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Abstract

We obtain a new matrix inequality for an arbitrary density matrix of composite/noncomposite qudit
systems including a single-qudit state. For bipartite systems, this inequality coincides with a known
entropic inequality like the subadditivity condition. The examples of two-qubit system and qudit with
j = 3/2 are discussed.

Keywords: qudit states, Hermitian matrix, bipartite quantum system, entropic and information in-

equalities.

1. Introduction

Quantum correlations for multipartite qudit systems are partially characterized by some inequalities

for the system density matrices. For example, the system of two qubits has the density matrix, which

in the case of the system separable state obeys the Bell inequality [1, 2]. The violation of the inequality

provides a characteristic of the entanglement in the two-qubit system, which is related to the degree of

correlations between qubits, and the correlations can be associated with a value of the Cirelson bound [3].

On the other hand, there exist the entropic and information inequalities, e.g., the subadditivity

condition, which is an inequality for the von Neumann entropies of the bipartite system and two of

its subsystem states [4–6]. For three-partite systems, there exists the strong subadditivity condition,

which is an inequality for the von Neumann entropies of the composite system and its subsystems [7,8].

The subadditivity conditions are also valid for the Shannon entropies [9] of the bipartite and three-

partite systems. The nonnegativity of the Shannon mutual information, quantum mutual information,

and conditional classical and quantum mutual informations follow from the subadditivity and strong

subadditivity conditions.

Recently, the portrait qubit and qudit maps were introduced to study the entanglement phenom-

ena [10, 11]. This method is appropriate for studying quantum correlations within the framework of
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the tomographic probability representation of quantum states [12–17]. In this representation, which is

valid for both discrete and continuous variables [12], the spin states (qudit states) are identified with fair

tomographic probability distributions [18–21]. In view of this fact, the standard formulas for classical

probability distributions like the formulas for entropy and information can be easily compared with the

corresponding quantum relationships [22, 23].

Using the approach based on the portrait method which, in fact, is the positive map approach, many

researchers [10,11,24–27] show that the entropic inequalities valid for composite systems can be extended

to arbitrary systems, including the systems without subsystems. In [28–36], some inequalities associated

with positive operators acting in the Hilbert space, which has the structure of tensor product of Hilbert

spaces, were studied.

The aim of our work is to obtain new matrix inequalities for density matrices of the qudit states

of both composite and noncomposite quantum systems, which do not depend on the tensor product

structure of the Hilbert space. We follow the approach of [10, 11, 24–27] based on the portrait positive

map method.

This paper is organized as follows.

In Sec. 2, we formulate a new inequality for the Hermitian matrix, which corresponds to the operator

inequality for a bipartite quantum system given in [28, 29]. In Sec. 3, we consider the examples of this

inequality for 4×4 Hermitian matrix and for the density matrices of the two-qubit state and the single

qudit with j = 3/2. We give our conclusions and prospectives in Sec. 4.

2. Inequality for N×N Hermitian Matrix

We present a new inequality for the density N×N matrix ρ with properties ρ† = ρ, Trρ = 1,

and ρ ≥ 0. Let N = nm, where n and m are integers. We present the matrix ρ in a block form

ρ =

⎛
⎜⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann

⎞
⎟⎟⎟⎟⎠ , where the blocks ajk (j, k = 1, 2, . . . , n) are the m×m matrices. For an

arbitrary real number p, we introduce a matrix ρp =

⎛
⎜⎜⎜⎜⎝

a11(p) a12(p) · · · a1n(p)

a21(p) a22(p) · · · a2n(p)

· · · · · · · · · · · ·
an1(p) an2(p) · · · ann(p)

⎞
⎟⎟⎟⎟⎠ , which is also

presented in a block form, and the blocks ajk(p) are the m×m matrices depending on the parameter p.

A new inequality valid for an arbitrary N×N matrix ρ reads

⎡
⎣Tr

⎛
⎝ n∑

j=1

ajj

⎞
⎠

p⎤
⎦
1/p

≤ Tr

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

Tr a11(p) Tr a12(p) · · · Tr a1n(p)

Tr a21(p) Tr a22(p) · · · Tr a2n(p)

· · · · · · · · · · · ·
Tr an1(p) Tr an2(p) · · · Tr ann(p)

⎞
⎟⎟⎟⎟⎠

1/p
⎤
⎥⎥⎥⎥⎥⎦ . (1)

This inequality is valid for p ≥ 1.

The n×n matrix on the right-hand side of (1) has the matrix elements Tr ajk(p).
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If 0 ≤ p ≤ 1, inequality (1) reverses.

If N �= nm, we use an integer N ′ = N + s, such that N ′ = nm, and consider the density N ′×N ′

matrix ρ′ of the form

ρ′ =

(
ρ 0

0 0

)
=

⎛
⎜⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann

⎞
⎟⎟⎟⎟⎠ , (2)

where ajk are the blocks, which provide the block-form representation of the density N ′×N ′ matrix ρ′.
Then inequality (1) holds for the blocks associated with the matrix ρ′ by (2).

The new inequality (1) is obtained in view of the inequality reported in [28, 30, 36] for the density

operator of a bipartite quantum system. But the new inequality (1) is valid for arbitrary density matrices

of multipartite qudit systems, including the single-qudit density matrix. If the density matrix ρ is the

diagonal matrix, inequality (1) provides the inequalities for arbitrary probability vectors.

In fact, let us denote the diagonal elements of the matrix ρ as (ajj)α = Pjα, α = 1, 2, . . .m. The

nonnegative numbers P11, P12, . . . , P1m, P21, P22, . . . , P2m, . . . , Pn1, Pn2, . . . , Pnm can be considered as

components of a probability N -vector �P . Inequality (1) written in terms of the probability vector reads

⎡
⎣ m∑
α=1

⎡
⎣
⎛
⎝ n∑

j=1

Pjα

⎞
⎠

p⎤
⎦
⎤
⎦
1/p

≤
n∑

j=1

[
m∑

α=1

(Pjα)
p

]1/p

, p ≥ 1. (3)

The reverse inequality holds for 0 < p ≤ 1.

If N �= nm, we use N ′ = N+s = nm. Inequality (3) for the probability N ′-vector holds, and the last s

components of the probability N ′-vector are equal to zero. In fact, we have inequality (3) for an arbitrary

number of nonnegative numbers, which are not necessarily associated with a probability distribution. It

is worth pointing out that inequality (1) obtained for the density N×N matrix ρ is valid for any density

matrix obtained from this one by all permutations of the indices 1, 2, . . . , N → 1p, 2p, . . . , Np. The same

statement is true for inequality (3).

More generally, the density matrix Φ(ρ) obtained from the initial matrix ρ by means of an arbitrary

positive map ρ → Φ(ρ) satisfies inequality (1). It is clear that one can use different decompositions of the

integer N = nm = n′m′. This means that there exist different inequalities for the same density matrix ρ

corresponding to different product form of the numbers N and N ′.
For N = nm, we can extend inequality (1) to the case of an arbitrary Hermitian N×N matrix A.

Let A = A† and the matrix A have the block form corresponding to the decomposition N = nm,

A =

⎛
⎜⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann

⎞
⎟⎟⎟⎟⎠ . (4)

Let x0 be the minimum eigenvalue of the matrix A. For an arbitrary x ≥ x0, such that x + x0 ≥ 0, we

introduce the nonnegative Hermitian matrix

A(x) = A+ x1N . (5)
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The matrix A(x) has the block form

A(x) =

⎛
⎜⎜⎜⎜⎝

a11 + x1m a12 · · · a1n

a21 a22 + x1m · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann + x1m

⎞
⎟⎟⎟⎟⎠ . (6)

Then the matrix (A(x))p can also be presented in a block form as follows:

(A(x))p ==

⎛
⎜⎜⎜⎜⎝

a11(x, p) a12(x, p) · · · a1n(x, p)

a21(x, p) a22(x, p) · · · a2n(x, p)

· · · · · · · · · · · ·
an1(x, p) an2(x, p) · · · ann(x, p)

⎞
⎟⎟⎟⎟⎠ . (7)

For N = nm, the new inequality, which holds for an arbitrary Hermitian N×N matrix A, reads

⎡
⎣Tr

⎛
⎝ n∑

j=1

ajj(x)

⎞
⎠

p⎤
⎦
1/p

≤ Tr

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

Tr a11(x, p) Tr a12(x, p) · · · Tr a1n(x, p)

Tr a21(x, p) Tr a22(x, p) · · · Tr a2n(x, p)

· · · · · · · · · · · ·
Tr an1(x, p) Tr an2(x, p) · · · Tr ann(x, p)

⎞
⎟⎟⎟⎟⎠

1/p
⎤
⎥⎥⎥⎥⎥⎦ . (8)

This inequality is valid for p ≥ 1. The inequality reverses for 0 ≤ p ≤ 1.

In the case N �= nm, we use N ′ = N + s = nm, and the new inequality for the Hermitian matrix

A′ =

(
A 0

0 0

)
presented in the block form (4) can be given by the above inequality (8).

Using the diagonal Hermitian matrix A, one can write the inequality for an arbitrary finite set of

N = nm real numbers P11, P12, . . . , P1m, P21, P22, . . . , P2m, . . . , Pn1, Pn2, . . . , Pnm. It has the form of the

inequality for two functions P1(x, p) and P2(x, p), i.e.,

P1(x, p) ≤ P2(x, p), p ≥ 1 and P1(x, p) ≥ P2(x, p), 0 < p ≤ 1, (9)

where

P1(x, p) =

⎧⎨
⎩

m∑
α=1

⎡
⎣
⎛
⎝nx+

n∑
j=1

Pjα

⎞
⎠

p⎤
⎦
⎫⎬
⎭

1/p

, P2(x, p) =

n∑
j=1

{[(
m∑

α=1

Pjα

)
+mx

]p}1/p

. (10)

For reals, such that Pjα ≥ 0 and
∑n

j=1

∑m
α=1 Pjα = 1, inequality (9) can be interpreted as an inequality

for the probability vector, which holds for an arbitrary x ≥ 0.

Some information on the correlations in the system of qudits, including the case of a single qudit, is

available in the difference of terms in inequality (1)

J (p) = Tr

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

Tr a11(p) Tr a12(p) · · · Tr a1n(p)

Tr a21(p) Tr a22(p) · · · Tr a2n(p)

· · · · · · · · · · · ·
Tr an1(p) Tr an2(p) · · · Tr ann(p)

⎞
⎟⎟⎟⎟⎠

1/p
⎤
⎥⎥⎥⎥⎥⎦−

⎡
⎣Tr

⎛
⎝ n∑

j=1

ajj

⎞
⎠

p⎤
⎦
1/p

≥ 0, p ≥ 1. (11)
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For a bipartite system, the function J (p) is an additional (to the mutual information) characteristic of

correlations given by the subadditivity condition terms.

3. Inequalities for Hermitian 4×4 Matrices

Now we illustrate the inequalities on an example of 4×4 matrices. In this case, the 4×4 matrix A has

2×2 blocks

a11 =

(
ρ11 ρ12

ρ21 ρ22

)
, a12 =

(
ρ13 ρ14

ρ23 ρ24

)
, a21 =

(
ρ31 ρ32

ρ41 ρ42

)
, a22 =

(
ρ33 ρ34

ρ43 ρ44

)
. (12)

The matrix A(x) reads

A(x) =

⎛
⎜⎜⎜⎜⎝

ρ11 + x ρ12 ρ13 ρ14

ρ21 ρ22 + x ρ23 ρ24

ρ31 ρ32 ρ33 + x ρ34

ρ41 ρ42 ρ43 ρ44 + x

⎞
⎟⎟⎟⎟⎠ . (13)

The matrix (A(x))p has the block form

(A(x))p =

(
a11(x, p) a12(x, p)

a21(x, p) a22(x, p)

)
. (14)

Inequality (8) is

[
Tr

(
ρ11 + ρ33 + 2x ρ12 + ρ34

ρ21 + ρ43 ρ22 + ρ44 + 2x

)p]1/p

≤ Tr

⎡
⎣( Tr a11(x, p) Tra 12(x, p)

Tr a21(x, p) Tr a22(x, p)

)1/p
⎤
⎦ , p ≥ 1.

(15)

If the Hermitian matrix A is nonnegative and TrA = 1, one can interpret it as a density matrix either of

the two-qubit state or the qudit state with j = 3/2.

For diagonal density 4×4 matrix with eigenvalues p11, p12, p21, and p22, the inequality reads (x = 0)

[
(p11 + p21)

p + (p12 + p22)
p ]1/p ≤ (pp11 + pp12)

1/p
+ (pp21 + pp22)

1/p
, p ≥ 1. (16)

One can check that for p = 2 the above inequality is equivalent to the inequality a2 + b2 ≥ 2ab; for this

case, the function J (p) reads

J (p) = (pp14 + pp12)
1/p

+ (pp21 + pp22)
1/p −

[
(p11 + p21)

2 + (p12 + p22)
p
]1/p ≥ 0, p ≥ 1, (17)

and the mutual information is

I = p11 ln p11 + p12 ln p12 + p21 ln p21 + p22 ln p22 − (p11 + p12) ln (p11 + p12)

− (p21 + p22) ln (p21 + p22)− (p11 + p21) ln (p11 + p21)− (p12 + p22) ln (p12 + p22) ≥ 0. (18)

Inequalities (17) and (18) are compatible.
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4. Conclusions

To conclude, we point out the main results of our work.

For an arbitrary system of qudits, including the single-qudit case, we obtained the inequalities for

the system-state density matrix, which are equivalent to the inequalities known in the case of a bipartite

quantum system. We derived a new simple inequality for an arbitrary Hermitian N×N matrix. The

inequality can be used to study the ground-state energy for the Hermitian Hamiltonian. It is worth

clarifying the compatibility of this inequality with entropic and information inequalities obtained for the

Hamiltonian in [37]. These problems will be discussed in a future publication.
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