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Abstract

We study the entropic inequalities related to the quantum mutual information for bipartite system and
tomographic mutual information for the Werner state of two qubits. We discuss quantum correlations
corresponding to the entanglement properties of the qubits in the Werner state.
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1. Introduction

The two-qubit systems can demonstrate quantum correlations, and these correlations correspond to

the entanglement phenomenon [1–3] or to the violation of Bell inequalities [4]. Also the correlations

can be associated to quantum discord [5, 6]. The quantum discord is related to the difference in the

classical Shannon information [7] and quantum information determined by the von Neumann entropy of

a composite bipartite systems and the entropies of its subsystems. Recently, the tomographic probability

representation of spin (qudit) states was introduced [8, 9]. In this representation, the qudit states are

identified with spin tomograms that are fair probability-distribution functions determined by the density

operator of the states. The relation of the density operator to the spin tomogram is invertible. Due to this,

the tomogram contains complete information on the qudit state. For several qudits, the spin tomogram is

also determined through the state density operator, and it is a joint probability distribution that provides

the possibility to reconstruct the density operator. Since the qudit state in the tomographic probability

representation is identified with the standard probability distribution, one can use all the characteristics

of the distributions like the Shannon entropy and information, as well as other entropies [10, 11].

The von Neumann entropy was shown [12] to be the minimum of the spin-tomographic Shannon

entropy with respect to all the unitary transforms in the Hilbert space of the qudit system. There exist

different kinds of entropic inequalities for both classical and quantum systems [13–17]. The inequalities

relating the spin-tomographic and von Neumann entropies were used for composite and noncomposite

systems in [18–21]. A particular quantum state, which has properties to be either separable or entangled

depending on the parameter values p of its density matrix, is the Werner state [22] of two qubits.
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The aim of our work is to study the tomographic Shannon and von Neumann entropies and information

discussed in [21] on the example of the Werner state. We discuss quantum correlations in the state, in

view of a specific characteristic of the two-qubit density matrix. This characteristic is the difference in the

quantum von Neumann information and the maximum of the Shannon tomographic information taken

with respect to all the local unitary transforms in the Hilbert space of the bipartite qubit systems. We

calculate explicitly this characteristic and analyze this parameter behavior as a function of the Werner-

state parameters.

This paper is organized as follows.

In Sec. 2, we review the tomographic probability representation of the Werner state and introduce

the tomographic Shannon information and entropy for this two-qubit state. In Sec. 3, we discuss the

maximum of the spin-tomographic entropy of the composite two-qubit system with respect to the local

unitary transforms in the Hilbert space.

2. Entropy and Information for the Werner State

The tomographic-probability distribution for spin states provides the possibility to describe the states

with the density matrix ρ of two qubits by means of tomograms. By definition, the spin tomogram reads

ω(m1,m2, n1, n2) = 〈m1,m2|U · ρ · U †|m1,m2〉, (1)

where m1,2 = −j,−j + 1, . . . , j (j = 0, 1/2, 1 . . .) are the spin projections and U is the rotation matrix:

U =

(
cos(θ1/2)e

i(ϕ1+ψ1)/2 sin(θ1/2)e
i(ϕ1−ψ1)/2

− sin(θ1/2)e
i(ψ1−ϕ1)/2 cos(θ1/2)e

−i(ϕ1+ψ1)/2

)

⊗
(

cos(θ2/2)e
i(ϕ2+ψ2)/2 sin(θ2/2)e

i(ϕ2−ψ2)/2

− sin(θ2/2)e
i(ψ2−ϕ2)/2 cos(θ2/2)e

−i(ϕ2+ψ2)/2

)
. (2)

The matrix (2) is considered as the direct product of two matrices of irreducible representations of the

SU(2) group [23]. The Werner state of two qubits is determined by the density matrix [22] of the form

ρW (p) =

⎛⎜⎜⎜⎜⎝
ρ1111 ρ1112 ρ1121 ρ1122

ρ1211 ρ1212 ρ1221 ρ1222

ρ2111 ρ2112 ρ2121 ρ2122

ρ2211 ρ2212 ρ2221 ρ2222

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
(1 + p)/4 0 0 p/2

0 (1− p)/4 0 0

0 0 (1− p)/4 0

p/2 0 0 (1 + p)/4

⎞⎟⎟⎟⎟⎠ , (3)

where −1/3 ≤ p ≤ 1. The parameter domain 1/3 < p ≤ 1 corresponds to the entangled state.

The eigenvalues of (3) are λ1 = (1 + 3p)/4 and λ2,3,4 = (1− p)/4. The reduced density matrices of

the first and second qubits read

ρ1 =

(
ρ1111 + ρ1212 ρ1121 + ρ1222

ρ2111 + ρ2212 ρ2121 + ρ2222

)
=

(
1/2 0

0 1/2

)
,

ρ2 =

(
ρ1111 + ρ2121 ρ1112 + ρ2122

ρ1211 + ρ2221 ρ1212 + ρ2222

)
=

(
1/2 0

0 1/2

)
.
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Hence the von Neumann entropies of both qubit states and the entropy of the whole system are

S1 = −Tr ρ1 ln ρ1 = ln 2, S2 = −Tr ρ2 ln ρ2 = ln 2,
(4)

S12 = −Tr ρ(p) ln ρ(p) = −(
(1 + 3p)/4

)
ln

(
(1 + 3p)/4

)− (
3(1− p)/4

)
ln

(
(1− p)/4

)
.

The quantum information is defined as Iq = S1+S2−S12, and, obviously, it satisfies the inequality Iq ≥ 0.

To construct the state tomogram, we calculate the diagonal matrix elements of the density matrix in

the unitarily rotated basis in the system’s Hilbert space. The diagonal matrix elements of the matrix

U · ρ · U † are

ω11(↑, ↑) = 4−1 [p (cos θ1 cos θ2 + cos(ψ1 + ψ2) sin θ1 sin θ2) + 1] ,

ω22(↑, ↓) = 4−1 (1− p (cos(ψ1 + ψ2) sin θ1 sin θ2 + cos θ1 cos θ2)) ,
(5)

ω33(↓, ↑) = 4−1 [1− p (cos(ψ1 + ψ2) sin θ1 sin θ2 + cos θ1 cos θ2)] ,

ω44(↓, ↓) = 4−1 [p (cos θ1 cos θ2 + cos(ψ1 + ψ2) sin θ1 sin θ2) + 1] ,

where we introduced the notation for the tomographic probabilities given by Eq. (1), for example, such

as ω11(↑, ↑) ≡ ω (+1/2,+1/2, n1, n2). The trace of the rotated density matrix satisfies the normalization

condition Tr
(
U · ρ · U †) = ω11(↑, ↑) + ω22(↑, ↓) + ω33(↓, ↑) + ω44(↓, ↓) = 1.

The marginal distributions corresponding to the first and second qubit density matrix are

W1(↑, n1) = ω11(↑, ↑) + ω22(↑, ↓), W1(↓, n1) = ω33(↓, ↑) + ω44(↓, ↓),
W2(↑, n2) = ω11(↑, ↑) + ω33(↓, ↑), W2(↓, n2) = ω22(↑, ↓) + ω44(↓, ↓).

According to the definition of Shannon entropy [7], we construct the following tomographic entropies of

the qubit subsystems:

H1 = −W1(↑, n1) lnW1(↑, n1)−W1(↓, n1) lnW1(↓, n1) = ln 2,
(6)

H2 = −W2(↑, n2) lnW2(↑, n2)−W2(↓, n2) lnW2(↓, n2) = ln 2.

The tomographic Shannon entropy of the bipartite system reads

H12 = −ω11(↑, ↑) lnω11(↑, ↑)− ω22(↑, ↓) lnω22(↑, ↓)− ω33(↓, ↑) lnω33(↓, ↑)− ω44(↓, ↓) lnω44(↓, ↓). (7)

We define information It as the maximum of the sum of the difference between the sum of entropies of

subsystems (6) and the entropy of the whole system (7), namely,

It = max
ψ1,ψ2,θ1,θ2

(H1 +H2 −H12); (8)

it satisfies the inequality It ≥ 0.

3. Maximum of the Shannon Information

Introducing the notation H̃ ≡ H̃(ψ1, ψ2, θ1, θ2, p) = H1 +H2 −H12, in view of (5)–(7), we obtain

H̃ = ln 4− 2−1 ln
[
4−1

(
1− p cos(ψ1 + ψ2) sin θ1 sin θ2 − p cos θ1 cos θ2

)]
×[

p cos θ1 cos θ2 + p cos(ψ1 + ψ2) sin θ1 sin θ2 − 1
]

+2−1 ln
[
4−1

(
p cos θ1 cos θ2 + p cos(ψ1 + ψ2) sin θ1 sin θ2 + 1

)]
×(

p cos θ1 cos θ2 + p cos(ψ1 + ψ2) sin θ1 sin θ2 + 1
)
. (9)
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To find the maximum of H̃ with respect to angles ψ1, ψ2, θ1, and θ2, first we find its stationary points.

Taking the first derivatives

∂(H̃)

∂θ1
= (p/2)[cos θ2 sin θ1 − cos(ψ1 + ψ2) cos θ1 sin θ2]

×{
ln

[
4−1

(
1− p cos(ψ1 + ψ2) sin θ1 sin θ2 − p cos θ1 cos θ2

)]
− ln

[
4−1

(
p cos θ1 cos θ2 + p cos(ψ1 + ψ2) sin θ1 sin θ2 + 1

)]}
,

∂(H̃)

∂θ2
= (p/2)

(
cos θ1 sin θ2 − cos(ψ1 + ψ2) cos θ2 sin θ1

)
×{

ln
[
4−1

(
1− p cos(ψ1 + ψ2) sin θ1 sin θ2 − p cos θ1 cos θ2

)]
− ln

[
4−1

(
p cos θ1 cos θ2 + p cos(ψ1 + ψ2) sin θ1 sin θ2 + 1

)]}
,

∂(H̃)

∂ψ1
=

∂(H̃)

∂ψ2
= (p/2) sin(ψ1 + ψ2) sin θ1 sin θ2

×{
ln

[
4−1

(
1− p cos(ψ1 + ψ2) sin θ1 sin θ2 − p cos θ1 cos θ2

)]
− ln

[
4−1

(
p cos θ1 cos θ2 + p cos(ψ1 + ψ2) sin θ1 sin θ2 + 1

)]}
and equating them to zero, we obtain the critical points Θ0 = (θ01, θ

0
2, ψ

0
1, ψ

0
2) as follows:

• θ1 = θ2 = πn (n = 0, 1, . . .) ∀ψ1, ψ2;

• θ1 = (π/2) + πn, θ2 = πn (n = 0, 1, . . .) ∀ψ1, ψ2;

• θ1 = πn, θ2 = (π/2) + πn (n = 0, 1, . . .) ∀ψ1, ψ2;

• θ1 = θ2 = (π/2) + πn (n = 0, 1, . . .), ψ1 + ψ2 = πm or ψ1 + ψ2 = (π/2) + πm (m = 0, 1, . . .);

• θ1 = (π/2) + πn, ψ1 + ψ2 = (π/2) + πm ∀θ2 (n,m = 0, 1, . . .);

• θ2 = (π/2) + πn, ψ1 + ψ2 = (π/2) + πm ∀θ1 (n,m = 0, 1, . . .).

The second differential can be written in a quadratic form d2H̃(Θ) with the determinant

∂2(H̃)

∂θ21

∂2(H̃)

∂θ2∂θ1

∂2(H̃)

∂ψ1∂θ1
∂2(H̃)

∂θ1∂θ2

∂2(H̃)

∂θ22

∂2(H̃)

∂ψ1∂θ2

2
∂2(H̃)

∂θ1∂ψ1
2

∂2(H̃)

∂θ2∂ψ1
2
∂2(H̃)

∂ψ2
1

, (10)

where we see that
∂2(H̃)

∂θ ∂ψ1
=

∂2(H̃)

∂θ ∂ψ2
.

According to the sufficient condition for an extremum, we know that, if d2H̃(Θ0) is a negatively

defined quadratic form, Θ0 is a strict maximum of the function H̃(ψ1, ψ2, θ1, θ2, p). In view of the

Sylvester criterion, if all of the leading principal minors of (10) are negative, the quadratic form d2H̃(Θ0)

is negative.
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For example, we can take θ1 = θ2 = (π/2)+πn (n = 0, 1, . . .); then determinant (10) for ψ1+ψ2 = πm

(m = 0, 1, . . .) reads

(p/2)z (p/2)z 0

(p/2)z (p/2)z 0

0 0 (p/2)z

, where z = ln
[
(1− p)/4

] − ln
[
(1 + p)/4

]
, and it is

0 0 0

0 0 0

0 0 2p2
for ψ1 + ψ2 = (π/2) + πm. It is easy to show that both determinants are equal to zero.

Thus, Θ0
1 = (π/2) + πn, (π/2) + πnψ1 + ψ2 = πm and ψ1 + ψ2 = (π/2) + πm, n,m = 0, 1, . . . are

not the extremum points. Similarly, for all other stationary points, it can be proved that the second

differential (10) becomes zero. Hence there is no global extremum of the function H̃(ψ1, ψ2, θ1, θ2, p).

Due to the form of stationary points, we can find θ01 and θ02 that maximize H̃(ψ1, ψ2, θ1, θ2, p) with

fixed angles ψ1 + ψ2 = πm or ψ1 + ψ2 = (π/2) + πm, m = 0, 1, . . .

The difference of quantum information Iq and maximum of the unitary tomographic information It
is Iq − It = �I ≥ 0. For fixed angles ψ1 and ψ2, this difference is shown for p = 0.9 in Fig. 1 a and for

p = 0.999 in Fig. 1 b. We see that with increase in the parameter p the minimal value of difference It
changes. In Fig. 1 a, the minimum value of It is ∼0.65, and in Fig. 1 b it is ∼0.7. Let us find its limit at

p → 1.

a) b)

Fig. 1. Difference It for fixed angles ψ1 and ψ2 at p = 0.9 (a) and 0.999 (b).

To find the limit, we used the well-known relation lim
x→0

x lnx = 0. Now we obtain that S12 and Iq are

lim
p→1

S12 = 0, lim
p→−1/3

S12 = − ln 3 ≈ −1.098612, lim
p→1

Iq = ln 4, lim
p→−1/3

Iq = ln 4− ln 3 ≈ 0.287682.

For ψ1 + ψ2 = (π/2) + πm and (θ1, θ2) = (π, π), the Shannon entropy (9) reads

H̃(p) = ln 4− ln[(1/4)− (p/4)][(p/2)− (1/2)] + ln[(p/4) + (1/4)][(p/2) + (1/2)],

and its limits are lim
p→1

H̃(p) = ln 4− ln 2 and lim
p→−1/3

H̃(p) = (5/3) ln 2+ln 3. We obtain the limit values

of Iq − It as follows: lim
p→1

(Iq − It) = ln 2 ≈ 0.693147 and lim
p→−1/3

(Iq − It) = (1/3) ln 2 ≈ 0.231049.
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For ψ1 +ψ2 = (π/2) + πm and (θ1, θ2) = (π, π/2), we have lim
p→1

H̃(p) = 0 and lim
p→−1/3

H̃(p) = 0, and

the limit values of Iq−It are lim
p→1

(Iq−It) = ln 4 ≈ 1.386294 and lim
p→−1/3

(Iq−It) = ln 4− ln 3 ≈ 0.287682.

These limits are shown in all stationary points with varying p in Fig. 2 and with varying angle θ1 ∈ [0, 2π]

in Fig. 3. We see that the minimum value �I = Iq − It = ln 2 at p → 1 and (1/3) ln 2 at p → −1/3.

Fig. 2. ΔI = Iq−It at (θ1 = π, θ2 = π, ψ1+ψ2 =
πm), (θ1 = π/2, θ2 = π/2, ψ1 + ψ2 = πm), and
(θ1 = π, θ2 = π, ψ1 + ψ2 = (π/2) + πm) (solid
curve) and (θ1 = π/2, θ2 = π, ψ1 + ψ2 = πm),
(θ1 = π, θ2 = π/2, ψ1 + ψ2 = πm), (θ1 =
π/2, θ2 = π, ψ1 + ψ2 = π/2 + πm), (θ1 = π, θ2 =
π/2, ψ1 + ψ2 = π/2 + πm), and (θ1 = π/2, θ2 =
π/2, ψ1 + ψ2 = (π/2) + πm) (dashed curve).

Fig. 3. ΔI = Iq − It for ψ1 + ψ2 = π, −1/3 < p < 1, and
θ1 ∈ [0, π/2].

4. Summary

To conclude, we point out the main results of this study. We investigated correlations in the Werner

state of two qubits. The difference of von Neumann information Iq and the maximum of tomographic

information It associated with correlations in the system must be nonnegative. This is shown in Fig. 3

for a fixed n2 = (θ2, ψ2) and varying n1. At p → 1 (maximum entangled state), the difference goes to

ln 2. The studied difference characterizes the degree of quantum correlations in the two-qubit system.
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