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Abstract

Using known entropic and information inequalities, we obtain new inequalities for some classical poly-
nomials. We consider examples of Jacobi and Legendre polynomials.
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1. Introduction

It is known [1] that there exists a possibility to derive some relations for special functions, which turn

out to be the matrix elements of irreducible unitary representation of compact and noncompact groups.

On the other hand, in the classical probability theory and the quantum tomographic approach [2, 3]

for the description of quantum states, the specific probability distributions expressed in terms of some

special functions appear in a natural way. Quantum entropic inequalities characterize the correlation

properties of system states. Analogous properties are connected with different kinds of uncertainties [4].

Since entropies are determined by the probability distributions and there exist relations, in particular,

in the form of entropic and information inequalities, one can apply these inequalities to derive some new

inequalities for the special functions.

For a random variable, the probability distribution, which appears as a result of experiments with

a finite number of outcomes, is characterized by the Shannon entropy [5]. The results of experiments,

where two random variables are measured, can be associated with a joint probability distribution. The

distribution is connected with N = N1N2 outcomes, where for the first random variable we have N1

results and for second random variable, N2 results. The joint probability distribution and dependence

between two random variables determine two marginal probability distributions by the Sklar theorem [6].

For these three probability distributions, one can calculate Shannon entropies [5].

These entropies satisfy the inequality called the subadditivity condition [7, 8]. Different entropic

and information inequalities were studied in [9–12]. The entropic inequalities for the bipartite systems

were used in [13, 14], within the framework of the tomographic probability representation of quantum
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mechanics, to characterize two degrees of quantum correlations in the systems. On the other hand, the

mathematical structure of the subadditivity condition permits one to apply this inequality in all cases

where the nonnegative numbers or functions appears and the sum of the numbers or functions equals

unity.

The aim of our work is to consider the unitary matrices connected with the irreducible representation

of the rotation group and other groups and construct probability distributions, creating from the entropic

inequalities the inequalities for such special functions as Jacobi and Legendre polynomials.

2. Inequalities for the SU (2 ) Representation Matrix Elements

It is known that unitary irreducible representations of the rotation group with spins (or SU(2) group)

are expressed in terms of Jacobi polynomials [1, 15]. The squared moduli of the matrix elements read

|d(j)m′,m(β)|2= (j +m′)!(j −m′)!
(j +m)!(j −m)!

[
cos(β/2)m

′+m sin(β/2)m
′−mP

(m′−m,m′+m)
j−m′ (cosβ)

]2
, (1)

where P
(m′−m,m′+m)
j−m′ (cosβ) are the Jacobi polynomials [15]

P (a,b)
n (z) =

(−1)n

2nn!
(1− z)−a(1 + z)−b dn

dzn
(1− z)a+n(1 + z)b+n.

The relation

d
(j)
m′,m(β) = (−1)m

′−md
(j)
m,m′(β) = d

(j)
−m,−m′(β) (2)

holds. We apply the generic inequalities for probabilities expressed in terms of Shannon entropies to

these matrix elements.

The point is that one has |d(j)m′m(β)|2 ≥ 0,
j∑

m′=−j

|d(j)m′,m(β)|2 = 1, and
j∑

m=−j
|d(j)m′,m(β)|2 = 1. Thus, the

values |d(j)m′m(β)|2 can be considered as probabilities. We denote these probabilities as

P
(j)
m′ (β) = |d(j)m′,m(β)|2, P (j)

m (β) = |d(j)m′,m(β)|2. (3)

We use the map of the numbers m′ and m onto the numbers 1, 2, . . . , N = 2j + 1 following the rule:

−j ⇒ 1, − j+1 ⇒ 2, . . . , j ⇒ N. Now we study the relation obtained, in view of the probability vector

−→p = (p1, p2, . . . , pN ), where
N∑
k=1

pk = 1 and pk ≥ 0.

The Shannon entropy associated with the probability vector −→p is determined as

Hp = −
∑
k

pk ln pk. (4)

3. Example of Spin j = 3/2

We discuss an arbitrary probability distribution identified with the four-vector −→p = (p1, p2, p3, p4).

For the probability vector −→p , we introduce the invertible map of the indices:

1 ⇔ 11, 2 ⇔ 12, 3 ⇔ 21, 4 ⇔ 22. (5)
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Then the probabilities are given in the form of a matrix (pil), which can be interpreted as a joint proba-

bility of the bipartite system (say, two coins), p1 ⇔ p11, p2 ⇔ p12, p3 ⇔ p21, p4 ⇔ p22. This means that

we map the probabilities for the system without subsystems into the joint probability distribution asso-

ciated with the bipartite system. Marginal probability distributions determined by the joint probability

distribution read

πi =
2∑

l=1

pil = pi1 + pi2, Πl =
2∑

i=1

pil = p1l + p2l. (6)

According to the definition of Shannon entropy (4), the entropies associated with the initial probability

distribution and two marginals are

Hp = −p1 ln p1 − p2 ln p2 − p3 ln p3 − p4 ln p4,

Hπ = −(p1 + p2) ln(p1 + p2)− (p3 + p4) ln(p3 + p4), (7)

HΠ = −(p1 + p3) ln(p1 + p3)− (p2 + p4) ln(p2 + p4).

It is known that the Shannon entropies associated with the bipartite system satisfy some inequalities.

The following inequality, called the subadditivity condition, reads

Hπ +HΠ ≥ Hp.

The Shannon information is defined as the difference of the sum of the entropies of the subsystems and

entropy of the bipartite system, i.e.,

I(β) = Hπ(β) +HΠ(β)−Hp(β). (8)

Obviously, the Shannon information satisfies the inequality I(β) ≥ 0 for all angles β.

Now we concentrate on a particular probability distribution determined by matrix elements of the

four-dimensional irreducible representation of the group SU(2), which corresponds to spin j = 3/2.

For j = 3/2, the numbers m and m′, being the spin projections on the z axis, take the values −3/2,

−1/2, 1/2, and 3/2. All terms of (1) are presented in Table 1, where the notation |d(j)m′,m(β)|2 ≡ d̃
(j)
m′,m(β)

is used.

Table 1. Probability Distributions d̃
(j)
m′,m(β).

m

m′ 3/2 1/2 −1/2 −3/2

3/2 d̃
(j)
3/2,3/2(β) d̃

(j)
3/2,1/2(β) d̃

(j)
3/2,−1/2(β) d̃

(j)
3/2,−3/2(β)

1/2 d̃
(j)
1/2,3/2(β) d̃

(j)
1/2,1/2(β) d̃

(j)
1/2,−1/2(β) d̃

(j)
1/2,−3/2(β)

−1/2 d̃
(j)
−1/2,3/2(β) d̃

(j)
−1/2,1/2(β) d̃

(j)
−1/2,−1/2(β) d̃

(j)
−1/2,−3/2(β)

−3/2 d̃
(j)
−3/2,3/2(β) d̃

(j)
−3/2,1/2(β) d̃

(j)
−3/2,−1/2(β) d̃

(j)
−3/2,−3/2(β)

In view of (2), we can write the following relation for d̃
(j)
m′,m(β):

d̃
(j)
m′,m(β) = d̃

(j)
m,m′(β) = d̃

(j)
−m,−m′(β).
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The following equations for the matrix elements are straightforward:

d̃
(j)
3/2, 3/2(β) = d̃

(j)
−3/2,−3/2(β), d̃

(j)
−3/2, 3/2(β) = d̃

(j)
3/2,−3/2(β),

d̃
(j)
1/2, 1/2(β) = d̃

(j)
−1/2,−1/2(β), d̃

(j)
−1/2, 1/2(β) = d̃

(j)
1/2,−1/2(β),

(9)
d̃
(j)
3/2, 1/2(β) = d̃

(j)
1/2, 3/2(β) = d̃

(j)
−3/2,−1/2(β) = d̃

(j)
−1/2,−3/2(β),

d̃
(j)
3/2,−1/2(β) = d̃

(j)
−1/2, 3/2(β) = d̃

(j)
3/2,−1/2(β) = d̃

(j)
1/2,−3/2(β).

The probabilities associated with these matrix elements are also equal.

The probability vector −→p can be chosen as in (3). For example, if we fix m = 3/2 and consider all

elements with different m′, i.e., the elements of the first column in Table 1, we obtain

p1(β) = d̃
(j)
3/2, 3/2(β) = cos (β/2)6 P

(0, 3)
0 (cosβ)2 = (cosβ + 1)3/8,

p2(β) = d̃
(j)
1/2, 3/2(β) =

cos (β/2)4

3 sin (β/2)2
P

(−1, 2)
1 (cosβ)2 = 3 sin (β/2)2

(
sin (β/2)2 − 1

)2
,

(10)

p3(β) = d̃
(j)
−1/2, 3/2(β) =

cos (β/2)2

3 sin (β/2)4
P

(−2, 1)
2 (cosβ)2 =

3

8
(cosβ − 1)2 (cosβ + 1),

p4(β) = d̃
(j)
−3/2, 3/2(β) = sin (β/2)−6 P

(−3, 0)
3 (cosβ)2 = −(cosβ − 1)3/8.

The sum of the probabilities
∑
k

pk(β) = 1 for any angle β. For example, we calculated the probabilities

for β = 1; they are p1(1) = 0.4568019, p2(1) = 0.40899267, p3(1) = 0.1220624, and p4(1) = 0.012143. Of

course, their sum is equal to 1.

One can fix m′ and consider all matrix elements in the m′th row of Table 1. It is possible to construct

a vector −→p using other combinations of the elements in Table 1. This conclusion is a direct consequence

of equality (9). It is only necessary to have in mind that the sum of the elements of such a vector must

always be equal to unity. This fact provides one with an opportunity to construct a large number of

inequalities based on inequality (8) for the Shannon information.

We introduce the notation
(
P

(m′−m,m′+m)
j−m′ (cosβ)

)2 ≡ P̃
(m′−m,m′+m)
j−m′ . Substituting (10) in (7) and

(8), we arrive at

−
( P̃

(−3,0)
3

sin(β/2)6
+

P̃
(−2,1)
2 cos(β/2)2

3 sin(β/2)4

)
ln

( P̃
(−3,0)
3

sin(β/2)6
+

P̃
(−2,1)
2 cos(β/2)2

3 sin(β/2)4

)

−
(
cos(β/2)6P̃

(0,3)
0 +

cos(β/2)4

3 sin(β/2)2
P̃

(−1,2)
1

)
ln

(
cos(β/2)6P̃

(0,3)
0 +

cos(β/2)4

3 sin(β/2)2
P̃

(−1,2)
1

)

−
(
cos(β/2)6P̃

(0,3)
0 +

P̃
(−2,1)
2 cos(β/2)2

3 sin(β/2)4

)
ln

(
cos(β/2)6P̃

(0,3)
0 +

P̃
(−2,1)
2 cos(β/2)2

3 sin(β/2)4

)

−
( P̃

(−3,0)
3

sin(β/2)6
+

cos(β/2)4

3 sin(β/2)2
P̃

(−1,2)
1

)
ln

( P̃
(−3,0)
3

sin(β/2)6
+

cos(β/2)4

3 sin(β/2)2
P̃

(−1,2)
1

)

+cos(β/2)6P̃
(0,3)
0 ln[cos(β/2)6P̃

(0,3)
0 ] +

cos(β/2)4

3 sin(β/2)2
P̃

(−1,2)
1 ln

( cos(β/2)4

3 sin(β/2)2
P̃

(−1,2)
1

)

+
P̃

(−2,1)
2 cos(β/2)2

3 sin(β/2)4
ln

( P̃ (−2,1)
2 cos(β/2)2

3 sin(β/2)4

)
+

P̃
(−3,0)
3

sin(β/2)6
ln

( P̃
(−3,0)
3

sin(β/2)6

)
≥ 0. (11)
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Entropies HΠ(β), Hπ(β), and Hp(β), along with the Shannon information I(β) for probabilities (10) are

shown in Figs. 1 and 2. Obviously, the information reaches its maximum value at the point β = π/2.

Now we consider how the permutation of probabilities (10) affects the entropies Hπ and HΠ (8). We

introduce a new vector p̃ = (p̃1, p̃2, p̃3, p̃4) determined by

p̃1 ≡ p4, p̃2 ≡ p1, p̃3 ≡ p2, p̃4 ≡ p3. (12)

Entropies HΠ(β), Hπ(β), and Hp(β) and information I(β) for the probability vector p̃ are shown in

Figs. 3 and 4.

One can easily see that permutations impact only the entropy Hπ. The information turns to zero at

the point β = π/2. After substituting (12) in (7) and (8), we arrive at the following inequality:

−
(
cos(β/2)6P̃

(0, 3)
0 +

P̃
(−3, 0)
3

sin(β/2)6

)
ln

(
cos(β/2)6P̃

(0, 3)
0 +

P̃
(−3, 0)
3

sin(β/2)6

)

−
( cos(β/2)4

3 sin(β/2)2
P̃

(−1, 2)
1 +

P̃
(−2, 1)
2 cos(β/2)2

3 sin(β/2)4

)
ln

( cos(β/2)4

3 sin(β/2)2
P̃

(−1, 2)
1 +

P̃
(−2, 1)
2 cos(β/2)2

3 sin(β/2)4

)

−
(
cos(β/2)6P̃

(0, 3)
0 +

P̃
(−2, 1)
2 cos(β/2)2

3 sin(β/2)4

)
ln

(
cos(β/2)6P̃

(0, 3)
0 +

P̃
(−2, 1)
2 cos(β/2)2

3 sin(β/24

)

−
( P̃

(−3, 0)
3

sin(β/2)6
+

cos(β/2)4

3 sin(β/2)2
P̃

(−1, 2)
1

)
ln

( P̃
(−3, 0)
3

sin(β/2)6
+

cos(β/2)4

3 sin(β/2)2
P̃

(−1, 2)
1

)

+cos(β/2)6P̃
(0, 3)
0 ln

(
cos(β/2)6P̃

(0, 3)
0

)
+

cos(β/2)4

3 sin(β/2)2
P̃

(−1, 2)
1 ln

( cos(β/2)4

3 sin(β/2)2
P̃

(−1, 2)
1

)

+
P̃

(−2, 1)
2 cos(β/2)2

3 sin(β/2)4
ln

( P̃ (−2, 1)
2 cos(β/2)2

3 sin(β/2)4

)
+

P̃
(−3, 0)
3

sin(β/2)6
ln

( P̃
(−3, 0)
3

sin(β/2)6

)
≥ 0. (13)

Now we select the probability vector −→p using the other combination of d̃
(j)
m′,m(β). We fix m = 1/2 and

take elements in the second column of Table 1. The probability vector has the following components:

p1(β) = d̃
(j)
3/2, 1/2(β) = 3 cos (β/2)4 sin (β/2)2 P

(1, 2)
0 (cosβ)2 = 3 cos (β/2)4 sin (β/2)2 ,

p2(β) = d̃
(j)
1/2, 1/2(β) =

cosβ + 1

2
P

(0, 1)
1 (cosβ)2 =

(3 cosβ − 1)2

8
(cosβ + 1),

(14)

p3(β) = d̃
(j)
−1/2,1/2(β) =

P
(−1,0)
2 (cosβ)2

sin (β/2)2
= −(3 cosβ + 1)2

8
(cosβ − 1),

p4(β) = d̃
(j)
−3/2, 1/2(β) =

3P
(−2,−1)
3 (cosβ)2

cos(β/2)2(cos(β/2)2 − 1)2
=

3(cosβ − 1)2

8
(cosβ + 1).

204



Volume 35, Number 2, March, 2014 Journal of Russian Laser Research

Fig. 1. Entropies HΠ(β) (solid curve), Hπ(β) (dotted
curve), and Hp(β) (dashed curve) for probabilities (10).
The dash-dotted line corresponds to π/2.

Fig. 2. Information I(β) for probabilities (10). The
dash-dotted line corresponds to π/2.

Fig. 3. Entropies HΠ(β) (solid curve), Hπ(β) (dotted
curve), and Hp(β) (dashed curve) for probabilities (12).
The dash-dotted line corresponds to π/2.

Fig. 4. Information I(β) for probabilities (12). The
dash-dotted line corresponds to π/2.

Fig. 5. Entropies HΠ(β) (solid curve), Hπ(β) (dotted
curve), and Hp(β) (dashed curve) for probabilities (14).
The dash-dotted line corresponds to π/2.

Fig. 6. Information I(β) for probabilities (14). The
dash-dotted line corresponds to π/2.

Fig. 7. Entropies HΠ(β) (solid curve), Hπ(β) (dotted
curve), and Hp(β) (dashed curve) for probabilities (16).
The dash-dotted line corresponds to π/2.

Fig. 8. Information I(β) for probabilities (16). The
vertical line corresponds to π/2.
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Substituting (14) in (8), we arrive at the following inequality:

−
( P̃

(−1, 0)
2

sin(β/2)2
+

3P̃
(−2,−1)
3

cos(β/2)2(cos(β/2)2 − 1)2

)
ln

( P̃ (−1, 0)
2 (cosβ)2

sin(β/2)2
+

3P̃
(−2,−1)
3

cos(β/2)2(cos(β/2)2 − 1)2

)

−
(cosβ + 1

2
P̃

(0,1)
1 +3 cos

(β
2

)4
sin

(β
2

)2
P̃

(1,2)
0

)
ln

(cosβ + 1

2
P̃

(0, 1)
1 +3 cos

(β
2

)4
sin

(β
2

)2
P̃

(1, 2)
0

)

−
(cosβ + 1

2
P̃

(0, 1)
1 +

3P̃
(−2,−1)
3

cos(β/2)2(cos(β/2)2 − 1)2

)
ln

(cosβ + 1

2
P̃

(0, 1)
1 +

3P̃
(−2,−1)
3

cos(β/2)2(cos(β/2)2 − 1)2

)

−
( P̃

(−1, 0)
2

sin(β/2)2
+ 3 cos(β/2)4 sin(β/2)2P̃

(1, 2)
0

)
ln

( P̃
(−1, 0)
2

sin(β/2)2
+ 3 cos(β/2)4 sin(β/2)2P̃

(1, 2)
0

)

+
(
3 cos(β/2)4 sin(β/2)2P̃

(1, 2)
0

)
ln

(
3 cos(β/2)4 sin(β/2)2P̃

(1, 2)
0 (cosβ)2

)

+
( P̃ (−1, 0)

2 (cosβ)2

sin(β/2)2

)
ln

( P̃ (−1, 0)
2 (cosβ)2

sin(β/2)2

)
+

(cosβ + 1

2
P̃

(0, 1)
1

)
ln

(cosβ + 1

2
P̃

(0, 1)
1 (cosβ)2

)

+
( 3P̃

(−2,−1)
3

cos(β/2)2(cos(β/2)2 − 1)2

)
ln

( 3P̃
(−2,−1)
3

cos(β/2)2(cos(β/2)2 − 1)2

)
≥ 0. (15)

Fig. 9. Information for four probability vectors:
Eq. (10) (dashed curve), Eq. (12) (solid curve),
Eq. (14) (dotted curve), and Eq. (16) (dash-dotted
curve). The vertical line corresponds to π/2.

Entropies HΠ(β), Hπ(β), and Hp(β) along with in-

formation I(β) for the probability vector (14) are

shown in Figs. 5 and 6. One can easily see that

they differ from the entropies and information con-

structed by the polynomials based on the first col-

umn of Table 1.

Also it is interesting to see how the permuta-

tion of the components of the probability vector −→p
changes information. To this end, we perform the

same procedure as in (12).

The new vector p̂ = (p̂1, p̂2, p̂3, p̂4) can be con-

structed as

p̂1 ≡ p4, p̂2 ≡ p1, p̂3 ≡ p2, p̂4 ≡ p3. (16)

Substituting (14) in (7) and (8), we obtain the new entropies and information shown in Figs. 7 and 8. In

contrast to Fig. 6, the information for permuted vector p̂ is equal to zero at the point β = π/2.

Finally, we summarize the results shown in Figs. 2, 4, 6, and 8 and present the final results in Fig. 9.

We see that for systems (10) and (14) information is not equal to zero at β = π/2, and for permuted

vectors information is equal to zero.

From (9), we can conclude that the two examples given by (10) and (12) cover all possible probabilities.

The other combinations taken from Table 1 determine their permutations, but the Jacobi polynomials

corresponding to them are, of course, not the same. This fact provide us with the possibility to obtain

many different inequalities of the form (11).
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4. Case of the N -Component Probability Vector

In this section, we extend our consideration to the case where the probability vector hasN components,

i.e., −→p = (p1, p2, . . . , pN ). If N is an even number, we can introduce the map of indices similar to (5),

namely,

1 ⇔ 11, 2 ⇔ 12, 3 ⇔ 13, . . . , N/2 ⇔ 1N/2,

N/2 + 1 ⇔ 21, N/2 + 2 ⇔ 22, N/2 + 3 ⇔ 23, . . . , N ⇔ 2N/2.

Hence the probabilities are given in the form of a matrix (pil), i = 1, 2, l = 1, 2, . . . , N/2 with matrix

elements

p1 ⇔ p11, p2 ⇔ p12, p3 ⇔ p13, . . . , pN/2 ⇔ p1N/2,
(17)

p(N/2)+1 ⇔ p21, p(N/2)+2 ⇔ p22, p(N/2)+3 ⇔ p23, . . . , pN ⇔ p2N/2.

If N is an odd number, we add a zero vector pN+1 = 0 to the N -component vector −→p , and obtain the

(N + 1)-component vector −→p = (p1, p2, . . . , pN , pN+1); the invertible map of the indices is

1 ⇔ 11, 2 ⇔ 12, 3 ⇔ 13, . . . , (N + 1)/2 ⇔ 1 (N + 1)/2,

(N + 1)/2 + 1 ⇔ 21, (N + 1)/2 + 2 ⇔ 22, (N + 1)/2 + 3 ⇔ 23, . . . , (N + 1) ⇔ 2 (N + 1)/2.

The probabilities are given in the form of a matrix (pil), i = 1, 2, l = 1, 2, . . . , (N + 1)/2 with matrix

elements

p1 ⇔ p11, p2 ⇔ p12, p3 ⇔ p13, . . . , p(N+1)/2 ⇔ p1(N+1)/2,
(18)

p[(N+1)/2]+1 ⇔ p21, p[(N+1)/2]+2 ⇔ p22, p[(N+1)/2]+3 ⇔ p23, . . . , pN+1 ⇔ p2 (N+1)/2.

Similarly to (6), we can write marginal probability distributions determined by the joint probability

distribution. For an odd N , they are as follows:

πi =

(N+1)/2∑
l=1

pil = pi1 + pi2 + pi3 + · · ·+ pi (N+1)/2, i = 1, 2

(19)

Πl =
2∑

i=1

pil = p1l + p2l, l = 1, 2, . . . , (N + 1)/2.

For (19), we obtain inequalities similar to (11).

To this end, we define the Shannon entropies as

Hp = −
N+1∑
t=1

pt ln pt, Hπ1 = −
(N+1)/2∑

t=1

pt ln

(N+1)/2∑
t=1

pt, Hπ2 = −
N+1∑

t=[(N+1)/2]+1

pt ln

N+1∑
t=[(N+1)/2]+1

pt,

(20)
HΠl

= − (
pl + p[(N+1)/2]+l

)
ln pl + p[(N+1)/2]+l, l = 1, 2, . . . , (N + 1)/2.

Then the Shannon information (8) based on entropies (20) reads

I(β)tl = Hπt(β) +HΠl
(β)−Hp(β), t = 1, 2 l = 1, 2, . . . , (N + 1)/2. (21)
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Obviously, the inequality I(β) ≥ 0 is valid for all the angles β.

For spin j, the spin projections m and m′ can take 2j +1 = N values. If j is a fractional number (N

is even), the spin projections can be −j,−j + 1, . . . , j − 1, j. Then the components of the probability −→p
are given by (17). On the other hand, if j is an integer number (N is odd), than the spin projections can

be −j,−j + 1, . . . , 0, . . . , j − 1, j. The components of the probability vector are given by (18).

One can take the polynomials |d(j)m′,m(β)|2 as the probabilities for a fixed m′ and all m. One of the

possible choices for an odd N is as follows:

p1 = |d(j)m′,j(β)|2, p2 = |d(j)m′,j−1(β)|2, . . . , p(N+1)/2 = |d(j)m′,0(β)|2, . . . , pN = |d(j)m′,−j(β)|2, pN+1 = 0.

(22)

In such notation, inequality (21) for t = 1 and l = (N + 1)/2 reads

−
j∑

m=0

d̃
(j)
m′,m(β) ln

j∑
m=0

d̃
(j)
m′,m(β)− d̃

(j)
m′,0(β) ln d̃

(j)
m′,0(β) +

j∑
m=−j

d̃
(j)
m′,m(β) ln

j∑
m=−j

d̃
(j)
m′,m(β) ≥ 0, (23)

and for t = 2 and l = 1 it is

−
−1∑

m=−j

d̃
(j)
m′,m(β) ln

−1∑
m=−j

d̃
(j)
m′,m(β)− (

d̃
(j)
m′,j(β) + d̃

(j)
m′,−1(β)

)
ln

(
d̃
(j)
m′,j(β) + d̃

(j)
m′,−1(β)

)

+

j∑
m=−j

d̃
(j)
m′,m(β) ln

j∑
m=−j

d̃
(j)
m′,m(β) ≥ 0. (24)

Our aim now is to represent (23) and (24) by Jacobi polynomials. To this end, we introduce the new

notation in (1)

d̃
(j)
m′,m(β) = |d(j)m′,m(β)|2 = Gj

m′,m(β)P̃
(m′−m,m′+m)
j−m′ ,

where

Gj
m′,m(β) =

(j +m′)!(j −m′)!
(j +m)!(j −m)!

(
cos(β/2)m

′+m sin(β/2)m
′−m

)2
.

We rewrite inequalities (23) and (24) in new terms as follows:

−
j∑

m=0

Gj
m′,m(β)P̃

(m′−m,m′+m)
j−m′ ln

j∑
m=0

Gj
m′,m(β)P̃

(m′−m,m′+m)
j−m′ −Gj

m′,0(β)P̃
(m′,m′)
j−m′ ln

(
Gj

m′,0(β)P̃
(m′,m′)
j−m′

)

+

j∑
m=−j

Gj
m′,m(β)P̃

(m′−m,m′+m)
j−m′ ln

j∑
m=−j

Gj
m′,m(β)P̃

(m′−m,m′+m)
j−m′ ≥ 0,

−
−1∑

m=−j

Gj
m′,m(β)P̃

(m′−m,m′+m)
j−m′ ln

−1∑
m=−j

Gj
m′,m(β)P̃

(m′−m,m′+m)
j−m′

−(
Gj

m′,j(β)P̃
(m′−j,m′+j)
j−m′ +Gj

m′,−1(β)P̃
(m′+1,m′−1)
j−m′

)
ln

(
Gj

m′,j(βP̃
(m′−j,m′+j)
j−m′ +Gj

m′,−1(β)P̃
(m′+1,m′−1)
j−m′

)

+

j∑
m=−j

Gj
m′,m(β)P̃

(m′−m,m′+m)
j−m′ ln

j∑
m=−j

Gj
m′,m(β)P̃

(m′−m,m′+m)
j−m′ ≥ 0.
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Now we consider a special case where j = c, with c being an integer number and m′ = 0. Then we

can rewrite (1) as

|d(c)0,m(β)|2 = |d(c)m,0(β)|2 =
(c−m)!

(c+m)!

(
Pm
c (cosβ)

)2
, (25)

where Pm
c (cosβ) are the Legendre polynomials [15]. In this case, (23) reads

−
j∑

m=0

(c−m)!

(c+m)!
P̃m
c ln

( j∑
m=0

(c−m)!

(c+m)!
P̃m
c

)
− P̃ 0

c ln
(
P̃ 0
c

)
+

j∑
m=−j

(c−m)!

(c+m)!
P̃m
c ln

j∑
m=−j

(c−m)!

(c+m)!
P̃m
c ≥ 0,

and (24) is

−
−1∑

m=−j

(c−m)!

(c+m)!
P̃m
c ln

( −1∑
m=−j

(c−m)!

(c+m)!
P̃m
c

)
− (c+ 1)!

(c− 1)!
P̃−1
c ln

(c+ 1)!

(c− 1)!
P̃−1
c

+

j∑
m=−j

(c−m)!

(c+m)!
P̃m
c ln

j∑
m=−j

(c−m)!

(c+m)!
P̃m
c ≥ 0,

where we use the notation
(
Pm
c (cosβ)

)2 ≡ P̃m
c for Legendre polynomials.

Fig. 10. Shannon information (21) for probabilities (22)
at t = 1; l = 1 and j = 1 (solid curve), l = 3 and
j = 4 (dotted curve), l = 4 and j = 5 (dashed curve),
and l = 6 and j = 5 (dash-dotted curve).

Fig. 11. Shannon information (21) for probabilities (22)
at t = 2; l = 1 and j = 1 (solid curve), l = 4 and
j = 4 (dotted curve), l = 2 and j = 3 (dashed curve),
and l = 5 and j = 5 (dash-dotted curve).

Informations (21) are shown in Figs. 10 and 11 for entropies (20) and various parameters t and l, and

spins j.

5. Summary

To conclude, we point out the main results of the study.

We considered the matrix elements of the unitary irreducible representations of the SU(2) group

and applied the known subadditivity condition for joint probability distributions, constructed from these

matrix elements, to obtain new inequalities for the Jacobi and Legendre polynomials. The inequalities

correspond to entropic inequalities for Shannon entropies of bipartite classical systems. We demonstrated
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the results on the example of spin j = 3/2, where the Shannon information of the bipartite system is

expressed in terms of the polynomials. We formulated a general approach to derive analogous information

and entropic inequalities for arbitrary spins j.
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