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Abstract

We obtain a new quantum entropic inequality for the states of a system of n ≥ 1 qudits. The inequality
has the form of the quantum subadditivity condition of a bipartite qudit system and coincides with the
subadditivity condition for the system of two qudits. We formulate a general statement on the existence
of the subadditivity condition for an arbitrary probability distribution and an arbitrary qudit-system
tomogram. We discuss the nonlinear quantum channels creating the entangled states from separable
states.

Keywords: entropy, information, tomographic probability, qubits, qudit, subadditivity condition, non-

linear quantum channels.

1. Introduction

Probability distributions are characterized by the Shannon entropy [1]. The states of quantum systems

identified with the density matrices [2–5] are characterized by the von Neumann entropy. For the pure

states identified with the wave functions, the von Neumann entropy is equal to zero. The entropies

correspond to the order in systems [6]. For the complete order in the classical system, the Shannon

entropy is equal to zero. For composite classical and quantum systems, there exist some inequalities

related to the entropies of the system and its subsystems. The inequalities for the von Neumann entropies

of a bipartite quantum system mean that the sum of the entropies of the subsystems is larger or equal to

the entropy of the composite system. An analogous inequality holds for the Shannon entropy [1] of the

bipartite system.

Recently, it was shown in [7–11] that the quantum states can be identified with tomographic proba-

bility distributions called quantum tomograms both for discrete spin (qudit) states and for the systems

with continuous variables like the systems of interacting oscillators. In view of this, the inequalities

known for classical probability distributions can be obtained also for quantum tomograms [12–17]. A

recent review of the probability-vector properties both in classical and quantum domains is presented

in [18]. Recently, it was clarified [19] that the inequalities like the subadditivity conditions known for
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bipartite systems can be found for noncomposite systems as well. The idea of this approach is based on

the qubit-portrait method of qudit states suggested in [20]; it was applied to studying the entanglement

properties of bipartite qudit systems in [21].

There exist [22] some inequalities for the von Neumann entropy of bipartite systems connecting

“classical” and quantum entropies. The aim of our paper is to use the approach of extending the

inequalities known for composite systems considered in [23] and obtain new inequalities for tomographic

entropies for both the composite and noncomposite quantum systems. The model of quantum mechanics

based on the classical Gaussian probability distributions was elaborated in [24–26].

This paper is organized as follows.

In Sec. 2, we discuss the probability vectors and entropic inequality for bipartite systems. In Sec. 3,

we generalize the subadditivity condition for an arbitrary probability vector P. In Sec. 4, we review the

method of the portrait of the density matrices. In Sec. 5, we consider, as an example, the system states

with density 6×6 matrices. In Sec. 6, we present nonlinear chains of maps of the probability vectors. We

give the conclusions and prospectives in Sec. 7.

2. Probability Vectors and Entropic Inequalities for Bipartite Systems

We consider a set of N nonnegative numbers p1, p2, . . . , pN , such that
∑N

k=1 pk = 1. The set of

the numbers can be identified with a probability vector P = (p1, p2, . . . , pN ), where the numbers pk
(k = 1, 2, . . . , N) are related to the results of measuring a system’s random variable. The variable is

assumed to give N different values. The numbers pk provide the probability to get the kth value of the

random variable. For systems of qudits, the components of the probability vector P can be identified

with n values of qudit-state tomograms w(m, u) = 〈m|uρu+|m〉, where ρ is the density matrix, u is the

unitary matrix, and the vector m = (m1,m2, . . . ,mn), with mk = (−jk,−jk + 1, . . . , jk) being the spin

jk projection.

If one considers a system that contains two subsystems (bipartite system), measuring the values of two

random variables gives a table of n = NM nonnegative numbers pkj (k = 1, 2, . . . , N, j = 1, 2, . . . ,M).

The numbers provide the joint probability distribution associated with the results of measuring two

random variables. The joint probability distribution is normalized, i.e.,

N∑
k=1

M∑
j=1

pkj = 1. (1)

If one measures only one of these two random variables, the joint probability distribution determines the

marginal probability distribution

Pk =
M∑
j=1

pkj ,
N∑
k=1

Pk = 1. (2)

The other marginal probability distribution describing the results of measuring the second random vari-

able reads

Πj =
N∑
k=1

pkj ,
M∑
j=1

Πj = 1. (3)

279



Journal of Russian Laser Research Volume 35, Number 3, May, 2014

If the random variables are independent (there is no correlations between the subsystems of the bipartite

system), the numbers pkj have the factorized form

pkj = PkΠj . (4)

The marginal distributions can be associated with two probability vectors �P = (P1,P2, . . . ,PN ) and

Π = (Π1,Π2, . . . ,ΠM ). The table of numbers pkj can be described by the probability vector P. In fact,

any column vector can be considered as a rectangular matrix. Then the vector (rectangular matrix) P

is expressed in terms of two rectangular matrices (vector �P and Π) as their direct product

P = �P ⊗Π, P = (P1, P2, . . . , PNM ). (5)

This means that we use an invertible map of natural numbers onto pairs of integers n ⇐⇒ (kj), which

explicitly reads

1 ⇐⇒ 11, 2 ⇐⇒ 21, . . . , N ⇐⇒ N1, N + 1 ⇐⇒ 21, . . . , n ⇐⇒ NM. (6)

In fact, we code the natural numbers 1, 2, . . . , n = NM by pairs of the natural numbers (kj) where

k = 1, 2, . . . , N , j = 1, 2, . . . , M .

For simplicity, we assume that N ≤ M .

Any probability distribution is characterized by the Shannon entropy [1]. For example, the joint

probability distribution pkj for a bipartite system has the Shannon entropy H(1, 2) determined as follows:

H(1, 2) = −
N∑
k=1

M∑
j=1

pkj ln pkj . (7)

The marginal probability distributions have the Shannon entropies H(1) and H(2) of the form

H(1) = −
N∑
k=1

Pk lnPk, H(2) = −
M∑
j=1

Πj lnΠj . (8)

It is worth noting that one can write the entropy H(1, 2) in the form

H ≡ H(1, 2) = −
NM∑
n=1

Pn ln Pn. (9)

For all these entropies, we introduce the vector notation. The entropy

H = −P lnP, H(1) = −�P ln �P, H(2) = −Π lnΠ. (10)

In formula (10) we used the definition x lnx ≡ ∑L
α=1 xα lnxα, which means that x = (x1, x2, . . . , xL) and

α = 1, 2, . . . , L.

Employment of the vector notation provides the possibility to describe the Shannon entropy of a

bipartite system with two random variables associated with the joint probability distribution pkj and the

system with one random variable associated with the probability distribution pk by identical formulas (10).

The only difference in expressions for H, H(1) and H(2) consists in the fact that the “scalar product”
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in (10) is evaluated for the vectors with different numbers of components. In (10), the vector �P has

N components, the vector Π has M components, and the vector P has n = NM components. This

difference can be removed. In fact, since limx→0 x lnx = 0, we can consider vectors �P and Π as vectors

with n = NM components by adding the zero components to the initial vectors, i.e.,

�P = (P1,P2, . . . ,PN , 0, 0, . . . ,PMN = 0), (11)

Π = (Π1,Π2, . . . ,ΠM , 0, 0, . . . ,ΠNM = 0). (12)

In using these new vectors, we do not change the values of entropies, i.e., in formulas (10) we have the

same expressions, but all the probability vectors P, �P and Π are considered as vectors with n = NM

components.

It is known that the marginals Pk and Πj of the joint probability distribution pkj satisfy the entropic

inequality called the subadditivity condition, which reads

H(1, 2) ≤ H(1) +H(2), (13)

where the Shannon entropies are given by (6)–(9). In the explicit form, this inequality reads

−
N∑
k=1

M∑
j=1

pkj ln pkj ≤ −
N∑
k=1

Pk lnPk −
M∑
j=1

Πj lnΠj . (14)

For the case of independent random variables pkj = PkΠj , one has equality

H(1, 2) = H(1) +H(2). (15)

The Shannon mutual information is defined as the difference of entropies

I = H(1) +H(2)−H(1, 2). (16)

This information satisfies the nonnegativity condition I ≥ 0.

In view of the vector notation, we can rewrite the subadditivity condition (14) in the form

−P lnP ≤ −�P ln �P −Π lnΠ, (17)

where all the probability vectors have NM components.

The Shannon information is expressed in terms of the probability n-vectors as

I = −�P ln �P −Π lnΠ+P lnP, (18)

where n = NM .

3. Generalization of the Subadditivity Condition for an Arbitrary

Probability Vector P

The subadditivity condition (17) written as an inequality for three probability n-vectors P, �P, and

Π provides the possibility to generalize the inequality and to prove that such inequality takes place for
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arbitrary probability n-vectors. To clarify this issue, we express the n-vectors �P and Π in terms of two

stochastic n× n matrices M12 and M21 and the vector P.

In fact, one can easily observe that the following equalities hold

�P = M12P, Π = M21P, (19)

where the stochastic matrices M12 and M21 read

M12 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1M 0M . . . 0M

0M 1M . . . 0M

. . . . . . . . . . . .

0M 0M . . . 1M

0S

⎞
⎟⎟⎟⎟⎟⎟⎠

, M21 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1N 0N . . . 0N

0N 1N . . . 0N

. . . . . . . . . . . .

0N 0N . . . 1N

0Q

⎞
⎟⎟⎟⎟⎟⎟⎠

, (20)

and the rectangular matrices 1M and 0M with one row and M columns are

1M = (1, 1, . . . , 1), 0M = (0, 0, . . . , 0). (21)

The zero rectangular matrix 0S has NM −N rows and NM columns. The N×N blocks in the matrix

M21 are the unity N×N matrix 1N and zero N×N matrix 0N . The zero matrix 0Q contains NM −M

rows and NM columns. Using formula (19), we rewrite the subadditivity condition (17) known for the

joint probability distribution of a bipartite system in the form

−P lnP ≤ −(M12P) ln(M12P)− (M21P) ln(M21P). (22)

We obtain inequality (22) as a property of the joint probability distribution of the bipartite system.

But it is obvious that this inequality is the inequality that is valid for an arbitrary set of n = NM

nonnegative numbers (p1, p2, . . . , pNM ). In view of this fact, one can formulate the general statement:

Given arbitrary probability vector P with n components, where the integer n can be presented as the

product of two integers n = NM , N ≤ M , inequality (22) holds, where matrices (20) are two stochastic

matrices containing only zeros and unities.

Inequality (22) is valid also for all n! vectors Pper obtained from the initial vector P by means of

permutations of the indices (1, 2, . . . , n) labeling the vector components; this means that

−P lnP = −Pper lnPper ≤ −(M12Pper) ln(M12Pper)− (M21Pper) ln(M21Pper). (23)

It is worth noting that an integer n can have different product decompositions n = N̄M̄ . Equalities (22)

and (23) take place also for new matrices M̄12, M̄21 obtained from (20) by the substitutions N → N̄

and M → M̄ . Inequality (22) holds for an arbitrary probability vector P corresponding to a point on

the simplex, including vectors that have some zero components. We employ this remark to extend our

inequality (22) to arbitrary probability n-vectors, including the case of prime number n.

To write the inequality for such probability n-vector P, we construct a new vector

P′ = (p1, p2, . . . , pn, 0, 0, . . . , pn′ = 0).

The n′-vector P′ has n′ components. We added the appropriate quantity of zero components to the

initial n-vector P, such that the new integer n′ has the product form n′ = N ′M ′. It is clear that there
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are many ways to construct such vectors with different integers n′ ≥ n. All these vectors will satisfy the

subadditivity condition.

The other generalization of obtained inequality can be formulated for an arbitrary set of nonnegative

numbers x1, x2, . . . , xn. These numbers correspond to a point on the cone.

Using the map xk → pk =
xk∑n
j=1 xj

and applying inequality (22) to the vector P =
x∑n

j=1 xj
, we

obtain the inequality for an arbitrary finite set of n nonnegative numbers xk, i.e.,

−x lnx ≤ −(M12x) ln(M12x)− (M21x) ln(M21x) +
( n∑

j=1

xj

)
ln

( n∑
j=1

xj

)
. (24)

Thus, we proved that the coordinates of a point on the cone satisfy an analog of the subadditivity

condition with extra terms in the right-hand side of (24).

For arbitrary integers n, the stochastic matrices M12 and M21 can be written in a fixed canonical

form. We can introduce information on the cone, which is the difference in the right-hand side and

left-hand side of Eq. (24), namely,

Ix = −(M12x) ln(M12x)− (M21x) ln(M21x) + x lnx+
( n∑

j=1

xj

)
ln

( n∑
j=1

xj

)
. (25)

If
∑n

j=1 xj = 1, we have the point on the simplex and information Ix becomes an analog of the Shannon

information, which we introduced for an arbitrary probability distribution described by the probability

vector P; it reads

Ip = −(M12P) ln(M12P)− (M21P) ln(M21P) +P lnP ≥ 0. (26)

There exist n! informations Ip obtained from (26) by replacing the probability vector P → Pper.

In the case of bipartite systems and n = NM , where N and M correspond to outcomes of two

random variables, the information Ip coincides with the Shannon mutual information. The meaning of

the introduced information Ipper and information (26) introduced for an arbitrary probability vector P

needs additional clarification.

4. Portrait of Density Matrices

We apply the analogous method to obtain the positive map of n × n density matrix ρ(1, 2) of a

bipartite system with n = NM , N ≤ M . In fact, if the state ρ(1, 2) is a simply separable state, i.e.,

ρ(1, 2) = ρ(1) ⊗ ρ(2), ρ(1) is the N×N matrix, and ρ(2) is the M×M matrix, we see that the N×N

matrix ρ(1) is obtained by the following procedure.

The matrix elements ρkj(1), k, j,= 1, 2, . . . , N are given as the first N vector components of NM

vectors �ρ1(1), �ρ2(1), . . . , �ρN (1), where

�ρ1(1) = M12R1, �ρ2(1) = M12R2, . . . , �ρN (1) = M12RN . (27)

Here the NM matrix M12 is given by Eq. (20). The NM vectors Rj , j = 1, 2, . . . N , have the components

(Rj)kα = ρkj(1)ραα(2), k = 1, 2, . . . , N, α = 1, 2, . . . ,M. (28)
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Thus, we used the invertible map of integers 1, 2, . . . , N , α = 1, . . . ,M onto the pairs of integers k, α

1 ↔ 11, 2 ↔ 21, . . . , n ↔ NM to label the components of the vector Rj .

If the matrix ρ(1, 2) has the generic form with matrix elements ρkαjβ(1, 2), we obtain the positive

map ρ(1, 2) → ρ(1) given by the same formula (27) with changed vectors Rj . The vectors Rj have the

components

(Rj)kα = ρkα jα(1, 2). (29)

There is no summation over indices α. Thus, the described construction provides the map of the NM

density matrix ρ(1, 2) onto the density matrix, which can also be considered as the NM matrix ρ̄(1) of

the form

ρ̄(1) =

(
ρ(1) 01

0tr1 0n−N

)
, (30)

where 01 is a zero rectangular matrix with N rows and n − N columns, and the matrix 0n−N , where

n = NM has the zero matrix elements.

An analogous construction can be applied to obtain the map ρ(1, 2) → ρ(2) = Tr1ρ(1, 2). The explicit

form of this map can be obtained from (30), in view of the known matrix of map of vectors a⊗b ←→ b⊗a

given by the matrix S, such that

(a⊗ b)k =

n∑
m=1

Skm(b⊗ a)m. (31)

Using the matrix S, we can reduce the problem of finding the expression for the matrix ρ(2) to the

problem discussed above with the replacement 1 ↔ 2, N ↔ M .

The NM matrices ρ̄(1) and ρ̄(2) satisfy the subadditivity condition

−Trρ̄(1) ln ρ̄(1)− Trρ̄(2) ln ρ̄(2) ≥ −Trρ̄(1, 2) ln ρ̄(1, 2). (32)

Thus, for an arbitrary n×n matrix ρ, where n = NM , we can obtain two matrices ρ(1) and ρ(2) applying

the map, which naturally can be applied to the bipartite matrix ρ(1, 2), to the initial matrix ρ. The

matrix ρ can be considered as the density matrix of only one qudit. Nevertheless, the matrices ρ̄(1) and

ρ̄(2) associated with it satisfy the subadditivity condition (32).

5. Example of System States with 6×6 Matrices

To demonstrate our approach, we consider the example of n = 6.

We can consider the density matrix ρkj , k, j = 1, 2, . . . , 6 as the density matrix of one qudit with

j = 5/2. The matrix ρ reads⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ11 ρ12 ρ13 ρ14 ρ15 ρ16

ρ21 ρ22 ρ23 ρ24 ρ25 ρ26

ρ31 ρ32 ρ33 ρ34 ρ35 ρ36

ρ41 ρ42 ρ43 ρ44 ρ45 ρ46

ρ51 ρ52 ρ53 ρ54 ρ55 ρ56

ρ61 ρ62 ρ63 ρ64 ρ65 ρ66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡
(

ρ(1) ρ(2)

ρ(3) ρ(4)

)
, (33)
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where the matrices ρ(k), k = 1, 2, 3, 4, are 3×3 matrices, which constitute ρ. We take integers N = 2 and

M = 3. The 6×6 stochastic matrix M12 and 6-vectors R1 and R2 read

M12 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0

0 0 0 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, R1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ11

ρ22

ρ33

ρ41

ρ52

ρ63

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, R2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ14

ρ25

ρ36

ρ44

ρ55

ρ66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (34)

Applying the matrix M12 to vectors R1 and R2, we obtain the 2×2 matrix ρ(1) of the form

ρ(1) =

(
ρ11 + ρ22 + ρ33 ρ14 + ρ25 + ρ36

ρ41 + ρ52 + ρ63 ρ44 + ρ55 + ρ66

)
. (35)

The 6×6 matrix ρ̄(1) reads

ρ̄(1) =

(
ρ(1) 024

0tr24 04

)
, 024 =

(
0 0 0 0

0 0 0 0

)
, (36)

and 04 is the 4×4 matrix with zero matrix elements. The matrix ρ̄(2) reads

ρ̄(2) =

(
ρ(2) 0

0 0

)
, ρ(2) = ρ(1) + ρ(4). (37)

In the general case of n×n matrix ρ, one has an analogous map ρ → ρ̄(1), ρ → ρ̄(2).

The M×M matrix ρ(2) is equal to the sum of N blocks of the matrix ρ, i.e.,

ρ(2) =

N∑
k=1

ρ(k). (38)

Each block ρ(k) is the M×M matrix. The N blocks constitute the density matrix of the state, which

is obtained by the “decoherence” map from the initial matrix ρ. Namely, from ρ we construct the

block-diagonal matrix

ρd =

⎛
⎜⎜⎜⎜⎝

ρ(1) 0 0

0 ρ(2) 0

. . . . . . . . .

0 0 ρ(N)

⎞
⎟⎟⎟⎟⎠ ,

keeping N of the M×M matrices, and the other matrix elements are assumed to be equal to zero. Then,

we take the sum of all these blocks. As a result, we obtain the matrix ρ(2). So, the matrix ρ̄(2) is a

“portrait” of the initial matrix ρ. The other “portrait” is the matrix ρ̄(1), which for the initial 6×6

matrix ρ is given by Eq. (36). There is the possibility to construct another map of the matrix ρ onto two
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“portrait” matrices ρ̄(1) and ρ̄(2), namely, we take N = 3 and M = 2. Then the 3×3 matrix ρ(1) and

2× 2 matrix ρ(2) read

ρ(1) =

⎛
⎜⎝

ρ11 + ρ22 ρ13 + ρ24 ρ15 + ρ26

ρ31 + ρ42 ρ33 + ρ44 ρ35 + ρ46

ρ51 + ρ62 ρ53 + ρ64 ρ55 + ρ66

⎞
⎟⎠ , ρ(2) =

(
ρ11 + ρ33 + ρ55 ρ12 + ρ34 + ρ56

ρ21 + ρ43 + ρ65 ρ22 + ρ44 + ρ66

)
. (39)

The subadditivity inequality for all the pairs ρ(1) and ρ(2) obtained (i.e., ρ̄(1) and ρ̄(2)) is given as

−Tr
(
ρ(1) ln ρ(1)

)− Tr
(
ρ(2) ln ρ(2)

)
= −Tr

(
ρ̄(1) ln ρ̄(1)

)− Tr
(
ρ̄(2) ln ρ̄(2)

) ≥ −Tr(ρ ln ρ). (40)

The von Neumann quantum mutual information is given by the difference

Iq
(
ρ̄(1), ρ̄(2)

)
= −Tr

(
ρ̄(1) ln ρ̄(1)

)− Tr
(
ρ̄(2) ln ρ̄(2)

)
+Tr(ρ ln ρ). (41)

Inequalities for entropies (40) are valid for (NM)! matrices ρ̄(1) and ρ̄(2) obtained by means of all

permutations of integers 1, 2, . . . , n → 1p, 2p, . . . , np, determining matrix elements of the n× n matrix ρ.

It is worth noting that if one has any n×n density matrix ρ, one can construct the matrix ρn′ =

(
ρ 0

0 0

)
,

where n′ = n+ p = NM .

After this is done, one obtains by the described procedure all the maps ρn′ → ρ̄(n
′)(1) and ρ̄(n

′)(2).

We write the new subadditivity conditions for these matrices

−Tr
(
ρ̄(n

′)(1) ln ρ̄(n
′)(1)

)− Tr
(
ρ̄(n

′)(2) ln ρ̄(n
′)(2)

) ≥ −Tr
(
ρ(n

′) ln ρ(n
′)) = −Tr(ρ ln ρ). (42)

Analogously, the nonnegative mutual information is given by the difference

I ′ρ
(
ρ(n

′)(1)), ρ(n
′)(2)

)
= −Tr

(
ρ̄(n

′)(1) ln ρ̄(n
′)(1)

)− Tr
(
ρ̄(n

′)(2) ln ρ̄(n
′)(2)

)
+Tr(ρ ln ρ). (43)

The information depends on the maps of the matrices ρ → ρ(n
′)(1) and ρ → ρ(n

′)(2).

For example, if one has the 5×5 density matrix ρ corresponding to qudit with j = 2 (i.e., n = 5, and

one can take n′ = n+1 = 6), the pairs of matrices ρ(1) and ρ(2) obtained by the described positive maps

are

ρ(1) =

⎛
⎜⎝

ρ11 + ρ22 ρ13 + ρ24 ρ15

ρ31 + ρ42 ρ33 + ρ44 ρ35

ρ51 ρ53 ρ55

⎞
⎟⎠ , ρ(2) =

(
ρ11 + ρ33 + ρ55 ρ12 + ρ34

ρ24 + ρ43 ρ22 + ρ44

)
. (44)

One has

−Tr
(
ρ(1) ln ρ(1)

)− Tr
(
ρ(2) ln ρ(2)

) ≥ −Tr(ρ ln ρ). (45)

Other pairs are also obtained by means of coding the pairs for generic 6×6 density matrix ρkj and

assuming that all the matrix elements ρk6 and ρ6j are equal to zero. Then all the subadditivity conditions

for qudit j = 2 states are obtained from the constructed one by permutations of the integers 1, 2, 3, 4, 5 →
1p, 2p, 3p, 4p, 5p and labeling matrix elements of the matrix ρkj (k, j = 1, 2, 3, 4, 5).
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6. Nonlinear Maps of the Probability Vectors

In this section, we discuss the possibility to construct a general map of the probability vector p =

(p1, p2, . . . , pn) onto the probability vector �Π = (Π1(p),Π2(p), . . . ,Πm(p)) and the components of the

vector �Π, i.e., Πk(p) are some functions of the vector p. If n = m, for a particular case of linear functions,

we have the map
�Π(p) = Mp, (46)

where the n×n matrix M has the matrix elements with the property
∑n

k=1Mkj = 1. If Eq. (46) provides

the linear map for all the vectors p belonging to a simplex, the matrices M are stochastic matrices with

nonnegative matrix elements. If Eq. (46) provides the linear map for the vector belonging to some domain

in the simplex, the matrices M can have negative matrix elements. In all the cases, the matrices M form

a semigroup. (In particular, the stochastic matrices form the semigroup.) One can introduce nonlinear

maps of the probability vectors by choosing specific functions Πk(p) that preserve the properties of the

nonnegativity Πk(p) ≥ 0 and the normalization
∑m

k=1Πk(p) = 1.

A simple example of the nonlinear map is given by the rational function of the form

Π
(s)
k (p) =

psk∑n2
k=n1

psk
, 1 ≤ k = n1, n1 + 1, . . . , n2 ≤ n. (47)

Such a map for s = 1 gives, for example, the conditional probability distribution. In fact, if a joint

probability distribution P (k, j) is written in the form of the probability vector

p =
(
P (1, 1), P (1, 2), . . . , P (1, n), P (2, 1), . . . , P (n,m)

)
,

the Bayes formula for the conditional probability

p → P (k|j) = P (k, j)∑n
k=1 P (k, j)

has the form (47), where the corresponding indices are chosen.

A particular case of this map takes place for n1 = 1 and n2 = n. For example, if s = 2, one has the

map

p → �Π(2)(p) =

(
n∑

k=1

p2k

)−1 (
p21, p

2
2, . . . , p

2
n

)
. (48)

Such maps can be considered as examples of nonlinear classical channels.

In the quantum case, we define the nonlinear map of the density n×n matrix ρ onto the density m×m

matrix R (i.e., ρkj → Rαβ(ρ)) preserving the properties of density matrices R† = R, TrR = 1, R ≥ 0.

The case of linear map of density matrices is a particular case of the map under discussion. For example,

the positive linear map [27, 28] given in the form Rαβ(ρ) =
∑n

k,j=1Bαβ,kjρkj and quantum channels

corresponding to completely positive map of the density matrix play an important role in studying

the quantum correlations in composite systems like the entanglement phenomenon. The properties of

linear maps such as the positivity and complete positivity are coded by the properties of the matrix

Bαβ,kj [28]. The nonlinear maps of the density matrices, which we call the nonlinear quantum channels,

are characterized by the functions Rαβ(ρkj). A simple example corresponds to the probability vector

transform (47); it reads

R = ρs
(
Trρs

)−1
, s = 2, 3, . . . ,∞. (49)
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The map provides the new density matrix with larger purity, which in the generic case for s → ∞ gives

the pure state. The map can create the entanglement, e.g., for the two-qubit X-states. An analog of the

classical Bayes formula for the conditional probability distribution given by nonlinear map (47) for the

matrix ρkj (k, j = 1, 2, . . . , n) has the form

ρkj → R
(m)
k′j′ =

ρk′j′∑m
k=1 ρkk

, k′, j′ = 1, 2, . . . ,m < n. (50)

The nonlinear positive map can be given in the form of a map of the qudit tomogram. It is known (see,

e.g., [29]) that the density matrix of an arbitrary qudit-system state with N subsystems and density

matrix ρ(1, 2, . . . , N) is described by the tomographic probability distribution (qudit tomogram), which

determines the density matrix. The probability vector �w(u) corresponding to the density matrix has

vector components depending on the unitary matrix u

�w(u) = |uuo|2�ρ, (51)

where �ρ is the vector having components equal to the eigenvalues of the density matrix. The unitary

matrix u0 has the corresponding eigenvectors of the density matrix as the columns. Using expression (51)

for the tomogram of any qudit-system state, we formulate the general statement.

We consider the first case where the tomographic probability vector �w(u) has n = NM components.

Applying Eq. (22) to the vector, we obtain the inequality

−|uu0|2�ρ ln |uuo|2�ρ ≤ −M12|uu0|2�ρ ln
(
M12|uu0|2�ρ

)−M21|uu0|2�ρ ln
(
M21|uu0|2�ρ

)
. (52)

This inequality is valid for the tomogram of a composite or noncomposite qudit system. The system is

described by the density matrix with eigenvalues providing the NM -vector �ρ and corresponding eigen-

vectors combined into the unitary matrix u0. If n �= NM , we introduce the vector with n′ = NM

components, where n′ = n + s, by adding s extra zero components to the vector �ρ. Also we extend the

orthostochastic matrix |uu0|2 and replace it by the matrix

(
|uu0|2 0

0 1s

)
, where 1s is the s×s matrix.

Any map of the density matrix, i.e., �ρ → �ρ′, u0 → u′0 provides the map of the tomographic vector

�w(u). The rational map of the density matrix (49) is equivalent to the map of the probability vector �ρ

given by (47) with n1 = 1 and n2 = n. Thus, any linear or nonlinear map of the probability vector �ρ,

which has components equal to the density matrix eigenvalues, yields the nonlinear positive map of the

density matrix. Other nonlinear positive maps can be associated with the change in the unitary matrix

u0, e.g., by means of the linear map u0 → u′0 = Tu0, where T is the unitary transform of the eigenvectors

of the density matrix ρ(1, 2, . . . , N).

One has the entropic inequalities for the probability vector (47) at n1 = 1 and n = n2

−
n∑

k=1

Π
(s+1)
k (p) lnΠ

(s+1)
k (p) ≤ −

n∑
k=1

Π
(s)
k (p)Π

(s)
k (p) ≤ −p lnp, s = 1, 2, 3, . . . (53)

The von Neumann entropy of the density matrix R (49) obeys the inequality

−Tr
[
(ρs

(
Trρs

)−1
) ln(ρs

(
Trρs

)−1
)
]
≥ −Tr

[
(ρs+1

(
Trρs+1

)−1
ρs+1) ln(ρs+1

(
Trρs+1

)−1
ρs+1)

]
. (54)
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One can introduce the positive map as the convex sum of the terms ρs
(
Trρs

)−1
, i.e.,

ρ ⇒ R =
∑
s

ps

[
ρs
(
Trρs

)−1
]
, 0 ≤ ps ≤ 1,

∑
s

ps = 1.

The map provides an example of the nonlinear channel.

For composite bipartite systems, the unitary transform, which converts the entangled states to the

separable states, is given by the matrix A, such that

A = u01 ⊗ u02, (55)

where the matrices uok are unitary local transform matrices.

For example, if the bipartite system with the density matrix ρ(1, 2) has the eigenvectors providing

the unitary matrix u0, such that

ρ(1, 2) = u0ρdu
†
0, ρd =

⎛
⎜⎜⎜⎜⎝

ρ1 0 0 0

0 ρ2 0 o

. . . . . . . . . . . .

0 0 0 ρn

⎞
⎟⎟⎟⎟⎠ , (56)

any unitary matrix A of the form

A = (u01 ⊗ u02)u
†
0 (57)

gives the tomographic vector

�wA(u) = |u(u01 ⊗ u02)|2�ρ, (58)

which is the tomogram of the separable state. The described transform depends on the state.

7. Conclusions

To conclude, we formulate the main results of our work.

We obtained new inequalities for both probability vectors and density matrices. These inequalities

are analogs of known subadditivity conditions, which are valid for composite systems, but we showed

that the inequalities are valid for arbitrary probability vectors and arbitrary density matrices, including

the case of systems without subsystems.

We discussed the positive nonlinear maps of the probability vectors and density matrices. The non-

linear maps can be used to create entangled states from the separable states. We considered explicitly

the examples of the density matrix in six-dimensional Hilbert space, which can be identified either with

a qubit–qutrit composite system state or with the state of a single qudit with j = 5/2.

It is worth noting that one can introduce Bell inequalities for noncomposite systems. Also one can

study the violation of the inequalities. The Bell inequality for the qudit with j = 3/2 has the form of

the inequality for a two-qubit system. The entangled states for the qudit with j = 3/2 are the states for

which the equality for the density matrix of the state in the form of separability condition is not valid.

The Bell inequality can be violated. We consider this problem in a future publication.
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