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Abstract

We introduce the notion of hidden quantum correlations. We present the mean values of observables
depending on one classical random variable described by the probability distribution in the form of
correlation functions of two (three, etc.) random variables described by the corresponding joint pro-
bability distributions. We develop analogous constructions for the density matrices of quantum states
and quantum observables. We consider examples of four-dimensional Hilbert space corresponding to
the “quantum roulette” and “quantum compass.”
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1. Introduction

Quantum correlation phenomena, like the entanglement [1] present in composite systems, for example,

in the system of several qubits, are known to play an important role in developing new quantum technolo-

gies, including quantum computing [2]. Strong quantum correlations in two-qubit systems responsible

for the violation of Bell inequalities [3, 4] were checked experimentally [5, 6]. In [7], it was suggested to

extend the notion of entanglement in order to relate this phenomenon to correlation properties of single

qudits.

The new entropic inequalities reflecting the presence of correlations and analogous to the subadditivity

and strong subadditivity conditions known for bipartite and tripartite systems [8–10] were found for

noncomposite systems like single qudits or multilevel atoms [11–17]. Examples of qudits, including

j = 3/2, were considered in this context in [18–22], and the results obtained show that the correlations in

composite systems and the correlations in noncomposite systems can formally be considered as identical,

using a common mathematical framework.

The aim of this work is to develop the approach for describing both classical and quantum correlations

in composite and noncomposite systems, using the same scheme based on the application of invertible

maps of integer numbers s onto pairs (triples, etc.) of the integers (j, k) employed in [16]. In view of these

maps, we demonstrate that a single variable and its statistical properties, such as mean values, can be

considered as the properties of several random variables described by the corresponding joint probability
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distributions and given in terms of the correlation functions calculated for these several random variables.

We show this property for both classical and quantum systems.

This paper is organized as follows.

In Sec. 2, we discuss the means and correlations in classical systems. In Sec. 3, we present examples of

four- and eight-dimensional probability distributions. In Sec. 4, we study quantum states, and in Sec. 5

we consider in detail the case of N = 4 along with entropic inequalities. We give our conclusions in

Sec. 6.

2. Means as Correlation Functions

Our aim now is to consider correlations in a single qudit as correlations in artificial multiqudit systems.

We start from classical states.

Following [11, 16] we consider a set of nonnegative numbers A1, A2, . . . , AN which, in turn, provides

a set of other nonnegative numbers 0 ≤ ps =
As∑N
j=1Aj

≤ 1 satisfying the normalization condition

∑N
s=1 ps = 1. The numbers ps can be interpreted as the probability distributions of one random variable.

Let us measure the observable F (s). For each value of the integer s = 1, 2, . . . , N , one obtains the

result of the measurement F (s). Repeating the measurement L times, where L is a large enough integer,

one obtains such statistical characteristic as the mean value of the measured observable

〈F 〉 =
N∑
s=1

psF (s). (1)

We consider s as a random variable, F (s) as an observable, and ps as the probability distribution of one

random variable, which we call the state. The other statistical characteristics described by the highest

moments like, for example, variances

〈F 2〉 − 〈F 〉2 =
N∑
s=1

psF
2(s)−

( N∑
s=1

psF (s)
)2

, (2)

can also be obtained.

Formally, one has two functions F (s) and ps defined on the set of integers s = 1, 2, . . . , N .

We call the function ps the state and the function F (s) the observable due to the following reason.

If one has the continuous variable x
(
a position of the particle with the Gaussian distribution P (x)

)
, we

call x the random variable and the distribution P (x) the state of the system. We extend this terminology

to a discrete variable s and the distribution ps.

The mean value 〈F 〉 and variance 〈F 2〉 − 〈F 〉2 are the functionals given by Eqs. (1) and (2). In

principle, one can formally define the functions F (s) and ps, as well as the functionals (1) and (2),

without the probabilistic interpretation of these objects.

On the other hand, there exist functionals determined not by both functions F (s) and ps but by only

one function ps. For example, Shannon entropy [23] associated with the probability distribution ps is

given by the expression

H = −
∑
s

ps ln ps; (3)
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the entropy being the functional of the state.

Meanwhile, the entropy H is the functional which can also be considered formally without a pro-

babilistic interpretation of the numbers ps. We point out the possibility to treat the functionals 〈F 〉,
〈F 2〉 − 〈F 〉2, and H as objects that can be considered without their probabilistic interpretation because

the numerical properties of these and other analogous functionals, e.g., all highest moments

〈F k〉 =
N∑
s=1

psF
k(s), (4)

like equalities and inequalities for these objects, exist independently of their relation to probabilities.

One can repeat the above consideration for nonnegative numbers pjk. This simple observation can

be used for obtaining some new equalities and inequalities for functionals (entropies, correlations, means,

variances, and covariances) associated with tables of nonnegative numbers 0 ≤ pjk ≤ 1, j = 1, 2, . . . , n,

k = 1, 2, . . . ,m, and N = nm, since the table can be considered as a joint probability distribution for

two random variables.

Within the framework of the interpretation of the table pjk as a joint probability distribution, the

characteristics like entropy, mutual information, etc. naturally appear. These characteristics are known

to satisfy the entropic inequalities for bipartite classical systems; see [24].

On the other hand, the numerical expressions of these inequalities are valid independently of the

probabilistic interpretation of the numbers in the table pjk. We employ this fact for obtaining new

inequalities for the state (the probability distribution ps) associated with one random variable and the

function F (s)
(
observable F (s)

)
. The key tool to achieve this result is introducing the map of integers,

namely, for s = 1, 2, . . . , N we construct the invertible map

1 ↔ 1, 1; 2 ↔ 2, 1; . . . ; n ↔ n, 1; n+ 1 ↔ 1, 2; n+ 2 ↔ 2, 2; . . . ;N − 1 ↔ n− 1,m; N ↔ n,m.

This map could be described as a procedure for introducing the function s(j, k). Such a function defined

in the domain of integers j = 1, 2, . . . , n and k = 1, 2, . . . ,m provides for each pair of the integers j, k the

value of the function equal to the integer s. The function is constructed using the invertibility condition;

this means that for each value of the integer s one has only one pair of integers j, k corresponding to this

value. Such construction was used in [16] to derive new entropic inequalities for qudit states. Here, we

extend this construction to study the properties of observables associated with functions F (s).

In fact, these observables associated with one random variable can be treated as observables connected

with two random variables. To demonstrate this fact, we define the function Φ(j, k) ≡ F
(
s(j, k)

)
. One

can choose this function in the product form

Φ(j, k) = φ(j)χ(k). (5)

The form of observable F
(
s(j, k)

)
provides the possibility to interpret the observable as the existence

of two observables φ(j) and χ(k) associated with two random variables j and k. Also the probability

distribution ps can be chosen in the product form pjk = ΠjPk; this representation can be chosen with

high ambiguity. In view of this representation, one can rewrite formula (1) for the mean value 〈F 〉 as

follows:

〈F 〉 =
N∑
s=1

psF (s) =
n∑

j=1

m∑
k=1

Φ(j, k)pjk. (6)
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Also one can introduce marginal probability distributions:

Πj =

m∑
k=1

pjk ≡
m∑
k=1

ps(j,k), j = 1, 2, . . . , n, (7)

Pk =
n∑

j=1

pjk ≡
n∑

j=1

ps(j,k), k = 1, 2, . . . ,m. (8)

If the numbers ps determining the joint probability distribution are such that pjk = ΠjPk, where∑n
j=1Πj =

∑m
k=1 Pk = 1, one has for the marginal distributions (7) and (8) the case of the absence

of correlations between the observables associated with the function Φ(j, k) given by (5).

If the function F
(
s(j, k)

)
has the product form analogous to (5), the mean value of this function 〈F 〉

given by (6) and written as

〈F 〉 =
n∑

j=1

m∑
k=1

φ(j)χ(k)pjk (9)

can be interpreted as the correlation function, i.e.,

〈F 〉 = 〈φ(j)χ(k)〉. (10)

Thus, for one random variable F (s) we obtain the formula for its mean value in the form of correla-

tion function associated with two observables depending on random variables φ(j) and χ(k), using the

averaging procedure determined by the joint probability distribution pjk.

In the case of integer N = n1n2n3, where the factors in the product are integers, one can use the

invertible map of the integers s onto the triples of integers j, k, �, where j = 1, 2, . . . , n1, k = 1, 2, . . . , n2,

and � = 1, 2, . . . , n3. This means that we construct the function of three variables s(j, k, �) such that for

each three integers we have only one integer s, and for each integer s we have only one triple of integers

j, k, �.

In view of this invertible map, the probability distribution ps used to describe statistical properties

of observable F (s) depending on one random variable F (s) may be interpreted as the joint probability

distribution ps(j,k,�) ≡ pjk� of three random variables. For this, we define the function T (j, k, �) ≡
F
(
s(j, k, �)

)
, which can be chosen in the product form

T (j, k, �) = a(j)b(k)c(�). (11)

Then one can write the equality

〈F 〉 =
N∑
s=1

psF (s) =

n1∑
j=1

n2∑
k=1

n3∑
�=1

T (j, k, �)ps(j,k,�) (12)

or

〈F 〉 =
n1∑
j=1

n2∑
k=1

n3∑
�=1

a(j)b(k)c(�)ps(j,k,�), (13)

which means

〈F 〉 = 〈a(j)b(k)c(�)〉. (14)
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Thus, we presented the mean value of the observable depending on one random variable in the form of a

correlation function of observables depending on three random variables.

Analogous representations can be developed for highest moments of the observable of one random

variable.

3. Examples of N = 4 and N = 8

We recall that in our approach the integer s is the random variable, the numbers ps (the probability

distributions) are the states, and the function F (s) is the observable, which has a value equal to the

number F (s). For s = 1, 2, . . . , N , we have N values of random variable. One can use any other notation

for the states and random variables, using an invertible map of the integers 1, 2, . . . , N onto another set

of numbers m1,m2, . . . ,mN .

3.1. Case of N = 4

We study the suggested construction on the example of N = 4. As an example, we consider these

numbers as numbers associated with a casino roulette (or geographic compass).

This means that we have four different positions of the casino roulette s = 1, 2, 3, 4 (or four directions

of the compass arrow).

We use the map 1 ↔ 1, 1; 2 ↔ 1, 2; 3 ↔ 2, 1; 4 ↔ 2, 2 to label the four roulette positions by

four pairs of numbers pjk (j, k = 1, 2), i.e., p1 ≡ p11, p2 ≡ p12, p3 ≡ p21, and p4 ≡ p22.

Now we introduce the observable F (s), which is a function of a random variable s equal to the number

F (s) at each value of the variable. In this way, we have four numbers F (s = 1) = F (1), F (s = 2) = F (2),

F (s = 3) = F (3), and F (s = 4) = F (4).

The mean value of the observable reads

〈F 〉 = p1F (1) + p2F (2) + p3F (3) + p4F (4). (15)

The mean value 〈F 〉 is a functional that depends on two functions ps and F (s), i.e., the state and

observable.

Using the mapping procedure developed, we can rewrite Eq. (15) as follows:

〈F 〉 = p11F (1, 1) + p12F (1, 2) + p21F (2, 1) + p22F (2, 2) (16)

or

〈F 〉 =
2∑

j=1

2∑
k=1

pjkF (j, k). (17)

Now we choose the function F (j, k) in the form

F (1, 1) = ϕ(1)χ(1), F (1, 2) = ϕ(1)χ(2), F (2, 1) = ϕ(2)χ(1), F (2, 2) = ϕ(2)χ(2). (18)

One can introduce two other functions ϕ̃(j, k) and χ̃(j, k), which provide the same result of multiplication

F (1, 1) = ϕ̃(1, 1)χ̃(1, 1), F (1, 2) = ϕ̃(1, 2)χ̃(1, 2), F (2, 1) = ϕ̃(2, 1)χ̃(2, 1), F (2, 2) = ϕ̃(2, 2)χ̃(2, 2).

(19)
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In fact, one should obtain these equalities if

ϕ̃(1, 1) = ϕ(1), ϕ̃(1, 2) = ϕ(1), ϕ̃(2, 1) = ϕ(2), ϕ̃(2, 2) = ϕ(2),
(20)

χ̃(1, 1) = χ(1), χ̃(1, 2) = χ(1), χ̃(2, 1) = χ(2), χ̃(2, 2) = χ(2).

We can interpret the functions ϕ̃(j, k) ≡ ϕ̃
(
s(j, k)

)
and χ̃(j, k) ≡ χ̃

(
s(j, k)

)
as two specific observables

or two different kinds of a function of one random variable. The results obtained can be summarized as

the equality

〈F 〉 = 〈ϕ̃χ̃〉; (21)

this means that 〈F 〉, being the classical observable mean, can be interpreted as the correlation function

of two classical observables ϕ̃ and χ̃. We call the correlations of these two observables ϕ̃ and χ̃ depending

on one random variable s the hidden correlations.

Analogously, for N = n1n2 · · ·n� one can obtain the equality

〈F 〉 = 〈ϕ̃1ϕ̃2 · · · ϕ̃�〉, (22)

where the same 〈F 〉 can be considered as the correlation function of � observables ϕ̃1, ϕ̃2, . . . , ϕ̃� (hidden

correlations).

3.2. Case of N = 8

Now we consider the case of N = 8, where we also have nonnegative numbers p1, p2, . . . p8, with∑8
s=1 ps = 1. We use the map s ↔ s(j, k, �), i.e.,

p1 = P111, p2 = P112, p3 = P121, p4 = P122, p5 = P211, p6 = P212, p7 = P221, p8 = P222.

The nonnegative numbers Pjk� satisfy the condition
∑2

j,k,�=1 Pjk� = 1. They can be interpreted as a joint

probability distribution of three random variables j, k, and �.

We turn to the observable F (s), s = 1, 2, . . . , 8. In terms of the probability distribution ps, the mean

value 〈F 〉 reads 〈F 〉 = ∑8
s=1 F (s)ps. In view of the notation F

(
s(j, k, �)

) ≡ F (j, k, �), we arrive at

〈F 〉 =
∑
j,k,�

Pjk�F (j, k, �).

If the observable F (j, k, �) is taken in the form

F (j, k, �) = ϕ(j)χ(k)u(�),

we obtain

〈F 〉 =
∑
j,k,�

ϕ(j)χ(k)u(�)Pjk� = 〈ϕ(j)χ(k)u(�)〉.

Thus, we obtain the result that the mean of a specific observable F (s) appears in the form of the

correlation function of three observables

ϕ̃(j, k, �) = ϕ(j), χ̃(j, k, �) = χ(k), ũ(j, k, �) = u(�), i.e., 〈F 〉 = 〈ϕ̃χ̃ũ〉.
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The functions ϕ̃, χ̃, and ũ can be interpreted as observables depending on one random variable s. Thus,

the mean value of the observable F (s) can be written as the correlation function of three observables

ϕ̃(s), χ̃(s), and ũ(s), i.e.,
N∑
s=1

psF (s) =

N∑
s=1

psϕ̃(s)χ̃(s)ũ(s).

4. Quantum Qudit States and Observables

In this section, we construct quantum states and observables, extending the approach discussed in

the previous sections for classical systems.

Given N×N matrix ρss′ (s, s′ = 1, 2, . . . , N). If ρ = ρ†, Trρ = 1, and ρ ≥ 0, this matrix can be

interpreted as the density matrix of qudit state with j = (N − 1)/2.

At N = nm, the matrix ρss′ (s, s′ = 1, 2, . . . , N) can be interpreted as the density matrix of two

qudits with j1 = (n − 1)/2 and j2 = (m − 1)/2, as well as at N = n1n2n3, it can also be interpreted

as the density matrix of three qudits with j1 = (n1 − 1)/2, j2 = (n2 − 1)/2, and j3 = (n3 − 1)/2. An

analogous interpretation can be provided for N =
∏�

k=1 nk, and the matrix ρss′ (s, s
′ = 1, 2, . . . , N) can

be considered as the density matrix of � qudits with jk = (nk − 1)/2.

To provide such an interpretation, we use the map of matrix indices s ↔ j, k, s′ ↔ j′, k′, i.e.,

s = s(j, k) and s′ = s′(j′, k′), while considering two qudits, and s = s(j, k, �) and s′ = s′(j′, k′, �′), while
considering three qudits, etc. We used this tool in [16]. In this paper, we study the possibility to extend

this interpretation also for matrices of observables Fss′ corresponding to the operators F̂ acting in the

Hilbert space H.

We can write the matrices of observables either in the form

Fss′ = Fs(j,k) s′(j′,k′) ≡ Fjk, j′k′ , (23)

or in the form

Fss′ = Fs(j,k,�) s′(j′,k′,�′) ≡ Fjk�, j′k′�′ , (24)

where indices j, k and j, k, � take the same values as in the density matrix

ρss′ = ρs(j,k) s′(j′, k′) ≡ ρjk, j′k′ , ρss′ = ρs(j,k,�) s′(j′, k′, �′) ≡ ρjkl, j′k′�′ .

Thus, both quantum states and quantum observables described by a density operator ρ̂ and an observable

operator F̂ acting in the N×N -dimensional Hilbert space H̃ can be associated with the matrices ρss′ and

Fss′ given in the basis | s〉, i.e., ρss′ = 〈s | ρ̂ | s′〉 or Fss′ = 〈s | F̂ | s′〉.
On the other hand, one can use the basis | s〉 =| s(j, k)〉 =| j〉 | k〉, considering the Hilbert space H̃

as the tensor product of two Hilbert spaces H̃ = H̃1 ⊗ H̃2. In this basis, the matrix of the same density

operator ρ̂ reads

ρjk,j′k′ = 〈s(j, k) | ρ̂ | s′(j′, k′)〉;
this is the same numerical N×N matrix ρss′ but with the matrix elements labeled by indices jk, j′k′.

Analogously, for the observable F̂ we can write the matrix 〈s | F̂ | s′〉 in the form

〈s(j, k) | F̂ | s′(j′, k′)〉 ≡ Fjk, j′k′ .
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Thus, we obtain the same N×N numerical matrix with matrix elements Fss′ (s, s
′ = 1, 2, . . . , N) but the

matrix elements are labeled by the indices jk and j′k′ (j, j′ = 1, 2, . . . , n; k, k′ = 1, 2, . . . ,m). The map

introduced provides a chance to write the mean value of the observable Fss′ = Fs(j,k) s′(j′,k′) ≡ Fjk, j′k′ as

〈F̂ 〉 = Tr F̂ ρ̂ =

N∑
s=1

N∑
s′=1

Fss′ρs′s =

n∑
j=1

m∑
k=1

n∑
j′=1

m∑
k′=1

Fs(j,k) s′(j′,k′) ρs′(j′,k′) s(j,k)

=

n∑
j=1

m∑
k=1

n∑
j′=1

m∑
k′=1

Fjk,j′k′ ρj′k′,jk. (25)

If one takes the observable F̂ in the form

F̂ = F̂1 ⊗ F̂2, (26)

where F̂1 is the operator of the observable acting in the Hilbert space H̃1 and F̂2 is the operator of the

observable acting in the Hilbert space H̃2, Eq. (25) reads

〈F̂ 〉 =
n∑

j=1

m∑
k=1

n∑
j′=1

m∑
k′=1

(F1)jj′(F2)kk′ ρj′k′, jk. (27)

In the case where F̂ = F̂1 ⊗ F̂2, we introduce two commuting observables

˜̂
F 1 =

(
F̂1 ⊗ 1̂m

)
,

˜̂
F 2 =

(
1̂n ⊗ F̂2

)
. (28)

For these two observables, the mean value of the observable F̂ takes the form of the correlation function

of the observables
˜̂
F 1 and

˜̂
F 2, i.e.,

〈F̂ 〉 = 〈 ˜̂F 1
˜̂
F 2〉. (29)

As a result, we obtained a quantum analog of the classical probability relation (21).

For N = n1n2 · · ·n�, we have

〈F̂ 〉 = 〈 ˜̂F 1
˜̂
F 2 · · · ˜̂F �〉; (30)

this relation is a generalization of Eq. (29). We showed that the same mean value 〈F̂ 〉 can be considered

as the correlation function of � commuting observables
˜̂
F p (p = 1, 2, . . . , �).

5. Entropic and Information Inequalities

In this section, we consider the classical system with one random variable. We recall that there exist

inequalities for entropies of joint probability distributions P(j, k) of two random variables j and k of the

form

−
∑
jk

P(j, k) lnP(j, k) ≤ −
∑
j

{[∑
k

P(j, k)
]
ln

[∑
k

P(j, k)
]}

−
∑
k

{[∑
j

P(j, k)
]
ln

[∑
j

P(j, k)
]}

.
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This inequality (the subadditivity condition) can be interpreted as the subadditivity condition for the

probability distribution of one random variable

−
∑
s

ps ln ps ≤ −
∑
j

{[∑
k

ps(j,k)

]
ln

[∑
k

ps(j,k)

]}
−

∑
k

{[∑
j

ps(j,k)

]
ln

[∑
j

ps(j,k)

]}
.

The other example (for N = 4) is the possibility to consider the observable F (j, k) for two random

variables j and k, for example, F (1, 1) = 1, F (1, 2) = −1, F (2, 1) = −1, and F (2, 2) = 1 as an

observable for one random variable F (s) such as F (1) = 1, F (2) = −1, F (3) = −1, and F (4) = 1. In

this case,

〈F 〉 = p1F (1) + p2F (2) + p3F (3) + p4F (4) = p1 − p2 − p3 + p4.

Also

〈F 〉 = P(1, 1)F (1, 1)+P(1, 2)F (1, 2)+P(2, 1)F (2, 1)+P(2, 2)F (2, 2) = P(1, 1)−P(1, 2)−P(2, 1)+P(2, 2).

On the other hand, for two observables

F̃1(1, 1) = 1, F̃1(1, 2) = 1, F̃1(2, 1) = −1, F̃1(2, 2) = −1

and

F̃2(1, 1) = 1, F̃2(1, 2) = −1, F̃2(2, 1) = 1, F̃2(2, 2) = −1,

one has the correlation function of the form

〈F̃1F̃2〉 =
∑
j,k

P(j, k)F̃1(j, k)F̃2(j, k),

and this correlation function is equal to 〈F 〉. In fact,

〈F̃1F̃2〉 = P(1, 1)− P(1, 2)− P(2, 1) + P(2, 2) = p1 − p2 − p3 + p4 =

4∑
s=1

F (s)ps. (31)

In view of the invertibility of the applied map of the indices, we can introduce two observables F ′
1(s)

and F ′
2(s), i.e.,

F ′
1(1) = 1, F ′

1(2) = 1, F ′
1(3) = −1, F ′

1(4) = 1

and

F ′
2(1) = 1, F ′

2(2) = −1, F ′
2(3) = 1, F ′

2(4) = −1.

Then one has the equality 〈F 〉 = 〈F ′
1F

′
2〉 or
4∑

s=1

F (s)ps =

4∑
1=1

F ′
1(s)F

′
2(s)ps. (32)

Thus, we showed that the mean value of observable F (s) can be interpreted as the correlation function

of observables F̃1(j, k) and F̃2(j, k). The subadditivity condition for functions ps of one random variable

reflects the correlations of two artificial random variables (j, k) that are connected with two observables

F̃1 and F̃2. Another interpretation of equality (32) reflects the fact that there exist hidden correlations

of observables F ′
1(s) ad F ′

2(s) for the case of a single random variable s.
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6. Conclusions

To conclude, we point out the main results of this study.

We showed that for a single qudit with j = (N − 1)/2 it is possible to find commuting observables

(Hermitian matrices), e.g., two observables ϕ̂ and χ̂, such that the product of the observables provides

the Hermitian matrix ϕ̂χ̂ = Â. Then the mean value of the observable Â can be interpreted as the

correlation function of two observables 〈Â〉 = 〈ϕ̂χ̂〉 = Tr
(
Âρ̂

)
.

In the caseN = n1n2 · · ·nk, one can find commuting observables ϕ̂1, ϕ̂2, . . . , ϕ̂k, such that the means of

the observable Â = ϕ̂1ϕ̂2 · · · ϕ̂k can be treated as the correlation function 〈Â〉 = 〈ϕ̂1ϕ̂2 · · · ϕ̂k〉 = Tr
(
Âρ̂

)
.

In the case of a multiqudit system with the same numerical density matrix ρ(1, 2, . . . , k), the ob-

servables ϕ̂1, ϕ̂2, . . . , ϕ̂k have the physical meaning of the observables associated with each qudit in the

composite system.

Such an observation means that the quantum correlations known for observables associated with

the subsystems are also available in single qudit systems like the quantum roulette and the quantum

compass. We call these correlations the hidden correlations and they can be used in quantum technology

applications analogously to the correlations in composite systems (like, e.g., the entanglement).
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