

[
−iω

(
t+

z

c

)]
, z < 0, (32)
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where Z(ω) = E(z = 0, ω)/B(z = 0, ω) is the frequency-dependent surface impedance determined ac-

cording to

Z(ω) = lim
z→+0

i ω

c

+∞∫

−∞

dk

π

eikz

D(k, ω)
. (33)

Taking into account the properties of the function Ei(ω) and solutions to Eq. (15) in the region Im[ω] � 0,

in order to calculate the integral over ω in (32), we choose the integration contour shown in Fig. 4, in

which the maximum possible increment γE should be replaced by the greatest one γm for a given degree

of anisotropy vE/vT increment, γm < γE . This change takes place in a more precise kinetic approach

and is essential in describing the exponential increase in the reflected field.

The reflected field (32) is the sum of two parts — the increasing and non-increasing (in time) fields (25).

From Eq. (32), we find that the increasing component of the reflected field is

E(γ)
r (τ) = η[τ ]

γm∫

0

i dη

π
Ei(iη) e

η τ

[(
1 +

1

Z(iη − 0)

)−1

−
(
1 +

1

Z(iη + 0)

)−1
]

, (34)

where Z(iη − 0) corresponds to the value of the function Z(ω) on the left bank of the cut along the

imaginary axis, and Z(iη+0) corresponds to that on the right bank (see Fig. 4). For times exceeding the

reciprocal of the growth rate of aperiodic instability, it is the contribution (34) exponentially increasing

with time that dominates and determines the structure of the reflected field Er � E
(γ)
r far from its

leading edge, where the inequality τ = t + z/c � γ−1
m is satisfied. Under this condition, we obtain

the following asymptotic expression for the increasing part of the reflected field, which is valid at long

times and sufficiently large distances behind the leading edge of the radiation propagating away from the

plasma:

E(γ)
r (τ) ≈ ES√

2π

1 + 2 vT /vE
1 + ω2

0/γ
2
m

exp(γmτ)√
γmτ

. (35)

Since the tangential components of the field are continuous at the plasma boundary, expression (35)

calculated at z = 0 (which corresponds to τ = t) describes the field amplification in the skin layer.

Qualitatively, the phenomenon of amplification can be understood from the following considerations.

Fig. 5. Dependence of the ratio [E
(γ)
r (τ = 10 γ−1

E )]2/E2
L

illustrating the amplification of the reflected field at the
instant τ = 10 γ−1

E on the ratio vE/vT .

A test pulse, with carrier frequency ω0 < ωL

and electric field amplitude EL, penetrates over a

time ∼ 1/ω0 to the skin depth and produces an

electric field with strength of ∼ (2ω0/ωL)EL. In

the skin layer, this field is amplified due to the onset

of instability development and is radiated back into

vacuum.

Expression (35), which was obtained within the

framework of the kinetic approach, differs from ex-

pression (27), which was obtained in the previous

section within the framework of the hydrodynamic

consideration of the electron dynamics. In contrast

to the result (27), where the exponential increase

with time was characterized by the growth rate γE ,
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the amplification of the reflected field described by expression (35) proceeds more slowly because it is

determined by a smaller growth rate γm, which depends on the degree of anisotropy vE/vT of the initial

distribution (5); see Fig. 2. Another difference between expression (35) and (27) is the different pre-

exponential factor. Instead of (γEτ)
−3/2, expression (35) contains the large quantity (1+2 vT /vE)/

√
γmτ ,

and the field E
(γ)
r (τ) has the opposite sign.

To illustrate the amplification of the reflected field, in Fig. 5 we show the ratio between the squared

amplitudes of the reflected and test fields [E
(γ)
r (τ = 10γ−1

E )]2/E2
L as a function of the parameter vE/vT ,

which characterizes the anisotropy of the electron distribution. The curve was calculated for τ = 10γ−1
E

and the following parameters of the plasma and radiation: n = 1018 cm−3, mv2E � 330 eV, and ω0 � γE .

We see from Fig. 5 that, as the ratio vE/vT increases from 5 to 25, the amplification factor of the reflected

field increases by more than two orders of magnitude.

6. Conclusions

We considered the amplification of test electromagnetic radiation by plasma with an anisotropic

electron velocity distribution formed as a result of the tunnel ionization of gas atoms by a circularly

polarized radiation pulse. We showed that the effect of amplification of the reflected pulse takes place

within the framework of the kinetic and hydrodynamic approaches. However, the quantitative properties

of the amplification are different. In the kinetic approach, the amplification of the reflected pulse is

characterized by a smaller growth rate, which coincides with that obtained in the hydrodynamic approach

in the case of a very large degree of electron distribution anisotropy. These quantitative amplification

characteristics of the reflected pulse seem to be important because, under actual conditions, the degree

of anisotropy is usually moderate.

Let us consider typical conditions under which the above amplification effect can take place. As a

result of ionization of hydrogen atoms by a circularly polarized laser pulse with an intensity of Ipump =

2 · 1015 W/cm2, a frequency of ωpump = 2 · 1015 s−1, and duration of a few tens of femtoseconds, plasma

with anisotropic photoelectron distribution (5), in which mv2E � 330eV and vE/vT � 12, is produced.

For such plasma with an electron density of n = 1018 cm−3, the growth rate of aperiodic instability is

γm ≈ 0.83 · 1012 s−1.

At times longer than the reciprocal of the growth rate of aperiodic instability but shorter than both

the time over which the initial distribution becomes isotropic and the time of nonlinear saturation of

instability, the reflected field increases exponentially with time. The reflected field is maximum when the

frequency of the test radiation incident on the plasma is close to the growth rate of instability. However,

as is seen from formula (35), the dependence of the amplified field on the frequency of the incident test

pulse has the form ∼ ω0/(ω
2
0 + γ2m). This allows one to speak of the possibility of amplification of not

only monochromatic signals with ω0 ∼ γm, but also signals with a spectral width of ∼ γm.

The function ω2
0/(ω

2
0 + γ2m)2 characterizes the amplification efficiency in a given frequency band.

Since the amplified fraction of the reflected field is concentrated within a wide frequency band near

γm, the above mechanism of amplification of the reflected field can be used to amplify and generate

electromagnetic radiation, in particular, in the terahertz frequency range. In this case, the typical values

of the amplification factor can reach several orders of magnitude (see Fig. 5). Thus, upon the incidence

of radiation with intensity IL = cE2
L/8π = 103 W/cm2 and frequency ω0 ≈ γm on plasma with the above

parameters, the intensity of radiation reflected from the plasma at the time t = 10 γ−1
m can reach the

482



Volume 37, Number 5, September, 2016 Journal of Russian Laser Research

value I(γ) = c (E
(γ)
r )2/8π ≈ 1.4 · 106 W/cm2.

Comparison of the results of Sec. 4, where the effect of amplification was described without regard for

details of the electron velocity distribution, and the results of Sec. 5 allow us to conclude that amplification

of the test signal by anisotropic plasma is, to some extent, a universal effect. To observe this effect, it is

sufficient to create conditions under which aperiodic instability is possible upon atomic ionization.
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