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Abstract

We consider the problem of an atomic three-level system (in a ladder configuration) interacting with
a radiation field. Assuming a coherent state as the initial state, we solve exactly the time evolution of
the system. We discuss the appearance of atomic squeezing and calculate the atomic spin squeezing
and the atomic entropy squeezing. We show that both parameters predict similar angular and time
dependences.
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1. Introduction

The study of entanglement has received a great deal of attention, particularly, in connection with

recent developments in the field of quantum information [1–5]. Several quantum protocols, such as

teleportation [6–10], are based on entangled states. One of the relevant physical quantities that can be

used to measure entanglement is entropy [11]. Araki and Lieb have established a well-known relationship

among the total entropy of the system and the reduced entropies of the components [12, 13]. From this

relation, Lindblad [14], Barnett and Phoenix [15], and Knight and Phoenix [16] have introduced the index

of correlations to analyze the presence of entanglement. Associated with the entropy of a system, in early

1957 Hirschman derived the entropic uncertainty relations (EUR) [17]. Since then, a lot of work has been

devoted to applications of the EUR to different physical systems. In particular, Kraus [18] and Maasen

and Uffink [19] have discussed the optimum entropy uncertainty relation for a pair of complementary

observables in a finite Hilbert space. This concept was extended by Sánchez Ruiz [20] for a set of N

complementary observables. Margarita Man’ko and coworkers have reviewed the EUR and presented

new inequalities for symplectic tomographic entropies [21–23].

Among many-body quantum entangled states, squeezed atomic states play an essential role in preci-

sion measurements, quantum information, and fundamental tests of quantum mechanics [24]. Squeezed

states are quantum correlated states for which the fluctuations of a given observable are reduced under

the quantum limit at the expense of the increase in fluctuations of its conjugate. Recently, Obada and

coworkers [25–30] have introduced the so-called entropy-squeezing parameter. They have analyzed the
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occurrence of entanglement in different physical systems using the entropy-squeezing parameter as an

indicator. The variance- and entropy-squeezing for two-level atoms in interaction with a nondegenerate

parametric amplifier was considered in [28]. The characterization of entropy squeezing, as an indicator

of entanglement in a three-level system interacting with a cavity field, was presented in [29, 30]. It was

found that the setting of the initial state and the activation of the atom-field coupling affect the field

entropy squeezing rather drastically. Also, the link between the entanglement and entropy has been used

to study coherence and entanglement in the ground state of a bosonic Josephson junction [31].

In recent works, the use of collisions in ultra-cold gases to induce quadrature spin squeezing in two-

component Bose condensates has been reported [32, 33]. A generalization to a higher-dimensional spin

space by measuring squeezing in a spin-1 Bose condensate was proposed in [34]. In this work, we study

the appearance of atomic squeezing for a system of N three-level atoms interacting among themselves

and with a radiation field. The atomic excitations are modeled by the algebra associated to the SU(3)

group [35, 36]. We analyze the time and angular dependences of the entropy squeezing parameter and

the spin squeezing parameter.

This paper is organized as follows.

We present the formalism of our model in Sec. 2. In Sec. 3 we discuss the results of our calculations

performed for the model proposed. We draw our conclusions in Sec. 4.

2. Formalism

We consider a system of N identical three-level atoms of 87Rb interacting with a radiation field in a

cavity [37–42]. The dipole–dipole interaction of the atomic sector is modeled in view of [37,43–45]. This

is a suitable representation for the ladder atomic configuration considered, and it is a generalization of

the two-level case [46].

Following [34–36, 47], we write the Hamiltonian of a system of three-level atoms in the ladder-

configuration as

H =
1

3
ΩN + ωa

(
a†a+

1

2

)
+ ω Sz +

1

2
Δ Qzz + ζ(a†S− + S+a) + λ S+S−, (1)

where a†(a) is the photon creation (annihilation) operator of the photon mode of energy ωa, and S±
and Qαβ are the spin and quadrupole operators of the Cartesian dipole–quadrupole decomposition of the

su(3) Lie algebra [34–36]. The energies Ω, ω, and Δ are related to the level energies ωi (i = 0, 1, 2) by

Ω = ω0 + ω1 + ω2, ω = (ω2 − ω0)/2, and Δ = [(ω2 + ω0)/2]− ω1 (� = 1 everywhere). In this scheme, the

transitions take place between the atomic levels ordered in the sequence ω2 > ω1 > ω0. The operators of

(1) are defined as [34]

Sα = −i
∑
α,β,γ

εαβγc
†
γcβ , Qαβ = −c†βcα − c†αcβ +

2

3
δαβ

∑
γ

c†γcγ , (2)

where the operators c†α are expressed as

c†x =
1√
2

(
−b†2 + b†0

)
, c†y =

i√
2

(
b†2 + b†0

)
, c†z = b†1 (3)
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in terms of the boson creation (annihilation) operators b†i (bi) associated to the excitation of the ith

atomic level (i = 0, 1, 2). Defining Sij = b†jbi, we write the Cartesian components of the operators (2) as

follows:

Sx =
1√
2
(S01 + S12 + S21 + S10), Sy = − i√

2
(S01 + S12 − S21 − S10), Sz = (S22 − S00),

Qxz =
1√
2
(−S01 + S12 + S21 − S10), Qxy = i(S20 − S02),

Qyz = − i√
2
(−S01 + S12 − S21 + S10), Qxx =

2

3
N − (S00 + S22 − S02 − S20),

Qyy =
2

3
N − (S00 + S22 + S02 + S20), Qzz = −4

3
N + 2(S00 + S22) = −(Qxx +Qyy),

where S± = Sx ± iSy.

Notice that the term Δ Qzz produces the effect of a quadratic Zeeman operator [34].

The basis for the proposed system can be constructed as a direct product of the photon basis and the

collective basis of the atoms

| na, k〉 =| na〉 ⊗ | N, k〉. (4)

The state with na photons | na〉 is written

| na〉 = 1√
na!

a†na | 0〉, (5)

and | N, k〉 is the collective atomic state

| N, k〉 =
√

(2N− k)!

k!(2N)!
Sk+ | n0 = N, n2 = 0〉. (6)

In the previous expression, the states | n0, n2〉 span the bare atomic basis, with n0 particles at level 0

and n2 particles at level 2. The number of particles at level 1 is fixed by the constrain N = n0+n1+n2.

In the explicit form,

| N, k〉 =
(

2N

k

)−1/2 k∑
p = 0

[(k − p)/2 ∈ N]

[
2p

(
N

p

)(
N − p

(k − p)/2

)]1/2 ∣∣N− p− (k− p)/2, (k− p)/2
〉
,

The Hamiltonian (1) commutes with the operator

P = a†a+ Sz +N. (7)

Thus, the vectors of the basis can be written in terms of the eigenvalues of P , L = na + k. Because of

the symmetry (7), we can write the basis of product states as

| N L k〉 =| L− k〉⊗ | N, k〉. (8)
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In the basis of states with fixed values of N and L, the exact solution reads [41, 42]

| ΨN,L, α〉 =
∑
k

cN,L, α(k) | L− k〉⊗ | N, k〉. (9)

The adopted su(3) representation in terms of the spin and quadrupole operators of [34–36,47] allows

us to simplify the construction of the exact solution. In particular, in the case Δ = 0 the interaction

described by the Hamiltonian of Eq. (1) reduces to that of a two atomic-level system in a (2N + 1)-

dimensional space

H =
1

3
ΩN + ωa

(
a†a+ 1/2

)
+ ωSz + ζ(a†S− + S+a) + λS+S−. (10)

2.1. The Initial Condition

To study the time evolution of the states and observables described by the previous models, we follow

the formalism presented in [41, 42, 47, 48]. We assume that the initial state is the direct product of the

coherent photon state and the coherent spin state (CSS)

| I〉 =| zph〉⊗ | zat〉, (11)

with | zph〉 = Nph ezpha
† | 0〉 and | zat〉 = Nat ezatS+ | 0〉. The parameter zph is related to the

mean value of photons in the system through | zph |2= 〈na〉, while zat = −e−iφ0 tan(θ0/2). The angles

(θ0, φ0) define the direction 	n0 = (sin θ0 cosφ0, sin θ0 sinφ0, cos θ0), such that 	S · 	n0 | zat〉 = −S | zat〉,
with S = N [49].

2.2. Spin Squeezing Parameter

Atomic spin squeezed states are quantum correlated systems with reduced fluctuations in one of

the collective spin components. Following Ueda and Kitagawa [50], we define a set of orthogonal axes{
nx′ , ny′ , nz′

}
, such that nz′ is along the direction of 〈S〉. We define the squeezing factor in the σ′

direction as

ζ2(σ′) =
2(ΔSσ′)2

|〈S〉| . (12)

Then the system is squeezed in the σ′ direction if ζ2σ′ < 1. So defined, the parameter (12) is su(2)

invariant [51]. In what follows, we fix the direction x′ as the direction for which the squeezing parameter

reaches its minimum value. Clearly, ζ2(x′)ζ2(y′) ≥ 1.

2.3. Entropy Squeezing

The importance of squeezed states of light for optical devices employed in quantum measurements

has been demonstrated during the last decade; in particular, in connection with realizations of quantum

communications, teleportation, and cryptography. Generally speaking, squeezed light is a natural tool

in quantum information theory (see [25, 27] and references therein). In this section, we review briefly

the concept of entropy squeezing in order to relate it to the spin-squeezing mechanism of the previous

section.
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In both cases, we start with the Heisenberg uncertainty relations and include fluctuations. In this

section, we generalize the definitions obtained by the other authors for the case of two-level atoms [25,27]

to the present case of three-level atoms.

The information entropy H(Sσ) [25, 27] of the operators Sσ (σ = x′, y′, z′) is given by

H(Sσ) = −
2N∑
j=0

Pj(σ) log(Pj(σ)), (13)

where

Pj(σ) = 〈σ, j|ρat(t) | σ, j〉 (14)

is the expectation value of the reduced atomic entropy ρat = Trphρ(t) on the jth eigenstate of the operator

Sσ.

For the present case of three-level atoms, we generalize the expressions valid for the SU(2) case (two-

level atoms) [25, 27] to the SU(3) representation. The quantities H(Sx′), H(Sy′), and H(Sz′), when nz′

is along the direction of 〈S〉, satisfy the condition [47]

H(Sx′) +H(Sy′) +H(Sz′) ≥ f(N), (15)

with

f(N) = 2 log(22N )− 2

22N

∑
k

(
2N

k

)
log

(
2N

k

)
.

This condition can also be written as

δH(Sx′)δH(Sy′) ≥ δf(N)

δH(Sz′)
, (16)

with δH(Sσ) = eH(Sσ) and δf(N) = ef(N). For a detailed derivation, the reader is referred to [47].

The atomic squeezing of the system is determined in view of the entropy uncertainty relation (16). The

fluctuations in component Sσ of the spin of the atomic system are said to be squeezed if the information

entropy H(Sσ) satisfies the constraint

ζ2E(σ
′) = δH(S′

σ)/
√

δf(N)/δH(Sz′) < 1. (17)

In deriving the previous equations, we used the same arguments introduced previously for spin squeezing.

In the following section, we show with the help of numerical results that the time and angular dependences

of both observables, spin squeezing and entropy squeezing, are rather similar and both of them can be

used to characterize the degree of squeezing of the spin of atomic systems.

3. Results and Discussion

In this section, we present the results of calculations that we performed by applying the formalism

given by the Hamiltonian (1). We calculated entropy ζ2E(σ
′) and spin ζ2(σ′) squeezing parameters for a
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Fig. 1. Time dependence of the entropy
squeezing parameter ζ2E(x

′) (upper curve) and
the spin squeezing parameter ζ2(x′) (lower
curve), both in the x′ direction. Both para-
meters are given in [dB], while the time scale
is given in arbitrary units. The atoms interact
with couplings λ = 0.08 and ζ = 0.01 for the
Hamiltonian (1). The initial state corresponds
to the initial coherent spin state with θ0 = π/4
and φ0 = 0, and the initial coherent photon
state with na = 60. Here, N = 5 (a), 10 (b),
15 (c), and 20 (d) atoms.

system consisting of atoms of 87Rb. The effective level scheme includes for the ladder configuration the

state 52S1/2 as the lower state | 0〉, the state 52P3/2 as the intermediate state | 1〉, and the state 52D5/2

as the upper state | 2〉. The energy of the photon sector of the Hamiltonian corresponds to the resonant

case [48, 52,53].

In the analysis, we fixed the interaction constants of the Hamiltonian (1) to realistic values extracted

from our previous work on 87Rb [46, 48]. Since we are using natural units with � = 1, the couplings

and frequencies are given in units of energy (the scale is arbitrary; for comparison with the energy scale

of the atomic case, see [46, 48]), and the time variable is measured in units of the inverse energy. Both

squeezing parameters are given in dB units. We discuss the results corresponding to the initial coherent

state in the atomic sector with θ0 = π/4 and φ0 = 0, and the coherent state in the photonic sector with

〈na〉 = 60.

Figure 1 shows the time dependence of the spin squeezing parameter ζ2(x′) and the entropy squeezing

parameter ζ2E(x
′) for different numbers of atoms N = 5 (a), 10 (b), 15 (c), and 20 (d). In all cases,

the upper curve corresponds to the entropy squeezing parameter, and the lower curve corresponds to

the spin squeezing parameter. Overall, both parameters predict similar behavior as a function of time,

though the entropy squeezing parameter in the low time regime is more restrictive than the spin squeezing

parameter. As the number of atoms increases, the value of the squeezing parameter also increases.

In Fig. 2, we show the dependence of the atomic squeezing in the plane (θ− φ) perpendicular to the

direction of 〈S〉 at a fixed value of time for the system of N = 20 atoms. The results for the spin squeezing

parameter are shown on panel a and for the entropy squeezing parameter on panel b, respectively. Light

gray areas show the regions that exhibit squeezing (ζ2(x′) < 0 and ζ2E(x
′) < 0) in [dB]. From Figs. 1

and 2, we see that the regions of optimum atomic squeezing predicted by both parameters in the (θ− φ)

plane coincide. From the results presented, the range of values of θ and φ, for which the appearance of

atomic squeezing is predicted, is larger for the spin squeezing parameter than for the entropy squeezing

parameter. We performed the analysis of the angular dependence in the (θ − φ) plane for systems of

N = 5, 10, and 15 atoms, and obtained results are similar to the case of N = 20 atoms.

The behavior of the system for different initial states and different ranges of possible coupling con-
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Fig. 2. Angular dependence of the atomic
squeezing for a system with N = 20 atoms at
t = 38 in the (θ − φ) plane. The results for
the spin squeezing parameter (a) and the cor-
responding results for the entropy squeezing pa-
rameter (b). Light gray areas show the regions
that exhibit squeezing (ζ2 < 0 and ζ2E < 0) in
[dB]. The other parameters are the same as in
Fig. 1.

stants has been analyzed in [47]. The results seemingly indicate that both parameters provide the same

information on the persistence of the orientation of the spin of the system.

4. Conclusions

We studied the appearance of atomic squeezing for three-level 87Rb atoms in the ladder configuration

interacting with a radiation field. We found that the use of the su(3) Cartesian dipole–quadrupole

representation of the algebra simplifies the structure of the exact solution. Also, in the case of symmetry

spacing levels, the system can be solved exactly in the subspace generated by the spin su(2) subalgebra.

From the numerical analysis of the results, we observe that both the spin-squeezing and the entropy-

squeezing parameters predict overall similar behavior concerning the time and angular dependences.

However, the entropy squeezing parameter is more restrictive in the angular dependence and lower time

regime than the spin squeezing parameter.
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