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Abstract

Within the framework of the tomographic probability representation, we introduce specific optical
Gaussian states, which were recently proved to carry the orbital angular momentum. We obtain the
symplectic and optical tomograms defining uniquely both quantum and classical states for the rotating
Gaussian states of light. This approach needs to be developed and applied to the mentioned states
due to the convenience of using in the state reconstructions and measurements. Having in mind this
aim, we obtain the mean values and variances of the amplitude quadratures directly measurable in
the homodyne optical-tomography experiments. Also we consider the time evolution of the rotating
Gaussian states in terms of the tomograms and obtain the corresponding tomographic propagator.

Keywords: orbital angular momentum (OAM) states, Gaussian packets, tomographic probability rep-

resentation, time evolution, propagator.

1. Introduction

Optical states carrying the orbital angular momentum (OAM) are widely used nowadays in quantum

communication and quantum information processing. There is a large bibliography concerning these

types of OAM-states implementation. Among the recent works, it is worth mentioning [1–4]. The most

frequently used and therefore well-studied OAM states are the Laguerre–Gaussian packets, but there exist

also other types of states having nonzero orbital angular momentum, such as Ince–Gauss beams [5–7],

Bessel beams [9, 10], etc. Recently, the properties of the rotating Gaussian states were employed in [10],

where it was also proved that these states carry the orbital angular momentum.

The applicability of the OAM states to quantum information technologies motivates the task to intro-

duce an appropriate method of OAM-packet measurements and their tomography. In most experimental

works, tomography is based on the density-matrix reconstruction with the help of the maximum-likelihood

method. In [11] it was proposed to use the OAM-state reconstruction by using the Wigner function de-

fined on a discrete cylinder, that is, the phase space for the pair angle – angular momentum. The

proposed approaches have several disadvantages, because the statistical protocols of the density matrix

(or wave function) reconstruction have a finite fidelity and are computationally complicated.

An alternative approach called the tomographic probability representation [12] provides a more ap-

propriate method to measure quantum states avoiding statistical reconstruction. In this representation,

quantum states are defined by a function called symplectic tomogram; it has all the properties of a

probability distribution. For optical packets, a particular case of symplectic tomogram is the optical

tomogram which has been proved to be measurable directly in homodyne detection experiments with a
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high accuracy [13]. Obviously, this approach can be also applied to the OAM-state tomography, and the

homodyne detection of OAM states is nowadays a well-developed method [14]. In order to introduce the

tomographic probability approach to the problem of OAM-state reconstruction, one should consider the

properties of these states in the mentioned representation.

One more reason to suggest the tomographic probability description of OAM states is to provide

a universal notation for representing both classical and quantum light. The form of OAM states was

formulated in terms of classical physics [15] and extended to the quantum case due to the analogy between

the paraxial optics and quantum mechanics [16]. We demonstrate this well-known analogy in Sec. 2; the

problem of light classicality or quantumness was discussed, for example, in [17].

Providing a universal description of both classical and quantum states in terms of a phase-space-like

function, the tomographic probability approach allows one to define whether one deals with a classical

or a quantum case directly from the form of the corresponding symplectic tomogram [18, 19]. The

employment of quantum language for the description of classical OAM light is of a practical interest;

as was emphasized in [20, 21], such quantumlike states can be successfully used for simulating quantum

computations.

Due to the reasons mentioned, the tomographic probability representation is the most important

way to describe the OAM states. The aim of this research is to provide the tomographic probability

description of the rotating Gaussian states following [10].

This paper is organized as follows.

In Sec. 3, we give a short insight into the tomographic probability approach and its physical meaning

and properties. In Sec. 4, we obtain the symplectic and optical tomograms of a quantum rotating

Gaussian state in the general case and, as a particular case, of a minimum-energy rotating Gaussian

state possessing a fixed angular momentum. In Sec. 5, we discuss the quantum evolution of the OAM

Gaussian states in terms of the tomographic probabilities.

2. Formulation of OAM States: Paraxial Approximation and

Quantum Mechanics

The mentioned connection between classical and quantum optics was emphasized by Fock and Leon-

tovich [16]. For clarity, in this section, we list the main points of this reasoning and introduce an

approximation that will hold throughout this article.

The Maxwell equations for the electromagnetic wave in the region without charges and currents yield

the following wave equation for the electric component:

∇2E − ε

c2
∂2E

∂t2
= 0, (1)

where we use the common notation for ε as the permittivity and c is the speed of light. For a monochro-

matic wave, Eq. (1) reduces to the Helmholtz equation

∇2E + k2E = 0, (2)

where k is the wave number related to the wave frequency ω and the refractive index n (k = ωn/c).

We consider the electric field (without taking into account the y direction)

E (x, z) =
ψ (x, z)
√

n (0, z)
exp

(
ik

∫ z

0
n (0, ζ) dζ

)
, (3)
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where we assume ψ (x, z) is a complex amplitude of the classical electric field.

Substitution of (3) into the Helmholtz equation (2) provides a Schrodinger-like equation with respect

to ψ (x, z)

iλ
∂ψ (x, z)

∂z
+

λ2

4πn (0, z)

∂2ψ (x, z)

∂x2
− π

[
n2 (0, z)− n2 (x, z)

]

n (0, z)
ψ (x, z) = 0, (4)

where we neglected the second-order derivatives of ψ (x, z) with respect to z and assumed that

λ

n2 (0, z)

∣
∣
∣
∣
dn (0, z)

dz

∣
∣
∣
∣ � 1, (5)

with λ = 2π/k being the wavelength. The mentioned condition follows from the paraxial approximation.

If one introduces the formal Hamiltonian

Ĥ =
p̂x

2

2M
+ U (x, t) ,

relation (4) coincides with the Schrödinger equation defining the wave function of a quantum object,

where one assumes that z plays the role of time (z → t) and λ, the role of the Planck constant (λ → �),

the mass M is denoted as 2πn (0, z), U (x, z) = π
[
n2 (0, z)− n2 (x, z)

]
n−1 (0, z) is an effective potential,

and ψ (x, z) is the wave function. This means that quantum OAM states and classical beams in optical

fibers are described by equations of the same form, but we need to take into account the y dependence

of the wave function and the potential.

In the following sections, we employ the potential of the two-dimensional harmonic oscillator.

3. Tomographic Probability Representation of Quantum Mechanics

The tomographic probability representation [12] of quantum mechanics was aimed at determining

quantum states by probability-distribution functions in analogy with phase-space functions in classical

physics. The quantum phase-space functions introduced before, including the widely used Wigner func-

tion [22], cannot be considered as probability distributions due to the dependence on noncommuting

operators of coordinate and momentum.

In contrast, within the tomographic probability representation, a quantum state is described by a

function w (X,μ, ν) depending on a coordinate X, which is measured in a rotated and scaled phase space

and on the coefficients μ and ν of this rotation and scaling (X = μq+νp). Whereas the mentioned phase

spaces determining the variable X are connected to each other by symplectic transforms, the function

w (X,μ, ν) was named symplectic tomogram.

The main advantage of the symplectic tomogram is that it is positive, real, and has all other properties

of the probability distribution. Moreover, a symplectic tomogram can determine pure or mixed states

as well, instead of the wave function or the density matrix. The symplectic tomogram and the Wigner

function are connected through the invertible Radon transform [12]

w (X,μ, ν) =
1

2π

∫
W (q, p) δ (X − μq − νp) dq dp.

Due to the homogeneity of the δ-function, the symplectic tomogram possesses this property as well,

w (λX, λμ, λv) =
1

|λ|w (X,μ, v) . (6)
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The Wigner function is related to the corresponding wave function (or the density matrix) by the Fourier

transform [19,22]

W (q, p) =
1

π

∫
ψ∗ (q + u)ψ (q − u) e2ipu du. (7)

The connection between the symplectic tomogram and the wave function for the one-dimensional case

reads (see [23])

w (X,μ, ν) =
1

2π |ν|
∣
∣
∣
∣

∫
ψ (x) exp

(
iμ

2ν
x2 − iX

ν
x

)
dx

∣
∣
∣
∣

2

, (8)

and in the two-dimensional case it is

w (X1, μ1, ν1, X2, μ2, ν2) =
1

4π2 |ν1ν2|
∣
∣
∣
∣

∫
ψ (x, y) exp

(
iμ1

2ν1
x2 − iX1

ν1
x+

iμ2

2ν2
y2 − iX2

ν2
y

)
dx, dy

∣
∣
∣
∣

2

. (9)

From the definition of the symplectic tomogram it follows that it can be used for obtaining the moments

of the operator X̂ [24] 〈
X̂n

〉
=

∫
Xnw (X,μ, ν) dX. (10)

Originally, the tomographic probability approach had the aim to reconstruct the Wigner function by

measurements of coordinates along different directions in the phase space using the inverse Radon trans-

form. Experimentally, these measurements are realized in the scope of homodyne detection, where a

particular case of the symplectic tomogram is used.

The so-called optical tomogram is defined on the set of rotated but unscaled phase spaces; it depends

on two variables – the quadrature X and the parameter θ, which is connected with μ and ν as follows:

μ = cos θ and ν = sin θ. Although at the beginning, the technique mentioned was used for the Wigner-

function reconstruction, due to further active development of the tomographic probability approach, the

other concept based on the substitution of the wave function (or density matrix) by symplectic or optical

tomogram in the description of quantum states appeared. The current research was carried out within

the scope of this concept and is aimed at presentation of the OAM Gaussian states and their properties

within the framework of the tomographic probability approach.

4. Rotating Gaussian Packets in the Tomographic Probability

Representation

The Gaussian states with orbital angular momentum were recently introduced for the pure states

in [10] and for mixed states in [25]. It was shown that the two-dimensional Gaussian packets can have

a rotating structure that consists of the so-called “external” and “internal” rotations. In overview, a

rotating Gaussian packet has the form

ψ (x, y) = N exp
[−κ

(
ax2 + bxy + cy2

)
+ Fx+Gy

]
, (11)

where κ is a constant scale factor, N is the normalizing factor, and a, b, c, F , and G are complex

coefficients: a =
α

2
+ iχa, b = β + iρ, c =

γ

2
+ iχc, F = F1 + iF2, and G = G1 + iG2.

This relation corresponds to a Gaussian packet that assumes a rotating form under particular values

of the coefficients in the exponent for the wave-function expression. The probability density |ψ (x, y)|2 of
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the rotating Gaussian state under consideration is the probability density in the packet center |ψ (x0, y0)|2
multiplied by a time-dependent exponent |ψ (x, y, t)|2 = e−f(x̃,ỹ,t) |ψ (x0 (t) , y0 (t))|2, where x̃ = x−x0 (t)

and ỹ = y−y0 (t). This product corresponds to the “external” and “internal” rotations mentioned above,

and its structure provides one with the condition for the wave-function coefficients.

Following this approach, we obtain the Gaussian state in the tomographic picture and then apply

restrictions obtained for the wave-function coefficients in order to proceed to a particular case of rotating

packets. The integral relation (9) and the expression for the wave function of the two-dimensional

Gaussian state (11) allow us to derive the symplectic tomogram of this packet

ws

(
�X, �μ, �ν

)
=

C
√
Δ

π |ν1ν2|

∣
∣
∣
∣
∣
∣

exp
[
− �XTΣ �X + �ΘT �X

]

√
ξ

∣
∣
∣
∣
∣
∣

2

. (12)

Here, the two-vectors �X, �μ, and �ν are expected to consist of the tomographic variables X1, X2, μ1, μ2,

ν1, and ν2, the factor Δ has the meaning of Δ = αγ − β2, and the normalization factor reads

C = exp
[
F 2
1 γ

(
κ−Δ−1

)− F 2
2 κγ +G2

1α
(
κ−Δ−1

)−G2
2κα

]

× exp

[
−4F1F2

(
κχc − μ2

2ν2

)
− 4G1G2

(
κχa − μ1

2ν1

)
+ 2κF1 (βG1 − ρG2)− 2κF2 (ρG1 + βG2)

]
.

For brevity, we denoted by ξ a combination of the tomographic variables

ξ =

∣∣∣∣4
(
κa+

iμ1

2ν1

)(
κc+

iμ2

2ν2

)
− κ2b2

∣∣∣∣

2

,

the notation �Θ is used for a two-vector with the components

Θ1 =
i

ξ

(
2F

ν1

(
iμ2

2ν2
− κc

)
− κbG

ν1

)
and Θ2 =

i

ξ

(
2G

ν2

(
iμ1

2ν1
− κa

)
− κbF

ν2

)
,

and Σ is the matrix of the tomographic variables

Σ =
1

ξ

⎛

⎜⎜
⎝

κc

ν21
− iμ2

2ν21ν2

κb

2ν1ν2
κb

2ν1ν2

κa

ν22
− iμ1

2ν1ν22

⎞

⎟⎟
⎠ .

Obviously, the symplectic tomogram (12) also has a Gaussian form. In terms of the optical tomogram,

which is applicable for homodyne detection, the general form of a Gaussian state is

wop

(
�X, �θ

)
=

C̃
√
Δ

π |cos θ1 cos θ2|

∣∣∣∣∣∣

exp
[
− �XT Σ̃ �X + �̃ΘT �X

]

√
ξ̃

∣∣∣∣∣∣

2

, (13)

where the parameters of the normal probability distribution are expressed in terms of angles θ1 and θ2.

These parameters are the components of the two-vector �θ, and the new normalization factor reads

C̃ = exp
[
F 2
1 γ

(
κ−Δ−1

)− F 2
2 κγ +G2

1α
(
κ−Δ−1

)−G2
2κα

]

× exp

[
−4F1F2

(
κχc − tgθ2

2

)
− 4G1G2

(
κχa − tgθ1

2

)
+ 2κF1 (βG1 − ρG2)− 2κF2 (ρG1 + βG2)

]
.
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The coefficient ξ̃, the vector �̃Θ, and the matrix Σ̃ have the same form as the initial ones without “tilde”

by the substitutions μ1 → cos θ1, ν1 → sin θ1, μ2 → cos θ2, and ν2 → sin θ2.

As was demonstrated in [10], the wave function of a minimum-energy rotating Gaussian state has the

form (11) under the following conditions:

a =
1

2
[1 + η exp (−iλiu)] , b = iλiη exp (−iλiu) , c =

1

2
[1− η exp (−iλiu)] ,

F = κR [exp (−iλcv) + η exp (iλi (v − u))] , G = iκR [λc exp (−iλcv) + λiη exp (iλi (v − u))] .

Here, η =

√(
α− γ

2

)2

+ β2, R =

√(
γF1 − βG1

κΔ

)2

+

(
αG1 − βF1

κΔ

)2

, v = arccos

(
γF1 − βG1

RκΔ

)
,

λc and λi equal ±1 relating to the sign of mean “classical”(responsible for the motion of the packet center)

and intrinsic angular momentum, respectively, and u is an arbitrary phase. Obviously, the symplectic

and optical tomograms of rotating Gaussian states have the form (12) and (13) under the mentioned

coefficients. Further on, we use this notation.

In order to provide the compatibility of the tomographic picture with experiments where the rotating

Gaussian packets were measured, say, in the homodyne-detection experiments, we calculate the mean

values and variances of the tomographic variables X1 and X2,

〈X1〉 = μ1 (γF1 − βG1) + ν1 [F2κΔ− 2κχa (γF1 − βG1)− κρ (αG1 − βF1)]

κΔ
,

(14)

〈X2〉 = μ2 (αG1 − βF1) + ν2 [G2κΔ− 2κχc (αG1 − βF1)− κρ (γF1 − βG1)]

κΔ
.

Here one can use the property (10) of the symplectic tomogram assuming n = 1. From the same relation

one can use the second moments of the quadratures Xi:

〈
X2

1

〉
= μ2

1

γ

2κΔ
+ ν21

κγ
(
α2 + 4χ2

a

)
+ κα

(
ρ2 − β2

)− 4κβρχa

2Δ
+ μ1ν1

βρ− 2γχa

Δ
,

〈
X2

2

〉
= μ2

2

α

2κΔ
+ ν22

κα
(
γ2 + 4χ2

c

)
+ κγ

(
ρ2 − β2

)− 4κβρχc

2Δ
+ μ2ν2

βρ− 2αχc

Δ
,

(15)

〈X1X2〉 = −μ1μ2
β

2κΔ
+ μ1ν2

2βχc − ργ

2Δ
+ μ2ν1

2βχa − ρα

2Δ

+ν1ν2
κβ

(
Δ− ρ2 − 4χaχc

)
+ 2κρ (αχc + γχa)

2Δ
.

From expressions (14) and (15), we can obtain dispersions of the tomographic variables

σXiXj = 〈XiXj〉 − 〈Xi〉 〈Xj〉 .

5. Tomographic Quantum Propagator for Rotating Gaussian Packets

The evolution of quantum states in the tomographic probability approach is described by a Moyal-

type equation in full analogy with the Schrödinger equation [12]. It corresponds to a quantum propagator

representing the time evolution of the symplectic tomogram:

w (X,μ, ν, t) =

∫
Π
(
X,μ, ν, t,X ′, μ′, ν ′, t0

)
w
(
X ′, μ′, ν ′, t0

)
dX ′ dμ′ dν ′. (16)
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Since the tomogram is related to the wave function, the tomographic propagator should be connected

with the corresponding Green function as well. After deriving this general relation and using the Green

function of the rotating Gaussian state, one obtains the tomographic propagator for the system under

consideration. For the one-dimensional case, the transform connecting the tomographic propagator and

the Green function G (x, y, t) was found in an explicit form in [26]; it reads

Π
(
X,μ, ν,X ′, μ′, ν ′, t

)
=

1

4π2

∫
k2G

(
r +

kν

2
, y, t

)
G∗

(
r − kν

2
, z, t

)
δ
(
y − z − kν ′

)

× exp

[
ik

(
X ′ −X + μr − μ′ y + z

2

)]
dk dy dz dr. (17)

Here, we generalize this relation for the two-dimensional case to obtain the tomographic propagator for

rotating Gaussian states. Due to the homogeneity of the tomogram (6), the tomographic propagator

possesses this property as well, i.e.,

Π
(
sX, sμ, sν, sX ′, sμ′, sν ′, t

)
= |s|−3Π

(
X,μ, ν,X ′, μ′, ν ′, t

)
. (18)

This fact leads to the important property of its Fourier components that was derived in [26] for the

one-dimensional case,

ΠF

(
k, μ, ν,X ′, μ′, ν ′, t

)
= k2ΠF

(
1, kμ, kν, kX ′, kμ′, kν ′, t

)
, (19)

where
ΠF

(
k, μ, ν,X ′, μ′, ν ′, t

)
=

∫
Π
(
X,μ, ν,X ′, μ′, ν ′, t

)
eikXdX,

ΠF

(
1, kμ, kν, kX ′, kμ′, kν ′, t

)
=

∫
Π
(
kX, kμ, kν, kX ′, kμ′, kν ′, t

)
eiXdX.

Relation (19) can be easily generalized for the two-dimensional case as follows:

ΠF

(
k1, k2, μ1, μ2, ν1, ν2, X

′
1, X

′
2, μ

′
1, μ2,

′
ν

′
1, ν

′
2, t

)

= k21k
2
2ΠF

(
1, 1, k1μ1, k2μ2, k1ν1, k2ν2, k1X

′
1, k2X

′
2, k1μ

′
1, k2μ2,

′
k1ν

′
1, k2ν

′
2, t

)
. (20)

In view of relation (20) and definitions of the tomographic propagator

w (X1, μ1, ν1, X2, μ2, ν2, t) =

∫
Π
(
X1, μ1, ν1, X2, μ2, ν2, X

′
1, μ

′
1, ν

′
1, X

′
2, μ

′
2, ν

′
2, t, t0

)

×w
(
X

′
1, μ

′
1, ν

′
1, X

′
2, μ

′
2, ν

′
2, t0

)
dX

′
1 dμ

′
1 dν

′
1 dX

′
2 dμ

′
2 dν

′
2 (21)

and the Green function in the two-dimensional case

ψ (x, y, t) =

∫
G
(
x, y, x′, y′, t, t0

)
ψ
(
x′, y′, t0

)
dx′ dy′, (22)

we derive the following integral relation:

Π
(
X1, μ1, ν1, X2, μ2, ν2, X

′
1, μ

′
1, ν

′
1, X

′
2, μ

′
2, ν

′
2, t

)

=
1

(2π)4

∫
k21k

2
2G

(
a1 +

k1ν1
2

, a2 +
k2ν2
2

, y1, y2, t

)
G∗

(
a1 − k1ν1

2
, a2 − k2ν2

2
, z1, z2, t

)

× exp

[
ik1

(
X

′
1 −X1 + μ1a1 − μ

′
1

y1 + z1
2

)
+ ik2

(
X

′
2 −X2 + μ2a2 − μ

′
2

y2 + z2
2

)]

×δ
(
y1 − z1 − k1ν

′
1

)
δ
(
y2 − z2 − k2ν

′
2

)
dk1 dk2 dy1 dy2 dz1 dz2 da1 da2. (23)
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We can use this relation for considering the time evolution of the optical rotating Gaussian states. Since

the Hamiltonian Ĥ =
1

2M

(
p̂2x + p̂2y

)
+

1

2
Mω2

(
x2 + y2

)
of the corresponding system coincides with the

Hamiltonian of a particle with mass M moving in the isotropic harmonic potential, the Green functions

of these systems also coincide.

The time evolution of the OAM Gaussian packet is determined by the Green function of an isotropic

harmonic oscillator [10], namely,

G
(
x, y, x′, y′, t

)
=

κ

2πi sin (ωt)
exp

{
iκ

2 sin (ωt)

[
cos (ωt)

(
x2 + y2 + x′2 + y′2

)− 2
(
xx′ + yy′

)]
}
, (24)

where κ is the factor characterizing the wave function in (11); for the case of an isotropic harmonic

oscillator, κ = Mω/�. In view of relation (24), we obtain the expression for the tomographic propagator

corresponding to rotating Gaussian states; it is

Π
(
X1, μ1, ν1, X2, μ2, ν2, X

′
1, μ

′
1, ν

′
1, X

′
2, μ

′
2, ν

′
2, t

)
= 4κ2 sin2 (ωt) δ(X

′
1 −X1)δ(X

′
2 −X2)

×δ
(
κν1 cos (ωt)− κν

′
1 + μ1 sin (ωt)

)
δ
(
κν2 cos (ωt)− κν

′
2 + μ2 sin (ωt)

)

×δ
(
κν

′
1 cos (ωt)− κν1 − μ

′
1 sin (ωt)

)
δ
(
κν

′
2 cos (ωt)− κν2 + μ

′
2 sin (ωt)

)
. (25)

6. Summary

To conclude, we list our main results.

We described the OAM states in terms of the tomographic probabilities using the example of the

OAM Gaussian states, whose properties were recently explored in [10]. We obtained the symplectic and

optical tomograms of a rotating Gaussian state and showed that the symplectic tomogram is responsible

for providing a universal language to describe both classical and quantum states, which is relevant for

considering the OAM light.

Optical tomograms are important for experimental implementation since they provide the possibility

of determining quantum states by functions, which do no need to be statistically reconstructed. The

optical tomogram can be measured directly in the homodyne detection experiments due to the fact that

it depends only on two variables. In the one-dimensional case, we have the quadrature X having the

meaning of the difference between the number of the recorded photoelectrons in the subtraction scheme

in a homodyne setup normalized by the local oscillator (LO) amplitude and the parameter θ, the LO

frequency. This scheme can be generalized (see, for example, [14]) to a two-dimensional case in terms

of the quadratures X1 and X2 considered in this work. In order to provide a consistent representation

needed for the experiments, we obtained the mean values and variances of the quadratures Xi.

We performed the evolution of the OAM Gaussian states in the tomographic probability approach.

We obtained the relation between the tomographic propagator and the Green function for the two-

dimensional case and derived the tomographic propagator in an explicit form for the problem under

consideration.
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