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Abstract

Last year, the first experimental tests closing the detection loophole (also referred to as the fair
sampling loophole) were performed by two experimental groups, one in Vienna and the other one in
Urbana-Champaign. To violate the Bell-type inequalities (the Eberhard inequality in the first test
and the Clauser–Horne inequality in the second test), one has to optimize a number of parameters
involved in the experiment (angles of polarization beam splitters and quantum state parameters). We
study this problem for the Eberhard inequality in detail, using the advanced method of numerical
optimization, namely, the Nelder–Mead method.
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1. Introduction

Experimental realization of a loophole-free test for Bell inequalities [1] (see, e.g., [2–4]) will play a

crucial role both for quantum foundations [1, 5–13] (see, e.g., [14–20] for recent studies) and quantum

technologies, e.g., quantum cryptography and quantum random generators. It is clear that the often used

argument that “closing of different loopholes in separate tests can be considered as the solution of the

loophole problem” cannot be considered as acceptable. The quantum community put tremendous efforts

to perform a loophole-free test, and its final realization (which can be expected rather soon) will be a

great event in development of quantum theory and quantum technologies.

Last year, the first experimental tests for photons closing the detection loophole (also referred to as the

fair sampling loophole) were performed by two experimental groups [2,3], see also [21–23]. The problem

of detecting the efficiency for photons is very complicated, and its solution is based on the use of advanced

photodetectors, i.e., new technology, as well as its testing [24]. The Bell tests with photons [11–13] are

promising to close both the detection and locality loopholes, since the latter was closed long ago [25] and

recently experiments demonstrating violation of the Bell-type inequalities on large distances [26–33] were

performed. However, to violate the Bell-type inequalities, one has to approach the total experimental

setup very high efficiency. Hence, although nowadays it is possible to work with photodetectors having

†Dedicated to the 50th anniversary of Bell’s theorem.
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the efficiency approaching 100%, the losses in the total experimental setup can decrease substantially

the total efficiency of the experimental scheme; see [34–38] for theoretical analysis and mathematical

modeling.

The experimentalists confront this problem by trying to extend Bell-type tests with sufficiently high

efficiency to close the locality loophole. The total efficiency of experimental schemes decreases drastically

with the distance. Therefore, it is important to optimize all parameters of the experiment to approach the

maximum violation for the minimum possible efficiency. (One has to optimize angles of polarization beam

splitters and the initial state parameters.) Although these are technicalities, their optimum determination

plays an important role in approaching statistically significant violations of the inequalities.

In this paper, we study this problem for the Eberhard inequality [9] in detail using the advanced

method of numerical optimization, namely, the Nelder–Mead method [39]. First of all, we improve the

results of optimization for the original Eberhard model [9] and the work [2] (Vienna-13 experiment)

employing the model of this experiment presented in [4]. We also take into account the well-known fact

that detectors can have different efficiencies and perform the corresponding optimization.

In the previous studies [2, 4, 9], the objective function for optimization of the parameters had the

meaning of mathematical expectation. However, it is also useful to investigate a possible level of variability

of the results expressed in terms of standard deviation. In this paper, we consider the optimization

of parameters for the Eberhard inequality using the coefficient K – the reciprocal of the coefficient of

variation, taking into account possible random fluctuations in the setup of angles during the experiment.‡

It seems that our study is the first contribution to the problem. The study of the problem of sensitivity

of the degree of violation of the Eberhard inequality to the precision under the control of angles of

polarization beam splitters can be useful for the experimentalists. One of the results of our numerical

simulation is an unexpected stability of the degree of violation of the Eberhard inequality to fluctuations

of these angles (in neighborhoods of optimum values of the angles).

2. Eberhard Inequality

We follow Eberhard [9]: Photons are emitted in pairs (a, b). Under each measurement setting (α, β),

the events in which photon a is detected in the ordinary and extraordinary beams are denoted by symbols

(o) and (e), respectively, and the event where photon is not detected is denoted by the symbol (u). The

same symbols are used to denote the corresponding events for photon b. Therefore, for the pairs of

photons, there are nine types of events: (o, o), (o, u), (o, e), (u, o), (u, u), (u, e), (e, o), (e, u), and (e, e).

Under the conditions of locality, realism, and statistical reproducibility, the following inequality (the

Eberhard inequality, E-inequality) was derived:

J ≡ noe(α1, β2) + nou(α1, β2) + neo(α2, β1) + nuo(α2, β1) + noo(α2, β2)− noo(α1, β1) ≥ 0, (1)

where nxy(αi, βj) is the number of pairs detected in a given period of time for settings αi and βj with out-

comes x, y = o, e, u, the outcomes (o) and (e) correspond to detections in the ordinary and extraordinary

beams, respectively, and the event where photon is not detected is denoted by the symbol (u).

We point out the main distinguishing features of the E-inequality:

a) derivation without the fair sampling assumption (and without no-enhancement assumption);

‡In classical signal analysis, this quantity is known as the signal-to-noise ratio [40,41].
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b) taking into account undetected photons;

c) background events are taken into account;

d) the linear form of presentation (nonnegativity of a linear combination of coincidence and single

rates).

The latter feature (which is typically not emphasized in the literature) is crucial to finding a simple

procedure of optimization of experimental parameters and, hence, it makes the E-inequality the most

promising experimental test to close the detection loophole and reject local realism without the fair

sampling assumption.

The Eberhard optimization has two main outputs, which play an important role in the experimental

design:

E1). It is possible to perform an experiment without the fair sampling assumption for detection

efficiency less than 82,8%. Nevertheless, the detection efficiency must still be very high, at least 66.6%

(in the absence of background).

E2). The optimum parameters correspond to non-maximum entangled states.

In 2013, the possibility to proceed with overall efficiencies lower than 82.8% (but larger than 66.6%)

was explored for the E-inequality, and the first experimental test (the Vienna test) closing the detection

loophole was published [2]; for more detailed presentation of statistical data, see also [4, 21].

2.1. Eberhard Inequality and Quantum-Mechanical Probabilities

Since the use of the Eberhard inequality is not common in quantum-foundational studies, we present

here in detail the calculation of quantum-mechanical probabilities that violate the inequality (for specially

selected parameters of the experimental test). Here, we follow the original paper of Eberhard but try to

adapt the presentation for our purpose of improvement of optimization of the parameters.

Consider two detectors with the same efficiency η, which perform measurements in N experiments.

That is, in every experiment, each detector detects a photon in one of the trajectories with the probability

η. We construct the density operators for particles in the ordinary and extraordinary beams and use the

helicity basis for derivation of these operators.

Two main circular polarization states are described with the vectors u =
1√
2

(
1

−i

)
and v =

1√
2

(
1

i

)
.

They form the transform matrix from the standard basis to a helicity basis: W =
1√
2

(
1 1

−i i

)
. The

inverse transform can be made with the inverse matrix T = W−1 =
1√
2

(
1 i

1 −1

)
. Then, we consider

a polarization prism, which is rotated by an angle θ. A particle that appears in the ordinary beam

has the state ψo =

(
cos θ

sin θ

)
, and a particle that appears in the extraordinary beam has the state

ψe =

(
− sin θ

cos θ

)
. In the helicity basis, these states are, respectively, described as ψ′

o =
1√
2

(
eiθ

e−iθ

)
and

ψ′
e =

1√
2

(
ieiθ

−ie−iθ

)
. Then, the corresponding density operators read Po = ψ′

o ·ψ′†
o =

1

2

(
1 e2iθ

e−2iθ 1

)
and

4



Volume 36, Number 1, January, 2015 Journal of Russian Laser Research

Pe = ψ′
e · ψ′†

e =
1

2

(
1 −e2iθ

−e−2iθ 1

)
. The density operators of the considered system with two particles

are described by the tensor products. If the first particle appears in the ordinary beam, it is described

by Po⊗ I, and if the second particle appears in the ordinary beam, the corresponding operator is I ⊗Po.

The operators for particles in the extraordinary beam can be constructed in a similar way.

Finally, if we put them all together and use the formula of quantum expectation value, quantum

mechanics predicts the following results for the initial state of the system ψ:

noo(α1, β1) = (Nη2/4)ψ†[I + σ(α1)][I + τ(β1)]ψ, (2)

noe(α1, β2) = (Nη2/4)ψ†[I + σ(α1)][I − τ(β2)]ψ, (3)

nou(α1, β2) = N [η(1− η)/2]ψ†[I + σ(α1)]ψ, (4)

neo(α2, β1) = (Nη2/4)ψ†[I − σ(α2)][I + τ(β1)]ψ, (5)

nuo(α2, β1) = N [η(1− η)/2]ψ†[I + τ(β1)]ψ, (6)

noo(α2, β2) = (Nη2/4)ψ†[I + σ(α2)][I + τ(β2)]ψ, (7)

where

σ(α) =

∣∣∣∣∣∣∣∣∣∣

0 e2i(α−α1) 0 0

e−2i(α−α1) 0 0 0

0 0 0 e2i(α−α1)

0 0 e−2i(α−α1) 0

∣∣∣∣∣∣∣∣∣∣
and

τ(β) =

∣∣∣∣∣∣∣∣∣∣

0 0 e2i(β−β1) 0

0 0 0 e2i(β−β1)

e−2i(β−β1) 0 0 0

0 e−2i(β−β1) 0 0

∣∣∣∣∣∣∣∣∣∣
.

Note that matrices I + σ(α), I − σ(α), I + τ(β), and I + τ(β) can be simply derived from previously

considered density operators with a properly chosen value of θ. Also note that the probability of failing

to detect a particle is equal to 1− η no matter what particle is considered, the first or the second.

Thus, we obtain the Eberhard inequality for quantum-mechanical quantities:

J idealB = nuo(α2, β1) + neo(α2, β1) + nou(α1, β2) + noe(α1, β2) + noo(α2, β2) − noo(α1, β1) ≥ 0.

However, in reality, in addition to correct detections during the experiments, some false positives may

arise, which is called the background. In the Eberhard model, it is assumed that the number of false

positive detections for events of type (o, o) can be ignored. We assume that the background level does

not depend on α and β, so for events nuo(α2, β1) + neo(α2, β1) and nou(α1, β2) + noe(α1, β2), it has the

same value Nζ. The resulting inequality reads JB = J idealB + 2Nζ ≥ 0.

This inequality can be written as ψ†Bψ ≥ 0, where B is a matrix:

B = N
η

2

∣∣∣∣∣∣∣∣∣∣

2− η + ξ 1− η 1− η A∗B∗ − η

1− η 2− η + ξ AB∗ − η 1− η

1− η A∗B − η 2− η + ξ 1− η

AB − η 1− η 1− η 2− η + ξ

∣∣∣∣∣∣∣∣∣∣
,
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with A = (η/2)(e2i(α1−α2) − 1), B = e2i(β1−β2) − 1, and ξ = 4ζ/η.

For implementing the experiment, which could show a violation of this inequality, we should search

for the parameters such that JB < 0. Consider the case where ζ = 0, that is, the detectors do not give

false positives, and α1 − α2 = β1 − β2 = θ. We employ the quantum state ψ =
1

2
√
1 + r2

∣∣∣∣∣∣∣∣∣∣

(1 + r)e−iω

−(1− r)

−(1− r)

(1 + r)eiω

∣∣∣∣∣∣∣∣∣∣
,

where 0 ≤ r ≤ 1, α1 = ω/2− 90◦, and β1 = ω/2.

3. Optimization of the Parameters for Experimental Tests Based on

the Eberhard Inequality

Our numerical optimization of the parameters of experimental tests to violate the Eberhard inequality

is based on the Nelder–Mead optimization method. The Nelder-Mead method [39] (also known as downhill

simplex method) is widely used for the optimization of nonlinear problems. This numerical method is

typically applied to the problems for which the derivatives may not be known. Its applications are

especially successful in the case of multidimensional spaces of parameters.

In this section, we present a part of the results of our studies, namely, the results of numerical

optimization of the parameters to violate the Eberhard inequality as much as possible. We start with

the comparison with the original Eberhard model [9], then consider the case of detectors having different

efficiencies; thus, in general, η1 �= η2. Finally, we consider the model [4] that was used in the recent Bell’s

test [2] based on the Eberhard inequality and called the Vienna-13 experiment.

3.1. Optimization of the Parameters for the Eberhard Model

For every η, we find the parameters r, ω, θ that allow the inequality to be violated most strongly.

For this, we minimize the function f=JB(r, ω, θ)/N , employing the Nelder–Mead method. The values

obtained while optimizing JB(r, ω, θ)/N are shown in Table 1.

Table 1. Optimized Parameters for JB/N from the Eberhard Inequality.

η r ω ◦ θ ◦ JB/N
0.7 0.136389 3.40081 21.4266 – 0.000453562

0.75 0.310518 9.73143 31.9603 – 0.00615095

0.8 0.465228 14.8979 37.9215 – 0.02191

0.85 0.607424 18.5808 41.5341 – 0.0496902

0.9 0.741202 20.9153 43.6381 – 0.0899078

0.95 0.87067 22.141 44.6958 – 0.142436

1 0.999997 22.5 45 – 0.207107

During the process of optimization, the ζ values were set to zero, because this parameter provides

a constant contribution 2ζ to the JB/N value. It increases the JB/N value by a constant regardless of
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other parameters, thus not affecting the result of optimization. Thus, values from Table 1 match with

values obtained by Eberhard [9] for nonzero context level. The parameters for which the inequality is

violated the most strongly for ζ = 0 match with the parameters for which the inequality is violated, and

ζ has the maximum value.

a) b) c) d)

Fig. 1. Optimized values of r (a), ω (b), θ (c), and JB/N (d) obtained from the Eberhard inequality for different
efficiencies of the detectors.

In Fig. 1, the parameters r, ω, θ, and the minimum value of the function JB/N obtained from the

Eberhard inequality are shown versus the efficiency η.

3.2. Optimization of the Parameters for Detectors with Different Efficiencies;
Eberhard Model

In real experiments, the detectors have different efficiencies, and formulas (2)–(7) can be easily adapted

to this case. We write the Eberhard inequality as ψ†Bψ ≥ 0, with

B =
N

2

∣∣∣∣∣∣∣∣∣∣

C + ξ η1(1− η2) η2(1− η1) A∗B∗ − η1η2

η1(1− η2) C + ξ AB∗ − η1η2 η2(1− η1)

η2(1− η1) A∗B − η1η2 C + ξ η1(1− η2)

AB − η1η2 η2(1− η1) η1(1− η2) C + ξ

∣∣∣∣∣∣∣∣∣∣
, where A = (η1/2) (e

2i(α1−α2) − 1),

B = η2(e
2i(β1−β2) − 1), C = η1 + η2 − η1η2, and ξ = 4ζ.

In Fig. 2, the optimum parameters together with the minimized function obtained from formulas (2)–

(7) are shown versus different efficiencies of the detectors.

In Table 2, we show values of the parameters obtained in the optimization process along with the

maximum allowable level of the noise. An increase in each value of the efficiency leads to a stronger

violation of the inequality. The minimum values of the efficiency, when the violation is still possible, are

close to η1 = η2 = 0.67, being in accordance with the Eberhard results.

Generally, for every state ψ that minimizes an expectation value, the following corollary holds.

Theorem. Quantum state ψ minimizing target function J is an eigenvector of the matrix B, and its

dispersion is equal to zero.

This theorem can be proved using the Courant–Fisher theorem.
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a) b)

c) d)

Fig. 2. Optimized values of r (a), ω (b), θ (c), and JB/N (d) obtained from formulas (2)–(7) for different efficiencies
of the detectors.

Proof. Let A be a n×n Hermitian matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn.

The Rayleigh–Ritz quotient for this matrix is defined by RA(x) = (Ax, x)/(x, x).

For 1 ≤ k ≤ n, let Sk denote the span of v1, . . . , vk and Sk denote the orthogonal complement of Sk.

Then λ1 ≤ RA(x) ≤ λn, ∀x ∈ C
n \ {0}, λk = max{min{RA(x) | x �= 0 ∈ U} | dim(U) = k}, and

λk = min{max{RA(x) | x �= 0 ∈ U} | dim(U) = n− k + 1}.
This means that the obtained states are optimum not only from the mathematical-expectation point

of view, but also from a possible spread of the measurement results expressed in terms of dispersion.

3.3. Optimization of the Parameters in the Model for the Vienna-13 Experiment

To match the real experimental conditions of the Vienna-13 experiment [2], the analysis of the ap-

plicability of the Eberhard inequality to this experiment was performed in [4]. The analysis led to the

conclusion that data produced in the Vienna-13 experiment [2] are described by a more complicated

model (within the standard quantum framework)§ than the original Eberhard model [9]. This does not

decrease the value of the original Eberhard study. Kofler et al. [4] just pointed out that some important

additional “technicalities” have to be taken into account.

§As one of the aims, the work of Kofler et al. [4] justifies the statistical output of the Vienna-13 experiment using the
standard quantum-mechanical tools.
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Table 2. Optimized Parameters Obtained from Formulas (2)–(7) for Different Efficiencies of the Detec-
tors.

η1 η2 r ω ◦ θ ◦ JB/N ζ

η1 η2 r ω ◦ θ ◦ JB/N ζ

0.65 0.65 9.73816 e – 05 5.32909 e – 05 0.609422 4.13366 e – 10 –

0.65 0.7 0.0325726 0.4367 10.3918 – 5.37452 e – 06 2.68726 e – 06

0.65 0.75 0.122804 2.94407 20.3249 – 0.000327839 0.00016392

0.65 0.8 0.199412 5.64399 25.8864 – 0.00152446 0.000762231

0.65 0.85 0.266448 8.1196 29.7694 – 0.00385363 0.00192682

0.65 0.9 0.326193 10.2951 32.6807 – 0.00737942 0.00368971

0.65 0.95 0.380046 12.1725 34.9409 – 0.0120653 0.00603265

0.65 1 0.42905 13.7822 36.7384 – 0.0178271 0.00891353

0.7 0.65 0.0325721 0.436691 10.3917 – 5.37452 e – 06 2.68726 e – 06

0.7 0.7 0.136389 3.40081 21.4266 – 0.000453562 0.000226781

0.7 0.75 0.223629 6.53572 27.3754 – 0.00217282 0.00108641

0.7 0.8 0.299639 9.33741 31.4432 – 0.00551773 0.00275887

0.7 0.85 0.367155 11.7325 34.4284 – 0.0105412 0.00527059

0.7 0.9 0.427895 13.7454 36.6985 – 0.0171516 0.0085758

0.7 0.95 0.48304 15.4224 38.4617 – 0.0251977 0.0125989

0.7 1 0.533433 16.8118 39.8493 – 0.034513 0.0172565

0.75 0.65 0.122804 2.94407 20.3249 – 0.000327839 0.00016392

0.75 0.7 0.223629 6.53572 27.3754 – 0.00217282 0.00108641

0.75 0.75 0.310518 9.73143 31.9603 – 0.00615095 0.00307547

0.75 0.8 0.387235 12.4151 35.2194 – 0.0123604 0.0061802

0.75 0.85 0.455977 14.6188 37.6299 – 0.0206635 0.0103318

0.75 0.9 0.518149 16.4057 39.45 – 0.0308332 0.0154166

0.75 0.95 0.574864 17.8435 40.8423 – 0.0426257 0.0213128

0.75 1 0.626962 18.9919 41.9138 – 0.0558135 0.0279068

0.8 0.65 0.199412 5.64399 25.8864 – 0.00152446 0.000762231

0.8 0.7 0.299639 9.33741 31.4432 – 0.00551773 0.00275887

0.8 0.75 0.387235 12.4151 35.2194 – 0.0123604 0.0061802

0.8 0.8 0.465228 14.8979 37.9215 – 0.02191 0.010955

0.8 0.85 0.535462 16.8648 39.9011 – 0.0338613 0.0169307

0.8 0.9 0.59933 18.4036 41.3692 – 0.0478775 0.0239387

0.8 0.95 0.657889 19.5935 42.4623 – 0.063646 0.031823

0.8 1 0.712001 20.5014 43.274 – 0.0808982 0.0404491

0.85 0.65 0.266448 8.1196 29.7694 – 0.00385363 0.00192682

0.85 0.7 0.367155 11.7325 34.4284 – 0.0105412 0.00527059

0.85 0.75 0.455977 14.6188 37.6299 – 0.0206635 0.0103318

0.85 0.8 0.535462 16.8648 39.9011 – 0.0338613 0.0169307

0.85 0.85 0.607424 18.5808 41.5341 – 0.0496902 0.0248451

0.85 0.9 0.673214 19.8694 42.7109 – 0.0677295 0.0338647

0.85 0.95 0.733924 20.817 43.552 – 0.087619 0.0438095

0.85 1 0.790464 21.4958 44.1427 – 0.109064 0.0545318

0.9 0.65 0.326193 10.2951 32.6807 – 0.00737942 0.00368971

0.9 0.7 0.427895 13.7454 36.6985 – 0.0171516 0.0085758

0.9 0.75 0.518149 16.4057 39.45 – 0.0308332 0.0154166

0.9 0.8 0.59933 18.4036 41.3692 – 0.0478775 0.0239387

0.9 0.85 0.673214 19.8694 42.7109 – 0.0677295 0.0338647

0.9 0.9 0.741202 20.9153 43.6381 – 0.0899078 0.0449539

0.9 0.95 0.804477 21.6349 44.2627 – 0.11402 0.0570101

0.9 1 0.863896 22.1002 44.661 – 0.139755 0.0698776

0.95 0.65 0.380046 12.1725 34.9409 – 0.0120653 0.00603265

0.95 0.7 0.48304 15.4224 38.4617 – 0.0251977 0.0125989

0.95 0.75 0.574864 17.8435 40.8423 – 0.0426257 0.0213128

0.95 0.8 0.657889 19.5935 42.4623 – 0.063646 0.031823

0.95 0.85 0.733924 20.817 43.552 – 0.087619 0.0438095

0.95 0.9 0.804477 21.6349 44.2627 – 0.11402 0.0570101

0.95 0.95 0.87067 22.141 44.6958 – 0.142436 0.0712182

0.95 1 0.933431 22.4101 44.924 – 0.172546 0.086273

1 0.65 0.42905 13.7822 36.7384 – 0.0178271 0.00891353

1 0.7 0.533433 16.8118 39.8493 – 0.034513 0.0172565

1 0.75 0.626962 18.9919 41.9138 – 0.0558135 0.0279068

1 0.8 0.712001 20.5014 43.274 – 0.0808982 0.0404491

1 0.85 0.790464 21.4958 44.1427 – 0.109064 0.0545318

1 0.9 0.863896 22.1002 44.661 – 0.139755 0.0698776

1 0.95 0.933431 22.4101 44.924 – 0.172546 0.086273

1 1 0.999997 22.5 45 – 0.207107 0.103553
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In the experiments performed in [2], the values of the quantities nou and nuo were found using the

following formulas:

nou(α1, β2) = SA
o (α1)− noo(α1, β2)− noe(α1, β2), nuo(α2, β1) = SB

o (β1)− noo(α2, β1)− neo(α2, β1),

where SA
o and SB

o are amounts of clicks in the ordinary beam for the first and second systems, respectively.

In this case, the Eberhard inequality reads

J = −noo(α1, β1) + SA
o (α1)− noo(α1, β2) + SB

o (β1)− noo(α2, β1) + noo(α2, β2) ≥ 0. (8)

To model the output of the Vienna-13 experiment, one cannot proceed, as Eberhard did, with pure states.

Consider a density operator of the system quantum state

ρ =
1√

1 + r2

∣∣∣∣∣∣∣∣∣∣

0 0 0 0

0 1 V r 0

0 V r r2 0

0 0 0 0

∣∣∣∣∣∣∣∣∣∣
,

where 0 ≤ r ≤ 1 and 0 ≤ V ≤ 1. In this case, predictions of quantum mechanics for values included into

the inequality become

S̃A
o (αi) = η1NTr[ρ(P̂A(αi)⊗ I)], S̃B

o (βi) = η1NTr[ρ(I ⊗ P̂B(βi))],

ñoo(αi, βi) = η1η2NTr[ρ(P̂A(αi)⊗ P̂B(βi))],

where P̂A and P̂B are the projection operators on the ordinary beam direction for the first and second

prisms,

P̂ (γ) =

(
cos2 γ cos γ sin γ

cos γ sin γ sin2 γ

)
.

With regard to false clicks during time T , the values SA
o and SB

o are

SA
o (αi) = S̃A

o (αi) + ζT, SB
o (βi) = S̃B

o (βi) + ζT.

Besides noise, the model of the Vienna-13 experiment (see Kofler et al. [4]) considers also inconsistencies

in time when pairs from different launches are detected as a conjugate event.

We introduce a temporary window value τc, within which conjugate events must be detected. In this

case, noo(αi, βi) can be found using the following formulas:

noo(αi, βi) = ñoo(αi, βi) + nacc
oo (αi, βi),

nacc
oo (αi, βi) = SA

o (αi)S
B
o (βi)

τc
T

(
1− ñoo(αi, βi)

SA
o (αi)

)(
1− ñoo(αi, βi)

SB
o (βi)

)
.

For this model, we performed the optimization for the quantity J given by expression (8) for selected

values of the experimental parameters (η1, η2, r, V, T, τc, N, ζ) and found the values of the angles that

minimize the target function. In particular, we remark that in [2] the levels of detector efficiencies

η1 = 73.77 and η2 = 78.59 were approached.

10
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Table 3. Comparison of the Results of Optimization of the Parameters with the Results of [2].

α1
◦ α2

◦ β1
◦ β2

◦ J

Results of [2] 85.6 118.0 – 5.4 25.9 – 120191

Results of optimization 85.0 115.1 – 4.0 27.4 – 126060

Optimization results are shown in Table 3. According to the values obtained, the optimum angle

values for prism installation differ from the ones given in [2], and they provide the possibility to violate

the inequality more strongly. We also point out that asymmetry in the detector contributions provides

one with a possibility to play with this asymmetry. In particular, we found that, if the experimentalists

who performed the Vienna-13 experiment simply permuted the detectors, they would get a stronger

violation: J = −123050.

4. Optimization of the Parameters for Randomly Fluctuating Angles

of the Polarization Beam Splitters

In the Eberhard model [9] and the model used for the Vienna-13 experiment [2], the optimization

of experimental parameters was performed under the assumption that the angles of polarization beam

splitters can be chosen exactly. The optimization provides some concrete values, and it was assumed that

experimentalists can set up the experimental design with precisely these angles. However, this assump-

tion does not match the real experimental situation. Although the precision of selecting the angles of

polarization beam splitters is very high (e.g., in the Vienna-13 experiment [2], private communication),

nevertheless, there are errors that can lead to deviations from the expected value of f = JB(r, ω, θ). There-
fore, it is important to study the problem of statistical stability of optimization with respect to random

fluctuations of the angles. In the following, we present the corresponding theoretical considerations and

the results of numerical optimization (again with the aid of the Nelder–Mead method).

Taking into account possible random fluctuations of the angles makes the question of optimization

more complicated. As the result of such fluctuations, in the optimal point for the mathematical expec-

tation, the dispersion is nontrivial. In principle, one can get a large magnitude of the absolute value of

the mathematical expectation but, at the same time, also a large magnitude of the standard deviation.

Therefore, it is natural to optimize not simply the mathematical expectation given by the function JB
but the quantity JB/σ.

In signal processing, the quantity K = μ/σ, where μ is the average and σ is the standard deviation,

is widely used and known as the signal-to-noise ratio (SNR); see [40, 41]. This interpretation can be

used even within our framework (if we interpret random fluctuations of angles as generated by a kind of

noise), although we operate not with continuous signals but with the discrete clicks of detectors. We also

remark that the SNR is considered as the reciprocal of the coefficient of variation σ/μ, and it shows the

extent of variability with respect to the mean of the sample.

A feature of employing the SNR or the coefficient of variation consists in the fact that, in the standard

situations, they both are used only for measurements with nonnegative values. In our case, the values are

negative. However, we can simply change the sign of the measurement quantity. Therefore, we proceed

with negative K by taking into account that statistical meaning has to be assigned to its absolute value

11
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– the reciprocal of the relative standard deviation (RSD), which is the absolute value of the coefficient

of variation |σ/μ|.
Now we move to the theoretical modeling of randomly fluctuating angles of polarization beam splitters.

Generally, any self-adjoint quantum operator A can be represented using the spectral decomposition as

A =

∫ +∞

−∞
λ dEλ. Then its mathematical expectation value for a state ψ can be expressed as Aψ =∫ +∞

−∞
λdpψ(λ), where dpψ(λ) = d〈Eλψ,ψ〉 is the probability distribution for the corresponding spectral

decomposition and quantum state. Therefore, for a fixed ψ, the quantum observable can be regarded as

a classical random variable with the probability distribution pψ(O) =

∫
O
d〈Eλψ,ψ〉, O ⊂ R.

Consider the following problem.

Let the observable A depend on some classical random variable ω : A = A(ω) corresponding to the

case where the angle values for the positions of the prisms cannot be set without an error during the

experiments. In this case, the spectral decomposition A(ω) =

∫ +∞

−∞
λdEλ(ω) and the density distribution

function dpψ(λ|ω) = d〈Eλ(ω)ψ, ψ〉 also depend on this random variable. For every fixed ω, the condition∫ +∞

−∞
dpψ(λ|ω) = 1 also holds.

Let the random variable ω be described using the Kolmogorov probability space (Ω,F , P ), where Ω

is a set of elementary events, F is the σ-algebra of the events, and P is the probability measure. The

mathematical expectation value of A(ω) reads

Aψ(ω) =

∫
Ω

[∫ +∞

−∞
λdpψ(λ|ω)

]
dP (ω) =

∫
Ω
〈A(ω)ψ,ψ〉dP (ω) = Ẽ[〈A(ω)ψ, ψ〉],

where Ẽ[·] is the classical mathematical expectation.

In a similar way, we obtain the expression for the dispersion A(ω),

σ2(A) = Ẽ[〈A2(ω)ψ, ψ〉 − 〈A(ω)ψ,ψ〉2].

4.1. The Model with Uniform Random Fluctuations of Four Angles of Polarization
Beam Splitters

We consider a model in which the value of each angle in the experiment is uniformly distributed at a

section around the desired value. In this case, the mathematical expectation and dispersion values are

JB =
1

16 δ4

∫ δ

−δ

∫ δ

−δ

∫ δ

−δ

∫ δ

−δ
〈B(x1, x2, x3, x4)ψ,ψ〉 dx1 dx2 dx3 dx4,

σ2 =
1

16 δ4

∫ δ

−δ

∫ δ

−δ

∫ δ

−δ

∫ δ

−δ
(〈B2ψ,ψ〉 − 〈Bψ, ψ〉2) dx1 dx2 dx3 dx4.

12
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a) b) c) d)

Fig. 3. Optimized values of r (a), ω (b), θ (c), and JB/N (d) versus η for δ = 0 (solid curve) and 0.25 (dashed
curve).

Table 4. Optimized Values of the Parameters for the Errors in Four Angles Separately at δ = 0.25◦.

η δ ◦ r ω ◦ θ ◦ J Jδ σδ K = Jδ/σδ

0.7 0.25

0.136389 3.40081 21.4266 – 0.000453562 – 0.000444565 0.00241554 – 0.184044

0.136389 3.40081 21.4266 – 0.000453562 – 0.000444565 0.00241554 – 0.184044

0.137124 3.42997 21.496 – 0.000453514 – 0.000444515 0.00241503 – 0.184062

0.75 0.25

0.310518 9.73143 31.9603 – 0.00615095 – 0.00614082 0.00248895 – 2.46724

0.310518 9.73143 31.9603 – 0.00615095 – 0.00614082 0.00248895 – 2.46724

0.313658 9.91344 32.2158 – 0.00614786 – 0.00613773 0.00248642 – 2.4685

0.8 0.25

0.465228 14.8979 37.9215 – 0.02191 – 0.0218985 0.002596 – 8.43546

0.465228 14.8979 37.9215 – 0.02191 – 0.0218985 0.002596 – 8.43546

0.469841 15.2419 38.3231 – 0.0218953 – 0.0218838 0.00259252 – 8.44116

0.85 0.25

0.607424 18.5808 41.5341 – 0.0496902 – 0.0496772 0.00275221 – 18.0499

0.607424 18.5808 41.5341 – 0.0496902 – 0.0496772 0.00275221 – 18.0499

0.61123 18.9498 41.9292 – 0.0496699 – 0.0496569 0.00274992 – 18.0576

0.9 0.25

0.741202 20.9153 43.6381 – 0.0899078 – 0.0898932 0.00296469 – 30.3213

0.741202 20.9153 43.6381 – 0.0899078 – 0.0898932 0.00296469 – 30.3213

0.743038 21.167 43.8961 – 0.0898969 – 0.0898824 0.00296395 – 30.3252

0.95 0.25

0.87067 22.141 44.6958 – 0.142436 – 0.14242 0.00323493 – 44.0258

0.87067 22.141 44.6958 – 0.142436 – 0.14242 0.00323493 – 44.0258

0.871004 22.2272 44.7823 – 0.142435 – 0.142419 0.00323486 – 44.0263

1.0 0.25

0.999997 22.5 45 – 0.207107 – 0.207089 0.0035626 – 58.1286

0.999997 22.5 45 – 0.207107 – 0.207089 0.0035626 – 58.1286

0.999999 22.4981 44.998 – 0.207107 – 0.207089 0.0035626 – 58.1286
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The results of the optimization are shown in Table 4 (with rows grouped in triads) and Fig. 3. We

see that the addition of random fluctuations of the angles almost does not change the optimized values

of the parameters. Therefore, we can suggest that the control of the angle values can be reduced.

5. Conclusions

In this paper, we analyzed the Eberhard inequality [9].¶

Our goal was to find angles of polarization beam splitters and a quantum state (which is entangled

but not maximum entangled) that allow one to violate the inequality as much as possible. The re-

quired parameters were found using the optimization procedure based on the Nelder–Mead optimization

method [39]. We considered two models: the Eberhard model [9] and the model used for the Vienna-13

experiment; see [2, 4]. In the first case, we obtained values consistent with the values of [9]. Note that

the Eberhard model describes only the case of equal detector efficiencies. However, in real experiments,

the detector efficiencies may differ substantially. Therefore, it was important to perform a study similar

to [9] for detectors of different efficiencies, and we did this. In the second case (Vienna-13), we obtained

values of the parameters that differ slightly from the values used for the Vienna-13 experiment [2,4]. The

optimum values of the angles and state parameters provide a possibility to obtain a stronger violation of

the Eberhard inequality than in [2,4]. Also we point out that the model of Kofler et al. [4] is asymmetric

with respect to the detector efficiencies. We explored this feature of the model and found (curious fact)

that experimentalists from Vienna would be able to obtain a stronger violation of the Eberhard inequality

simply by permutation of the detectors, which they used for the experiment.

In both aforementioned models, it was assumed that, in real experiments, the optimum values of the

angles of polarization beam splitters (obtained as the results of optimization) can be fixed in perfect

accordance with the theoretical prediction. Although this assumption is justified to a high degree, in

real experiments the errors in fixing these angles are always present. Such random errors have to be

taken into account, and this fact is an important part of this paper. We performed the corresponding

theoretical modeling completed with numerical simulation. In this model, the magnitude of a possible

spread of experimental data, which can be expressed using the reciprocal of the coefficient of variation

σJ/J (also known as the signal-to-noise ratio), was studied. The obtained parameters differ from the

results of Eberhard [9], Gustina et al. [2], and Kofler et al. [4]. The simulation results can be interesting

for experimenters since they allow one to weaken control over the precision of orientation of the axes of

the polarization beam splitters.

The obtained results allow us to expect that, in the experimental test of a Bell-type inequality (in

the Eberhard form) with the optimum values of physical parameters from this paper, the inequality

will be significantly violated even for different detector efficiencies, inaccuracy in the installation angles,

and without the assumption of the purity of the initial state. We hope that our study may be useful for

experimentalists trying to perform a loophole-free Bell test, i.e., trying to combine closing of the detection

loophole with closing of the locality loophole.

¶This inequality obtained in 1993 was practically forgotten. Both experimentalists and theoreticians were interested
mainly in the CHSH inequality.
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